USENIX

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

5" USENIX Conference on Object-Oriented Technologies and Systems
(COOTS '99)

San Diego, California, USA, May 3-7, 1999

Tuning Branch Predictors to Support
Virtual Method Invocation in Java

N. Vijaykrishnan

Pennsylvania State University

N. Ranganathan
University of Texas at El Paso

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510 548 5738
Email: office@usenix.org ~ WWW: http://www.usenix.org

Tuning Branch Predictors to Support Virtual Method
Invocation in Java

N. Vijaykrishnan
Department of Computer Science and Engineering
Pennsylvania State University
University Park, PA, 16802
vijay@cse.psu.edu, http://www.cse.psu.edu/ ~vijay

N. Ranganathan

Department of Electrical and Computer Engineering
University of Texas at El Paso
El Paso, TX
ranganat@ece.utep.edu, http://www.ece.utep.edu/faculty /webrangan

Abstract

Java’s object oriented nature along with its
distributed nature make it a good choice for
network computing. The use of virtual meth-
ods associated with Java’s object oriented
behavior requires accurate target prediction
for indirect branches. This is critical to the
performance of Java applications executed
on deeply pipelined, wide issue processors.
In this paper, we investigate the use of a
path history based predictor to accurately
determine the target of these virtual methods.
The effect of varying the various parameters
of the predictor on the misprediction rates
is studied using various Java benchmarks.
Results from this study show that the exe-
cution of Java code will benefit from more
sophisticated branch-predictors.

1 Introduction

Java is a class-based object oriented lan-
guage that is used extensively for building
networked applications. Some of the features
of Java such as the use of virtual methods, dy-
namic loading and symbolic resolution that
make it suitable for developing networked
software applications also slow the execution
speed of Java code. In this paper, we focus

on addressing the performance issues involved
with the use of virtual methods in Java.

The use of virtual methods as the default
method invocation mechanism results in the
execution of frequent indirect branch exe-
cutions. The invokevirtual JVM bytecode
[1] that is used to perform virtual method
calls constitutes 5% of the Java bytecodes
executed on an average for the benchmarks
shown in Table 2. Many of the current JVM
implementations such as Sun’s JDK inter-
preter and CACAO Just-in-Time Compiler[2]
use a dispatch table to implement the invoke-
wvirtual bytecode. When a virtual method
is invoked, the target address is obtained
from a fixed index into the the dispatch ta-
ble of the current object. Finally, an indi-
rect branch instruction is executed to jump to
the fetched target address. Thus, an indirect
branch is executed for every virtual method
invoked. The accurate prediction of these in-
direct branches is critical to the performance
of Java virtual machine (JVM) implementa-
tions executing on deeply pipelined systems.
Speculative execution is used in such archi-
tectures to avoid the performance loss asso-
ciated with the execution of branch instruc-
tions. Accurate branch predictors are essen-
tial to avoid discarding the results of the spec-
ulative execution following a misprediction.

Current processors employ a branch tar-
get buffer (BTB) based mechanism to pre-
dict the indirect branches [12]. The mispre-

diction rates for virtual method calls using
the branch target buffer is found to range up
to 27% as shown in Table 1 for the studied
benchmarks. Previous researchers have suc-
cessfully used path history information to im-
prove the prediction of direct branches [8, 16].
In this paper, the path history of virtual
method calls is used to predict target ad-
dresses of virtual method invocations. The
path history provides the capability to distin-
guish between different dynamic executions
of the same virtual method. In the path his-
tory based predictor, a hashing function of
the path history of target addresses and the
virtual method call site address is used to in-
dex a target cache. The cached entry pro-
vides the predicted target address of the vir-
tual call.

The paper is organized as follows. Section
2 discusses the background and motivation
for this work. In section 3, the path history
based target address predictor is introduced.
Next, the experimental strategy and bench-
marks used in this study are explained in
section 4. The effect of the various param-
eters of the path-history based target address
predictor on the performance of the predic-
tor is studied using the benchmarks in Sec-
tion 5. Starting from a fully associative tar-
get buffer of unlimited size, the parameters
are optimized sequentially to account for the
hardware constraints such as buffer size and
limited associativity. The number of history
buffers, the path history length, the number
of target address bits, the hashing function,
and the buffer structure were the parameters
varied. Concluding remarks are provided in
Section 6.

2 Background

The problem of target prediction for in-
direct branches has been investigated for C
and C++ programs. Calder and Grunwald
proposed a 2-bit strategy for updating the
branch target buffer (BTB) [18]. The tar-
get address entry in the BTB is updated only
when two consecutive predictions at that tar-
get address are incorrect. This strategy as
opposed to the default strategy of updating

the entry on each misprediction was shown
to improve the performance. Emer and Gloy
present several single-level predictors based
on a combination of the values of program
counter, stack pointer, register number and
stack address [19]. They performed their
study on SPECint95 programs.

Previous research has shown the use of
correlation information from path history
to predict the execution of direct branches
[8, 16]. Recently, the path history infor-
mation has been used to predict indirect
branches [17, 20]. Chang, Hao and Patt pro-
posed a target cache that uses the branch
history to distinguish different dynamic oc-
currences of each indirect branch [17]. Their
study was performed on select SPECint95
programs. Their work also shows the cor-
relation between higher misprediction rates
and slower execution speed. In this paper,
we make use of this observation and focus
on improving misprediction rates. The object
oriented programs in C++ and Java use indi-
rect branches with a much higher frequency
than in SPECint95 programs. Target address
prediction for indirect branches using a suite
of C++ programs and SPECint95 was per-
formed in [20]. Their study investigated the
impact of various hardware constraints on the
performance of a path history based predic-
tor. Our work uses a similar approach in
investigating the indirect branch behavior of
Java programs. Unlike the previous efforts,
the focus of this work is confined to the tar-
get prediction of indirect branches that occur
due to the virtual method invocations. The
best way to improve the performance of vir-
tual method invocations is to eliminate the
virtual calls by inlining or statically binding
them [14]. However, only a portion of the
calls can be safely bound statically [15]. We
identify Java code characteristics that enable
the use of path based predictors in identifying
the target of the virtual calls.

Since virtual method invocation has been
identified as one of the major bottlenecks for
the performance of Java code [11, 13], the im-
pact of the various parameters of the path
history predictor on prediction accuracy is in-
vestigated in this work. It was observed in
[11] that the proportion of virtual methods is
likely to increase due to the trend towards

Table 1: Misprediction rates using normal
and 2-bit replacement strategies
Benchmark BTB 2-bit BTB
misses (%) | misses (%)
Javac 4.8 3.9
Javadoc 3.5 2.4
Richards 23.4 27.1
Deltablue 1.7 1.2
Heap 2.6 2.1

A 32K direct mapped BTB was used.

fine-grained object design in Java applica-
tions. In such an environment, big objects
become many smaller objects. Consequently
big methods become many smaller methods.
This causes many more method invocations
and method invocation increasingly becomes
a performance bottleneck. In [13], profiling of
various Java benchmarks was done to identify
virtual methods as one of the bottlenecks in
Java execution. This work also investigated
the receiver type locality at virtual method
call sites.

Java performance studies have been per-
formed in [9], [10] to investigate the need for
architectural support for Java execution. In
[10], it was concluded based on their study
of Java interpreters that it may be prema-
ture to provide hardware support for Java
execution. The results of this paper indicate
that the micro-architectural resources such as
branch predictors can be enhanced to support
Java execution. However, it must be noted
that the support proposed here is based on
the Java language characteristics rather than
just the interpreter characteristics analyzed
in [10].

3 Path History Based Predictor

In this section, the use of path history to
improve the target prediction accuracy is in-
vestigated. Path history consists of target ad-
dresses of recently executed branches. The
history of target addresses provides useful
correlation information that can be used to
improve the branch prediction accuracy. Vir-
tual method calls in Java programs exhibit

correlation among the receiver types at call
sites. This is due to the presence of corre-
lation among consecutive call sites as shown
in Figure 1. In this example, the shape ob-
ject s invokes a series of virtual calls and the
different call sites in the function drag_-drop
have the same receiver type. Another reason
for the correlation is due to a sequence of vir-
tual calls triggered by a single virtual method
call and the presence of looping constructs as
shown in Figure 2. Here, the invocation of
a virtual method to print a string triggers
a sequence of method invocations. The use
of path history in exploiting such correlation

among call sites to predict the destination of

virtual calls is investigated in this paper.

/I Thisisadrag drop code in GUI based programs

class mousg{
public void drag_drop(shape &5) {

s.invalidate object_area();
screen.invalidate();
s.move(new_|ocation);
s.update_object_area();
s.repaint();
screen.update();

}}

Fig 1: Correlation in receiver types
among call sites

System.out.printin("Hello");

|

Java.io.PrintStream.printin(..)
repeat for length_of ("Hello") times
Java.io.printStream.Print(..)
Javalang.String.charAT(..)
Java.io.PrintStream.write(..)
Java.io.BufferedOutputStream.writey..)
Java.io.PrintStream.write(..)
Java.io.BufferedOutputStream.write(..)
Java.io.BufferedOutputStream.flush(..)

Fig 2: A single virtual method invoking
a series of methods

Figure 3 shows the predictor based on the
use of path history information. The pro-
gram counter stores the address of the virtual
method call site. An indexing function of the
program counter is used to access the path

history information corresponding to the call
site. Then a hashing function of the path
history information from the history buffers
and the program counter is used to form the
hashing address. This address is used to in-
dex the target buffer to obtain the target ad-
dress. The various parameters involved in the
design of such a predictor include the num-
ber of history buffers (n), path history length
(p), the number of bits of each target address
registered in the history buffer (b), the hash-
ing function, and the structure of the target
buffer. The target buffer could either be tag-
less or a tagged buffer. In a tagless buffer,
the hashing address is used to index into the
buffer and no tag comparisons are involved.
Hence, the mapping of two different hashing
addresses in to the same target buffer loca-
tion are not distinguished. In contrast, the
tagged buffer has a tag associated with each
entry. These tags help to distinguish different
history patterns that map to the same loca-
tion. The influence of these parameters on
the performance of the predictor is studied in
the subsequent sections.

Benchmark Description T1
Javac Java compiler 215K
Javadoc Documentation tool 274K
Richards O.S task dispatcher [4] | 1517K
Deltablue Constraint solver [4] 12082K
Heap Garbage collector [3] 151K

T1 - Number of virtual calls executed

Table 2: Description of Benchmarks

History Buffers Target Buffer
CEERERT Mﬁﬂl
Method Address

Hashing

Function

Indexing
Function

HENEEEE

Program Counter

Fig 3: Path history based two level in-
direct branch prediction

4 Experimental Setup

The following experimental strategy was
used in this study. The traces of indirect

branches corresponding to the virtual method
call sites were obtained through modifica-
tions to the JDK 1.0.2 source code. The
benchmarks shown in Table 2 were executed
using the modified JDK 1.0.2 on a Sparc-
20 processor under Solaris 2.5 operating sys-
tem. The javac and javadoc benchmarks
are large applications with 25,400 and 28,471
lines of code respectively. The richards and
deltablue benchmarks are medium size bench-
marks with 410 and 984 lines of code [4].
These two benchmark were chosen as they
have been used in earlier studies of polymor-
phic behavior of object oriented languages [5].
The heap benchmark is an 4495 line applet
that implements incremental garbage collec-
tion.

5 Predictor Parameter Varia-
tions

In this section, the effect of varying the pa-
rameters involved in the design of the branch
predictor is studied. The parameters were op-
timized sequentially and the following subsec-
tions report them in that order. The stud-
ied parameters include the number of history
buffers (n), path history length (p), the num-
ber of bits of each target address registered in
the history buffer (b), the hashing function,
and the structure of the target buffer.

5.1 Number of History Buffers

The number of history buffers determines
the number of virtual method call sites that
share their history. When n = 1, all the vir-
tual call sites share the same history buffer
and the resulting predictor is called as a
global history predictor. In contrast, a per-
address history predictor keeps a separate his-
tory for all virtual method call sites. This is
achieved when n = 2%, where w is the word
size. When the number of history buffers is
between 1 and 2%, a set of addresses use the
same history buffer. The effect of the num-
ber of history buffers on misprediction rate
was studied by using the most significant bits
of the program counter to access the history

buffers. To mask the effects of other parame-
ters of the predictor, a fully associative target
buffer of unlimited size was used. Further, all
the bits of the target address were registered
in the path history buffers and the hashing
address was formed by concatenating the se-
lected path history buffer with the program
counter.

Figures 4 and 5 show the results of this
investigation for javac and richards bench-
marks respectively. The h most significant
bits of the program counter select the his-
tory buffer corresponding to the call site. The
global history predictor is simulated when
h = 0. In contrast, h = w corresponds to
the per-address history predictor. It is ob-
served from the figures that the global path
history predictor performs better than those
that use per-address or per-set history pre-
dictors. For example, the misprediction rates
increase from 2.6% for global path history to
4.2% for the per-address scheme using javac
with a path length of 2. This indicates that
the correlation across call sites is more use-
ful than the self history at a call site in pre-
dicting the targets. This can be ascribed to
the execution of a series of virtual calls corre-
sponding to the invocation of a single virtual
call as shown earlier. A global path history
can capture the effect of such constructs bet-
ter than a per-address scheme. Thus, a global
path history is used in refining the other pa-
rameters of the predictor.

5.2 History Path Length

The number of target addresses of the vir-
tual methods registered in each history buffer
is called as the history path length, p. When
p = 0, the two-level path history predictor be-
comes a single level predictor similar to the
BTB strategy. The variation in path length
can help in determining whether the corre-
lation among the target addresses of virtual
methods is long-term or short-term. The ef-
fect of path length variation was studied with
a fully associative target buffer of unlimited
size along with a global path history. Fig-
ure 6 shows the results of this study for the
different benchmarks.

cococoToTUoTo
Wonononouonon
~o G s W e

~
T

=
T

o
T

Misprediction rate (%)

0 5 10 15 20 25
Number of history bits

Fig 4: Variation in misprediction rate
with number of history buffer sets for
javac. A fully associative target buffer
of unlimited size was used.

30

© N o oawn e

cocoToToToTTo
1

Misprediction rate (%)

0 2 4 6 8 10 12 14 16 18 20
Number of history bits

Fig 5: Variation in misprediction rate
with number of history buffer sets for
richards. A fully associative target
buffer of unlimited size was used.

The path length affects the misprediction
rate in two ways. Firstly, misses occur when
the path length is too small to capture a long-
term dependence. Secondly, longer paths
take a longer time to adapt to branch be-
havior changes and this results in start-up
misses. Thus, a longer path would capture
more long term dependence but would have
more start-up misses. In contrast, a shorter
path fails to capture the long-term regulari-
ties in method invocation targets but adapts
quickly to changes in branch behavior.

The javac benchmark reflects this trade-
off clearly. The misprediction rate reduces
from 4.6% when the path length is zero to
a misprediction rate of 2.6% when the path
length is two. In this phase, the effect of cap-
turing more regularities dominates the effect
of start-up misses. However, the mispredic-
tion rates increase when the path length is in-
creased beyond two, specifically from 2.6% to
5.1% when path length is increased from two
to seven. The start-up misses begin to dom-
inate any improvement obtained by captur-
ing virtual method history dependence longer
than two. This indicates that most path his-
tory patterns used in javac have a relatively
short period. The javadoc benchmark also
exhibits a similar behavior.

The heap benchmark does not benefit from
the path history information. It is observed
that the branch target buffer scheme per-
forms better than the predictor with the path
history. This is due to the relatively con-
stant target addresses at the call sites in the
heap benchmark. Hence, the path history in-
formation only adds to the start-up misses
and does not benefit from capturing any ad-
ditional regularities. In contrast, the richards
and deltablue benchmarks benefit from long
path lengths. The misprediction rates keep
decreasing as path lengths increase from 0 to
8. This shows that these benchmarks have a
long-term correlation that enables the over-
shadowing of start-up misses associated with
longer paths. These results indicate that the
optimum values for the path length differ
based on the benchmark.

3 T T

+——+ javac

G—=o javadoc
#—* richards
25+ ¢—> deltablue | -
G—= heap

Misprediction rate (%)

Path Length

Fig 6: Variation in misprediction rate
with path length using global history.
A fully associative target buffer of un-
limited size was used.

5.3 Path History Compression

The global history pattern along with the
branch address stored in the program counter
is used to index the target buffer. When all
the bits of the history buffer and the program
counter are used, the resulting bit pattern is
long and is equal to (p + 1) * w. The number
of different path history patterns captured
by this hashing address length is 2((P+1)*w),
However, most programs do not have that
many patterns. Thus, the effect of varying
the number of bits stored per target address
stored in the history buffer on the mispre-
diction rates was investigated. Table 3 shows
the results of this investigation for the bench-
marks. The least significant bits of the target
addresses were used in the history patterns.
It is observed that the least significant bits
capture more information than the more sig-
nificant bits. For javac, javadoc and deltablue
the misprediction rates decrease when b is in-
creased from 2 to 8 and does not change when
bit size of b is increased further. This study
shows that registering only the least signif-
icant bits of the target address in the his-
tory buffer could reduce the bit width of the
hashing address without much loss in perfor-
mance.

Table 3: Effect of history bit compression of
misprediction rates

Misses (%)
b Javac | Javadoc | Richards | Deltablue
2 4.7 3.4 23.4 1.6
4 3.7 2.4 25.6 1.3
6 3.3 2.0 6.0 0.8
8 2.6 1.2 6.0 0.6
10 2.6 1.2 6.0 0.6
12 2.6 1.2 6.0 0.6
32 2.6 1.2 4.3 0.6

b is the number of bits from target address used in
the path history information.
A path length of two and a fully associative target
buffer of unlimited size was used.

5.4 Hashing Function

The effect of the hashing function on the
misprediction rates was investigated using
limited size tagless target buffers. The hash-
ing function needs to utilize both the path
history and the program counter (call site)
information effectively. The simplest hashing
function is the concatenation scheme shown
in Figure 7. Here, h bits of path history infor-
mation and the program counter are concate-
nated to form the least significant and most
significant bits of the hashing address respec-
tively. Then, the s least significant bits of the
hashing address are used to index the target
buffer of size 2°. The contents of the indexed
entry provides the predicted target address.

The bit width of the path history buffer,
h that constitutes the least significant bits
used to index the target buffer was varied
and its effect on the misprediction rate was
investigated. This was performed to study
the relative importance of the path history
and program counter information. Figure 8
shows the results of this for an 8K entry tar-
get buffer using javac for different values of b.
It is observed that the misprediction rate de-
creases, when h increases from 0 to 6. When
h is increased further, the misprediction rates
increase. Since the 8K target buffer is indexed
using a fixed size 13-bit index, the number of
bits from the program counter used in the in-
dex reduces as the value of h increases. This
indicates that the call site location is rela-
tively more important than just the path his-

tory information. The target address being
primarily determined by the call site location
and path history providing only additional in-
formation in the prediction accounts for this
behavior. Table 4 shows the relative impor-
tance of the path history and call site loca-
tion. It is observed that using only the 13-bit
call site location to index the 8K target buffer,
a misprediction rate of 4.9% is achieved. The
misprediction rate increases to 12.9% when
12 bits of path history and 1-bit of the call
site location are used for javac.

Hashing Address
!

T
/ 1!
i ;|

/ /A

/ [

/ /A
/ / |

p 1
History Buffer

Program Counter

Fig 7: Tagless concatenation scheme
with global path history

Misprediction rate (%)

Number of bits used from path history

Fig 8: Variation in misprediction rate
with concatenated length using tagless
concatenation scheme with global path
history. An 8K target buffer was used.
b refers to mumber bits per address
recorded in the history buffer

In order to wutilize both the program
counter and the path history bits more effec-
tively for a fixed size target buffer, a XOR
hashing scheme shown in Figure 9 was in-

Table 4: Effectiveness of hashing schemes

S Javac Misses (%) | Richards Misses (%)
8K 16K | 32K 8K 16K 32K
0 4.9 4.7 4.7 234 | 234 23.4
4 4.2 3.8 3.7 4.0 4.0 4.0
6 4.1 3.7 3.5 4.0 4.0 3.9
8 5.2 4.4 3.7 3.8 3.8 3.8
10 6.4 5.0 4.1 8.7 8.0 1.8
12 12.9 7.7 5.6 14.2 8.7 8.7
Xor 3.6 3.3 3.2 2.4 2.3 2.0

An entry y in column S refers to the concatenated
index formed with y bits of path history and
remaining bits from program counter. All schemes
register 4 bits of target address in history buffer

vestigated. The XOR hashing function helps
in combining more information from the pro-
gram counter and the path history bits as
compared to the concatenation scheme. Here,
a bitwise XOR of the program counter and
the path history buffer bits is performed to
obtain the hashing address. Then, the least
significant bits of the hashing address are
used to index the target buffer. Two replace-
ment strategies were studied to update the
target buffers using the global XOR, scheme.
These schemes are the same as those stud-
ied to update the BTB. It was observed that
the 2-bit scheme performs better for the XOR
scheme for most of the benchmarks. Fig-
ure 10 shows the results for the javac bench-
mark. The 2-bit strategy is referred to as the
XOR scheme in the rest of the paper. The ef-
fectiveness of the XOR scheme as compared
to the concatenation scheme is shown in Ta-
ble 4. It is observed that for an 8K target
buffer, the minimum misprediction rate using
the concatenation scheme is 4.1% compared
to the 3.6% using the XOR scheme for javac.

Target Buffer

Hashing Address

History Buffer

Lol [T [2[4] Bitvise

Method Address

Xor
Program Counter

Fig 9: Tagless XOR scheme with global
path history

Next, the effect of path length on the mis-
prediction rate of the XOR scheme was in-
vestigated. In order to vary the path length,

+——+ javac
G——© 2-hitjavac
+—* javadoc
&—=> 2-bitjavadoc
B—=8 richard
—% 2-bitrichard

Misprediction ratei (%)

I
0 05 1 15 2 25 3 35
Cache size (words)

Fig 10: Comparison of normal and 2-
bit update schemes using global tag-
less XOR. All configurations use 4-bit
of method address in history buffer

the number of bits b written from each target
address into the history buffer was varied. If
s bits are required to index the tagless target
buffer and p is the path length, b was cho-
sen such that b+ p < s. Figures 11 and 12
show the results of this study for javac and
richards benchmarks respectively. The mis-
prediction rate for javac exhibits a similar
trend as the fully associative unconstrained
target buffer size. It achieves the minimum
misprediction rates for a path length of two.
For the richards benchmark the mispredic-
tion rates are the least for a path length of
two when target buffer sizes are small(0.5K to
2K). When target buffer size is increased (4K
to 32K), the minimum misprediction value is
achieved for a path length of three. Thus,
a longer path length improves misprediction
rate with an increase in the target buffer size.
This is due to the greater number of bits
of each target address constituting the index
portion of the target buffer for a given path
length.

5.5 Tagged versus Tagless Target
Buffers

We also studied the impact of interference
due to the presence and absence of tags with
the target buffers. The XOR hashing scheme

Misprediction rate (%)

Path Length

Fig 11: Variation in misprediction rate
with path length for javac for different
target buffer sizes. Uses tagless XOR
scheme with global path history

30

Misprediction rate (%)

4
Path Length

Fig 12: Variation in misprediction rate
with path length for richards for dif-
ferent target buffer sizes. Uses tagless
XOR scheme with global path history

was utilized in studying both the approaches.
In the tagless scheme, the target address of
the indirect branch is selected using the hash-
ing address to index the target buffer. Since,
no tags are associated with each target buffer
entry more than one hashing address can map
to the same location. Due to this interfer-
ence, the target of the indirect branch is se-
lected based on the outcome of some other
branch path pattern. A positive interference
occurs when the when two different patterns
that map to the same target location have the
same target address. Similarly, when the in-
terference results in more misses it is called as
negative interference. A tagged target buffer
can be used to eliminate the effects of nega-
tive interference.

The impact of the tagged and tagless target
buffers was studied for various buffer sizes by
varying the associativity and the path length.
Figures 13 and 14 shows the variation in mis-
prediction rate using target buffer sizes of 2K
and 4K for the tagged and tagless buffers re-
spectively for javac and richards benchmarks.
Additional entries were provided for the tag-
less case to account for the area overhead in
maintaining tags. In these plots, an increase
in the number of target address bits in his-
tory buffer corresponds to a decrease in path
length. It is observed that the misprediction
rates decrease with increase in associativity
for the tagged buffers. Also, it is observed
that there is not a significant improvement
when associativity is increased beyond 8. For
javac, it is observed that the tagless target
buffer performs better than the the tagged
buffers when ¢ = 1 and a = 2 for all path
lengths. It must be noted that the tagged
buffers are useful only when they are able to
register the alternate target address when a
conflicting path history is identified. Thus,
direct mapped tagged buffers perform inher-
ently worse than the tagless buffers as they
also do not benefit from positive interference.
Hence, higher associativities are required in
the tagged caches to benefit from the absence
of negative interference.

When path lengths become large (number
of target bits in history buffer becomes small),
the number of different patterns generated
corresponding to an indirect branch increases.
Hence, a tagless buffer can benefit from the

positive interference between these different
patterns. Thus, it is observed that the tag-
less buffer performs better than the 4 and 8-
way associative tagged buffers for longer path
lengths for javac. For the richards benchmark
the effect of positive interference is lesser,
since it benefits from longer distinguishing
patterns as was observed in Figure 6. Thus,
the tagless target buffer performs better than
only a direct mapped tagged buffer for all
path lengths for the richards benchmark. It
is also be observed that the the tagged buffers
of higher associativity provide a greater im-
provement in prediction rates for smaller path
lengths in both the benchmarks. This indi-
cates that the conflict misses due to short
term variations in targets is being reduced by
the tagging mechanism.

Misprediction rate (%)

Number of target address bits in history buffer

Fig 13: Comparison of tagged and tag-
less target buffers using javac. The size
of the tagged and tagless target buffers
were 2K and 4K respectively. The XOR
hashing scheme with global path his-
tory were used for all cases.

Figures 15 and 16 show the variation in
misprediction rates for the various buffer
sizes. A tagged target buffer requires addi-
tional area overhead for maintaining the tags
as compared to a tagless target buffer. Hence,
a tagless target buffer can have more number
of entries corresponding to the same imple-
mentation cost. It can be observed that an as-
sociative tagged target buffer with 8 or more
entries per set outperforms the tagless buffer.
It can also be observed that the increase in
buffer size reduces the conflict misses signifi-

*——+# Tagless

Misprediction rate (%)

Number of target address bits in history buffer

Fig 14: Comparison of tagged and tag-
less target buffers using richards. The
size of the tagged and tagless target
buffers were 2K and 4K respectively.
The XOR hashing scheme with global

path history were used for all cases.

cantly for the tagless and tagged buffers with
associativity less than or equal to 4. The
tagged buffers with associativity greater than
4 do not benefit much from increase in buffer
size since the higher number of entries per
set already takes care of most of the con-
flict misses. Due to the increase in access
and cycle times associated with the higher
associativities [21], the area overhead of the
tags in the tagged buffers and the small differ-
ence in the misprediction rates between tag-
less and tagged buffers with large associativ-
ities (a > 4), the tagless target buffer may be
a better choice in many cases.

6 Conclusion

The effectiveness of using path history
to predict the target addresses of indirect
branches due to virtual method invocations
used in Java applications was investigated.
The influence of the various parameters such
as number of history buffers, path length,
hashing function and the structure of the tar-
get buffers on the misprediction rates was in-
vestigated. The XOR hashing scheme with a
global path history and a 2-bit update pol-

T
a=1

20 CG—>o a=2
——+ a=4

—> a=8

18- B—=a a=16

—x FA
—— Tagless |

Misprediction rate (%)
P
]

47&
£ —%

2 I | | . | | | .
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Cache Size (words)

Fig 15: Comparison of tagged and tag-
less target buffers using javac with vari-
ation in target buffer size. A path
length of 2 was used.

25

T
a

6—=oO a=
a
a

won "
[N

20 B—+a a=
= F.A

*——% Tagless

5 |

H
&
T

Misprediction rate (%)

H
S
T

AN

I I I I I
UO 1000 2000 3000 4000 5000 6000 7000 8000 9000
Cache Size (words)

Fig 16: Comparison of tagged and tag-
less target buffers using richards with
variation in target buffer size. A path
length of 4 was used.

icy performed the best for almost all config-
urations. Also, it was found that the tag-
less target buffers achieve a prediction rate as
good as the tagged buffers without suffering
from the area overhead for tags and the in-
creased access times associated with the asso-
ciative buffers. Using the branch target buffer
based predictor with an 8K buffer, mispredic-
tion rates of 4.9% and 23.4% were obtained
for the javac and richards benchmarks re-
spectively. The misprediction rates reduce to
3.6% and 2.4% for the two benchmarks using
the proposed path history based predictor.
The results show that the design of micro-
architectural features such as the branch pre-
dictor will influence the execution speed of
Java code.

References

[1] T. Lindholm, F. Yellin, The Java Virtual
Machine Specification, Addison Wesley,
1997.

[2] A. Krall and R. Grafl, "CACAO - a
64 bit JavaVM just-in-time compiler”,
Concurrency: Practice and Experience,
9(11):1017-1030, 1997.

[3] B. Venners, ”Under the hood: Java’s
garbage-collected heap”,
http://www.javaworld.com/javaworld /jw-
08-1996/jw-08-gc.html.

[4] M. Wolckzo, ”Benchmarking Java with
Richards and DeltaBlue”, Sun Microsys-
tems.
http://www.sunlabs.com/people/mario/
java_benchmarking/index.html

[5] U. Holzle, C. Chambers, and D. Un-
gar, ”Optimizing Dynamically-Typed
Object-Oriented Programming Lan-
guages with Polymorphic Inline Caches”
Proceedings of ECOOP "91.

[6] J. E. Smith, ”A study of branch predic-
tion strategies”, Proc. 8th Annual Intl
Symposium on Computer Architecture,
pp. 135-148, 1981.

[7] T. Yeh and Y. N. Patt, ” Two-level
adaptive branch prediction”, Proc. of the
24th ACM/IEEE Intl Symposium on Mi-
croarchitecture, pp 51-61, 1991.

[8] R. Nair, ”"Dynamic path-based
branch correlation”, Proc. of the

[11]

[12]

[14]

[16]

[18]

28th ACM/IEEE Intl Symposium on
Microarchitecture, pp 15-23, 1995.

C. A. Hsieh et. al., 7 A study of cache
and branch performance issues with run-
ning Java on current hardware plat-
forms”, Proc. of COMPCON, Feb 1997,
pp. 211-216.

T. H. Romer et. al., ”The Structure and
Performance of Interpreters”, Proceed-
ings of ASPLOS VII, 1996, pp. 150-159.

D. Griswold, ”Breaking the speed bar-
rier: the future of Java performance”,
JavaOne Worldwide Java Developer
Conference, 1997.

T. R. Halfhill, Intel’s P6, Byte Magazine,
April 1995.
http://www.byte.com/art/9504/sec7/
artl.htm

N. Vijaykrishnan, N. Ranganathan and
R. Gadekarla, ”Object-Oriented archi-
tectural support for a Java processor
architecture”, Proc. of the 12th Eu-
ropean Conference on Object-Oriented
Programming, July 1998.

J. A. Dean, Whole-Program optimiza-
tion of object-oriented languages, Ph.D
Thesis, University of Washington, 1996.

J. Vitek, ”Compact dispatch tables for
dynamically typed programming lan-
guages”, Object Applications, ed. D.
Tsichitzis, University of Geneva, Centre
Universitaire d’Informatique, Aug. 1996.

C. Young, N. Gloy and M. D. Smith, ”A
comparative analysis of schemes for cor-
related branch prediction”, Proc. of the
22nd Annual Intl Symposium on Com-
puter Architecture, June 1995.

P. Y. Chang, E. Hao and Y. Patt, ” Tar-
get prediction for indirect jumps”, Proc.
of the 24th Annual Intl Symposium on
Computer Architecture, 1997, pp. 274-
283.

B. Calder and D. Grunwald, ”"Reduc-
ing indirect function call overhead in
C++ programs”, Proc. of the 6th Intl
Conference on Architectural Support for
Programming Languages and Operating
Systems, 1994.

[19]

[20]

[21]

J. Emer and N. Gloy, ” A language for de-
scribing predictors and its application to
automatic synthesis”, Proc. of the 24th
Annual Intl Symposium on Computer
Architecture, July 1997.

K. Dreisen and U. Holzle, ” Accurate in-
direct branch prediction”, Proc. of the
25th Annual Intl Symposium on Com-
puter Architecture, pp. 167-178, June
1998.

N. P. Jouppi and S. J. E. Wilton, ” An en-
hanced access and cycle time model for
on-chip caches”, DEC- WRL Technical
Report, 93.5, July 1994.

