
THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

Proceedings of the Workshop on Intrusion Detection
and Network Monitoring

Santa Clara, California, USA, April 9–12, 1999

Intrusion Detection
Through Dynamic Software Measurement

Sebastian Elbaum and John C. Munson
University of Idaho

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org

Intrusion Detection through Dynamic Software Measurement

Sebastian Elbaum
John C. Munson

Computer Science Department
University of Idaho

Moscow, ID 83844-1010
{elbaum, jmunson}@cs.uidaho.edu

Abstract
The thrust of this paper is to present a new real-time
approach to detect aberrant modes of system
behavior induced by abnormal and unauthorized
system activities. The theoretical foundation for the
research program is based on the study of the
software internal behavior. As a software system is
executing, it will express a set of its many
functionalities as sequential events. Each of these
functionalities has a characteristic set of modules
that it will execute. In addition, these module sets
will execute with clearly defined and measurable
execution profiles. These profiles change as the
executed functionalities change. Over time, the
normal behavior of the system will be defined by
profiles. An attempt to violate the security of the
system will result in behavior that is outside the
normal activity of the system and thus result in a
perturbation in the normal profiles. We will show,
through the real-time analysis of the Linux kernel,
that we can detect very subtle shifts in the behavior
of a system.

INTRODUCTION
The literature and media abound with reports of
successful violations of computer system security by
both external attackers and internal users [6,9].
Very recently, we experienced such an attack by a
hacker on one of our Linux based computers at the
University of Idaho. These breaches occur through
physical attacks, social engineering attacks, and
attacks on the system software. It is this later
category of attack that is the focus of this paper.
During an attack, the intruder subverts or bypasses
the security mechanisms of the system in order to
gain unauthorized access to the system or to increase
their current access privileges. These attacks are
successful when the attacker is able to cause the
system software to execute in a manner that is

typically inconsistent with the software specification
and thus leads to a breach in security [1].

Intrusion detection systems monitor traces
of user activity to determine if an intrusion has
occurred. The traces of activity can be collated
from audit trails or logs [3,14,21], network
monitoring [12,17] or a combination of both. Once
the data regarding a relevant aspect of the behavior
of the system is collected, the classification stage
starts.

Although taxonomies that are more
complex exist [5,9], intrusion detection
classification techniques can be broadly catalogued
in the two main groups: misuse intrusion detection
[15,16] and anomaly intrusion detection [3,13,20].
The first type of classification technique searches for
occurrences of known attacks with a particular
"signature" and the second type searches for
departures from normality. Some of the newest
intrusion detection tools incorporate both
approaches [2,7,20].

The intent of this paper is to report on our
work on the software engineering approach of
dynamic software measurement to assist in the
detection of intruders. Dynamic software
measurement provides a framework to analyze the
internal behavior of a system as it executes and
makes transitions among its various modules
governed by the structure of the program call graph.
What is novel about our approach to dynamic
intrusion detection is that we instrument the target
system so that we can obtain measurements to
profile the module activity on the system in real
time. This paper reports on our investigations in
intrusion detection with an instrumented Linux
kernel. The objective of this research program has
been to study the nominal behavior of the kernel

software under a typical task load and then measure
the direct effect of the application of a suite of
known intrusion scenarios in the presence of the
nominal activity.

As we will see, program modules are
distinctly associated with certain functionalities and
operations that the program is capable of
performing. As each operation is executed, a subset
of software modules is executed which creates a
particular and distinct signature of transition events
[19]. As we come to understand the nominal
behavior of a system as it is executing its customary
activities we can profile this nominal system
behavior quite accurately. Departures from the
nominal system profile represent potential invidious
activity on the system. Some unwanted activity
may be understood from previous assaults on the
system. We can store profiles and recognize these
activities from our historical data. What historical
data cannot do is to permit us to recognize new
assaults. An effective security tool would be
designed to recognize assaults as they occur
thorough the understanding and comparison of the
current behavior against nominal system activity.

SOFTWARE ARCHITECTURAL
MAPPING
Software systems are constructed to perform a set of
operations for their customers, the users. An
example of such an operation might be the activity
of adding a new user to a computer system [1]. At
the software level, these operations must be reduced
to a well-defined set of functions. These functions
represent the decomposition of operations into sub-
problems that may be implemented on computer
systems. The operation of adding a new user to the
system might involve the functional activities of

changing to current directory to a password file,
updating the password file, establishing user
authorizations, and creating a new file for the new
user. During the software design process, the basic
functions are mapped by system designers to
specific software program modules. These modules
will implement the functionality. This software

mapping from operation to functionality to modules
is represented in Figure 1.

From the standpoint of computer security,
not all operations are equal. Some user operations
may have little or no impact on computer security
considerations. Other operations, such as, system
maintenance activities, have a much greater impact
on security. System maintenance activities being
performed by systems administrators would be
considered nominal system behavior. System
maintenance activities being performed by dial-up
users, on the other hand, would not be considered
nominal system behavior. In order to formalize this
decomposition process, a formal description of these
relationships will be established [18].

Mapping Operations to Functionalities
Assume that the software system S was designed to
implement a specific set of mutually exclusive
functionalities F. Thus, if the system is executing a

function Ff ∈ then it cannot be expressing
elements of any other functionality in F. Each of
these functions in F was designed to implement a set
of software specifications based on a user’s
requirements. From a user’s perspective, this
software system will implement a specific set of
operations, O. This mapping from the set of user
perceived operations, O, to a set of specific program
functionalities is one of the major functions in the
software specification process. It is possible, then, to

define a relation IMPLEMENTS over FO × such
that IMPLEMENTS(o, f) is true if functionality f is
used in the specification of an operation, o.

From a computer security standpoint, we
can envision operations as the set of services
available to a user (e.g., login, open a file, write to a

device) and functionality as the set of internal
operations that implement a particular
operation (e.g., user-id validation, ACL
lookup, labeling). When viewed from this
perspective, it is apparent that user operations
that may appear to be non-security relevant
may actually be implemented with security
relevant functionalities (sendmail is a classic
example of this, an inoffensive operation of

send mail can be transformed into an attack if the
functionalities that deal with buffers can be
overloaded).

O F M

Figure 1. Software Mapping

Mapping Functionalities to Modules
The software design process is strictly a matter of
assigning functionalities in F to specific program

modules Mm ∈ the set of program modules of
system S. The design process may be thought of as
the process of defining a set of relations, ASSIGNS

over MF × such that ASSIGNS(f, m) is true if
functionality f is expressed in module m.

Mapping Modules to Operations
We can see that there is a distinct relationship
between any given operation, o, and a given set of
program modules. That is, if the user performs an
particular operation then this operation will manifest
itself in certain modules receiving control. We can
tell, inversely, which program operations are being
executed by observing the pattern of modules
executing, i.e. the module profile. In a sense, then,
the mapping of operations to modules and the
mapping of modules to operations is reflexive.

It is a most unfortunate accident of most
software design efforts that there are really two
distinct set of operations. On the one hand, there is

a set of explicit operations EO . These are the

intended operations that appear in the Software
Requirements Specification documents. On the
other hand, there is also a set of implicit operations,

IO , that represent unadvertised features of the

software that have been implemented through
designer carelessness or ignorance. These are not
documented, nor well known except by a group of
knowledgeable and/or patient system specialists,
called hackers.

The set of implicit operations, IO , is not

well known for most systems. We are obliged to
find out what they are the hard way. Hackers and
other interested citizens will find them and exploit
them. What is known is the set of operations

EO and the mappings of the operations onto the set

of modules, M. For each of the explicit operations
there is an associated module profile. That is, if an
explicit operation is executed, then a well defined
set of modules will execute in a very predictable
fashion. We can use this fact to develop a
reasonable profile of the system when it is executing
a set of operations from the set of explicit
operations. We can use this nominal system
behavior to serve as a stable platform against which
we may measure intrusive activity. That is, when

we observe a distribution of module profiles that is

not representative of the operations in EO then we

may assume that we are observing one or more

operations from the set IO ; we are being attacked.

THE PROFILES OF SOFTWARE
DYNAMICS
When the software is subjected to a series of unique
and distinct functional expressions, there will be a
different behavior for each of the user’s operations.
Each operation will implement a different set of
functions that will in turn, invoke possibly different
sets of program modules.

Operational Profile
As a user performs the various operations on a
system, he/she will cause each operation to occur in
a series of steps or transitions. The transition from
one operation to another may be described as a
stochastic process. In which case we may define an

indexed collection of random variables }{ tX ,

where the index t runs through a set of non-negative
integers, K,2,1,0=t representing the individual

transitions or intervals of the process. At any
particular interval the user is found to be expressing
exactly one of the system’s a operations. The fact
of the execution occurring in a particular operation
is a state of the user. During any interval the user is
found performing exactly one of a finite number of
mutually exclusive and exhaustive states that may
be labeled a,,2,1,0 K . In this representation of

the system, there is a stochastic process }{ tX ,

where the random variables are observed at intervals
K,2,1,0=t and where each random variable may

take on any one of the)1(+a integers, from the

state space },,2,1,0{ aO K= .

Each user may potentially bring his/her
own distinct behavior to the system. Thus, each user
will have his/her own characteristic operational
profile. It is a characteristic, then, of each user to

induce a probability function]Pr[iXpi == on

the set of operations, O. In that these operations are
mutually exclusive, the induced probability function
is a multinomial distribution.

Functional Profile
As the system progresses through the steps in the
software lifecycle, the user requirements

specifications, the set O, must be mapped on a
specific set of functionalities, F, by system
designers. This set F is in fact the design
specifications for the system. As per our earlier
discussion, each operation is implemented by one
for more functionalities. The transition from one
functionality to another may be also be described as
a stochastic process. In which case we may define a

new indexed collection of random variables }{ tY , as

before representing the individual transitions events
among particular functionalities. At any particular
interval a given operation is found to be expressing
exactly one of the system’s 1+b functionalities.
During any interval the user is found performing
exactly one of a finite number of mutually exclusive
and exhaustive states that may be labeled

b,,2,1,0 K . In this representation of the system,

there is a stochastic process }{ tY , where the random

variables are observed at intervals K,2,1,0=t and

where each random variable may take on any one of
the)1(+b integers, from the state space

},,2,1,0{ bF K= .

When a program is executing a given

operation, say ko , it will distribute its activity

across the set of functionalities,
)(koF . At any

arbitrary interval, n, during the expression of ko the

program will be executing a

functionality)(ko
i Ff ∈ with a probability,

]|Pr[kXiYn == . From this conditional

probability distribution for all operations we may
derive the functional profile for the design
specifications as a function of a user operational
profile to wit:

∑ =====
j

jXiYjXiY]|Pr[]Pr[]Pr[.

Alternatively,

∑ ===
j ji jXiYpw]|Pr[.

Module Profile
The next logical step is to study the most internal
behavior of a software system, the module level.
Each of the functionalities is implemented in one or
more program modules. The transition from one
module to another may be also be described as a

stochastic process, in which case we may define a

third indexed collection of random variables }{ tZ ,

as before representing the individual transitions
events among the set of program modules. At any
particular interval a given functionality is found to
be executing exactly one of the system’s c modules.
The fact of the execution occurring in a particular
module is a state of the system. During any interval
the system is found executing exactly one of a finite
number of mutually exclusive and exhaustive states
(program modules) that may be labeled

c,,2,1,0 K . In this representation of the system,

there is a stochastic process }{ tZ , where the

random variables are observed at epochs K,2,1,0=t

and where each random variable may take on any

one of the)1(+c integers, from the state space

},,2,1,0{ cM K= .

Each functionality j has a distinct set of

modules
jfM that it may cause to execute. At any

arbitrary interval, n, during the expression of jf the

program will be executing a module
jfi Mm ∈

with a probability,]|Pr[jYiZn == . From this

condition probability distribution for all
functionalities we may derive the module profile for
the system as a function of a the system functional
profile as follows:

∑ =====
j

jYiZjYiZ]|Pr[]Pr[]Pr[.

Again,

∑ ===
j ji jYiZwr]|Pr[.

The module profile, r, ultimately depends on the
operational profile, p. We can see this by

substituting for jw in the equation above.

∑ ∑ =====
j k ki jYiZkXjYpr]|Pr[]|Pr[

Each distinct operational scenario creates
its own distinct module profile. Operational profile
characteristics can be inferred from the module
profile. It is this fact that we wish to exploit in the
detection of unwanted or intrusive events.

Interestingly
enough, for all software
systems at the application
level, there is a
distinguished module, the
main program module
that will always
receive execution
control from the
operating system. If
we denote this main
program as module 0
then, 1]0Pr[0 ==Z

and 0]Pr[0 == iZ for

ci ,,2,1 K= . Further, for

epoch 1, 0]0Pr[1 ==Z ,

in that control will have
been transferred from the
main program module to another function module.
The sequence of possible transitions from one
program module to another may be represented as a
call graph as shown in Figure 2.

The granularity of the term epoch is now of
interest. An epoch begins with the onset of
execution in a particular module and ends when
control is passed to another module. The
measurable event for modeling purposes is this
transition among the program modules. We will
count the number of calls from a module and the
number of returns to that module. Each of these
transitions to a different program module from the
one currently executing will represent an
incremental change in the epoch number.

In practice: Execution Profile
In reality, few, if any systems are understood at the
functional or operation level. We are continually
confronted with systems whose functionality is not
completely understood. While we have developed
methodologies to recapture the essential
functionalities [10,18], the majority of the time we
will not know the precise behavior of the system that
we are working with. To this end we will develop a
more relaxed form of profile called the execution
profile of a system. The execution profile reflects
the internal system behavior based only on the
understanding of the modular activity. Although it
is not as powerful as the family of profiles presented
before, it is simpler and allows obtaining basic

profile information under environments with poor
specifications and other constraints.

When a user is exercising a system, the
software will be driven through a sequence of
transitions from one module to the next,

K,,, cdbcab mmmS = where abm represents a

transition from module a to module b. Over a fixed
number of epochs, each progressive sequence will
exhibit a particular execution profile. It represents a
sample drawn from a pool of nominal system
behavior. Thus, the series of sequence,

K,,, 21 ++= iii SSSS , above will generate a

family of execution profiles K,,, 21 ++ iii ppp .

What becomes clear after a period of observation is
that the range of behavior exhibited by a system and
expressed in sequences of execution profiles is
highly constrained. Certain standard behaviors are
demonstrated by the system doing what it normally
does. The activities of an intruder will create
significant disturbances in the nominal system
behavior.

The whole notion of intrusion detection
would be greatly facilitated if we knew what the
functionalities of the system were. It would also be
very convenient if we were to have a precise
description of the set of operations for the software.
Indeed, if these elements of software behavior were
known and precisely specified, we probably would
not have to worry about security faults in the
behavior that present opportunities for hackers. In

Figure 2. Program Call Graph

the absence of these specifications, we will assume
that we cannot observe operational profiles nor
functional profiles directly. Instead we must
observe the distribution of activity among the
program modules to make inferences about the
behavior of the system.

METHODOLOGY
Objectives
The main objective of our intrusion detection
methodology is to trap in real-time any behavior that
is considered abnormal. We want to observe the
software modules and their behavior to determine
with a certain level of confidence the existence of an
intrusion. The two fundamental aspects used to
determine an intrusion are the execution of a set of
modules that define 1.) An implicit operation and 2.)
A set of explicit operations in abnormal sequences
or quantities.

This intrusion detection approach observes
not only the external events produced by the system
(such us the popular "logs audit trails") but also the
internal behavior of the software. The main
advantages of observing and analyzing the internal
behavior of the system instead of its external events
are: 1.) Internal behavior disorders can be detected
much earlier (external events might be visible much
after the disorder started) 2.) It is more sensitive to
anomalies because it makes observations at a
system’s component level. 3.) Higher level events
can be derived from the lower level information
provided by the internal analysis.

In order to accomplish internal system
behavior monitoring, we have developed a suite of
profiler techniques that allows us to track the
component interactions at the module level as stated
before. These interactions constitute fingerprints of
systems behavior that are represented in the
execution profile. Each user and application
generate a unique behavior that can be characterized
through this technique. Normal behaviors can be
established and, while the system is running, its
behavior can be compared to the one defined as
nominal. If the current behavior statistically differs
from the normal then a flag must be raised because
there is a probability that the system is under attack.

The phases of detection
Detection instrumentation must really be installed at
five different levels of software: the system kernel,
the network layer, the file-system, the shell, and the

end user application. At the kernel level, the
operating system will generate and display a normal
level of activity as shown in its nominal execution
profile. When this profile shifts to an off-nominal
profile, something new and potential intrusive is
occurring on the system. At the network level, the
generation, assembly and transport of data packages
can be characterized by a profile. When package
generation is abnormally increased or decreased,
when the assembly produces enormous packages or
when the send or receive process takes unusual steps
then something abnormal and potentially dangerous
is occurring at the network level. At the file system
level, each user accesses different files, in different
locations, with different frequencies that describe
certain patterns that can be represented in a profile.
At the shell level, each user generates a standard
profile representing the normal activities that are
customary for that person. Finally, each application
generates profiles of characteristic nominal behavior
for each activity [2].

In any of these levels, when a user profile
begins to differ from a nominal profile by a pre-
established amount, an alarm is activated. Two
things might be wrong. An intruder has gained entry
to the system and is masquerading as an existing
user. Alternatively, a current user is acting
abnormally (possibly, in anticipation of an eminent
departure from the company) and means us harm.
Although a complete intrusion detection system
would take into consideration all five levels, at this
experimental stage, we are focusing strictly on the
kernel level. We are interested in the kernel because
it has the most complex requirements in terms of
timing constraints allowing us to evaluate the worst
case performance burden. We are focusing in the
application domain because the other levels can be
considered subsets of the application level with
some special characteristics. Since each one of
these levels provides a different perspective for the
system, we expect that the integration of these levels
will provide us with a more integral view of the
whole system security. At this point, we are only
equipped to deal with them individually.

EXPERIMENTING WITH THE LINUX
KERNEL
In this paper, we are introducing for the first time a
simplified and preliminary version of the internal
behavior analysis of the Linux kernel. It is now
possible to instrument any application written in C
with the CLIC tool [8], even time constrained

software such as a kernel. We have chosen to
instrument the Linux kernel as an example of a
security relevant real-time application. The CLIC
tool was employed to insert the necessary hooks into
2500 C modules of the kernel. Then the Linux
kernel was recompiled. We were then able to
profile the nominal activities of the kernel under
four distinct application environments. First, we
profiled the kernel when there was no user activity,
the system was idle. Next, we profiled the kernel
when there were a number of compute-bound
scientific programs running. We then profiled the
system with a number of I/O intensive activities,
such as edit functions, running. Finally, we obtain
profiles for the system running a large number of
relative small tasks including a variety of networked
activities. From these various exercises of the Linux
kernel, we were able to establish a baseline profile
for its nominal functionality under a host of
legitimate user activities. Figure 3 shows an
execution profile with normal system activity. On
the x-axis are the 2500 instrumented modules and on
the y-axis the percentage of execution that each
module received. The execution is measured in
terms of epochs as it was explained in the profile
section.

Over a period of time we can clearly
establish reasonable boundaries for the nominal user

activities on a given Linux system. We would
clearly like to be able to raise the alarm when off-
nominal activity occurs. Off-nominal behavior will
be classified into one of two mutually exclusive
categories. First, is the case when we can match the
signature of the activity with a known system assault
[3,12]. Second, is when we do not recognize the
nature of the activity. This new observation
represents new system behavior. This may or may
not represent an assault. In either event, a security
tool must signal an alarm. The system administrator
will be notified that either a known assault is in
progress or that a novel activity is now running and
should be examined further.

It was next of interest to examine the
behavior of the kernel in response to a series of
assault scenarios. In this investigation, we have
explored several intrusion scenarios and their effect
on the Linux kernel.

Each activity running on the Linux kernel
will cause the kernel to execute in a particular
manner. By controlling for the effect of nominal
system activity from any other activity we generate
a signature profile for each one of them. In figures
4,5 and 6, we show the output of this differential
comparison process for three intrusion scenarios we
have investigated. The y-axis represents the impact

Nominal Behavior

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Modules

P
ro

fi
le

 V
al

u
e

Figure 3. Nominal Activity

of each intrusion activity on the nominal kernel
activity. A positive value on the y-axis means that
the system resources have decreased on the specific
kernel module while the attack scenario was

executing. Conversely, a
negative value on the y-
axis represents increased
kernel module activity
due to the intrusion.

The first attack
scenario is produced by
the program synk4.
Synk4 floods the system
ports with different types
of requests. The system
can be halted by
overloading and IP
addresses can be spoofed

by this application.

The second
intrusion scenario is
produced by Octopus.
Octopus is usually used
to generate a denial of
service attack opening
many connections to a
remote host. The host is
overwhelmed by the
number of request and
halts.

The last attack
scenario is given by
boink. Boink exploits
the overlapping IP
fragment bug present in
most Linux kernels.

What is
astonishing and is clearly
revealed on inspection of
the intrusion scenarios we
present is that the
signatures of each of
these activities are very
different. These distinct
scenarios have their own
recognizable signatures
that differ sharply from
the nominal activity
profile. We are currently
developing signatures for

the full gamut of known intrusions. This will permit
us to recognize the full spectrum of known attacks
involving the Linux kernel. It will also permit us to

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Figure 6. Intrusion Scenario: Boink

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Figure 4. Intrusion Scenario: Synk4

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Figure 5. Intrusion Scenario: The Octopus

identify new and potentially invidious assaults that
we have yet to witness.

CONCLUDING REMARKS
We have presented a novel methodology for
intrusion detection in real time that uses dynamic
measurement techniques to analyze the internal
software behavior. After a series of experiments,
which were presented in this paper, we have shown
that internal behavior analysis has an enormous
potential as an effective means to detect abnormal
activities that might constitute threats to a system.
Through the real time analysis of the internal
program activities we can detect very subtle shifts in
the behavior of a system. In addition, based on the
initial experiments, we can presume that each attack
has a particular internal behavior signature that can
be recognized.

At this experimental stage, we have not
addressed many issues. A more complete procedure
and formalism for the determination of the normal
profile is necessary. We haven’t established a
mechanism to reduce and filter the "noise" generated
by multiple users and applications, although the
multiple stage detection might provide some
answers to that. Last, we are currently starting to
assess the performance and the detection rates
provided by this methodology and there is still a lot
of work ahead of us in this arena.

In order to validate our methodology, we
have created an environment to allow
experimentation and characterization of different
profiles. The environment will provide a means to
facilitate the study and evaluation of the comparison
strategies and provide the experimentation platform
to run attacks on. That a system has functioned
securely in its past is not a clear indication that it
will function securely in the future. The continuing
evaluation of profiles over the life of a system can
provide substantial information as to the changing
nature of the program’s execution environment.
This, in turn, will foster the notion that software
security assessment is as dynamic as the operating
environment of the program.

 Though we have specifically chosen to
focus our energies on the investigation of intrusions
against the Linux kernel, the methodology we have
presented in this paper is not restricted to kernel
type activities. The kernel was our first choice
because it is a complicated real time embedded

application. If the technology can be shown to work
in this complex environment, it will easily port to
applications outside of the kernel. Any software
system is a potential candidate for this methodology.

REFERENCES

[1] J. Alves-Foss, D. Frincke and J. Munson.
Measuring Security: A Methodological Approach,
International Workshop on Enterprise Security,
Stanford, CA, June 1996.

[2] D. Anderson, T. Frivold and A. Valdez: Next-
generation intrusion detection expert system
(NIDES). Technical Report, Computer Science
Laboratory, SRI International, Menlo Park, CA, SRI-
CSL-95-07, May 1995.

[3] D.Anderson, T.F. Lunt, H. Javitz, A. Tamaru and
A. Valdes: Detecting Unusual Program Behavior
Using the Statistical Component of the Next-
generation Intrusion Detection Expert System
(NIDES), SRI-CSL-95-06, SRI International, Menlo
Park, CA, May 1995.

[4] M. Bishop: A standard audit log format. Proc. of
the 18th National Information Systems Security
Conference, pp. 136-145, October 1995.

[5] M.Bishop: A Taxonomy of UNIX and Network
Security Vulnerabilities," M. Bishop, Technical
Report 95-10, Department of Computer Science,
University of California at Davis, May 1995.

[6] CERT coordination Center
http://www.cert.org/advisories

[7] D. Denning: An intrusion-detection model. IEEE
Transactions on Software Engineering, Vol.13,
No:2, pp.222-232, February 1987.

[8] S.G.Elbaum, J.C.Munson and M.Harrison.
CLIC: a Tool for the Measurement of Software
System Dynamics. Software Engineering Testing
Lab technical report TR-98-04, University of Idaho,
1998.

[9] Fathom Group - Intrusion Detection
http://www.cs.uidaho.edu/~elbaum/fathom.html

[10] G. Hall."Usage Patterns: Extracting System
Functionality from Observed Profiles". Dissertation.
University of Idaho. Computer Science Department.
1997.

[11] L.R. Halme and R.K.Bauer: AINT misbehaving
- a taxonomy of anti-intrusion techniques. Proc. of
the 18th National Information Systems Security
Conference, pp. 163-172, October 1995.

[12] J. Hochberg, K. Jackson, C. Stallings,
J.F.McClary, D. DuBois and J. Ford: NADIR: An
automated system for detecting network intrusion
and misuse. Computers & Security, Vol.12, No:3,
pp.235-248, May 1993.

[13] H.S. Javitz and A. Valdes: The SRI IDES
statistical anomaly detector. Proc. of the IEEE
Symposium on Research in Security and Privacy,
pp.316-326, May 1991.

[14] A.P.Kosoresow and S.A.Hofmeyr, "Intrusion
Detection via System Call Traces", IEEE Software,
Septemeber/October 1997, pp. 35-42.

[15] S. Kumar and E.H. Spafford: A pattern
matching model for misuse intrusion detection.
Proc. of the 17th National Computer Security
Conference, pp. 11-21, October 1994.

[16] S. Kumar and E.H. Spafford: A Software
Architecture to Support Misuse Intrusion Detection,
Proc. 18th National Information Systems Security
Conference, pp.194-204, 1995.

[17] B. Mukherjee, L.T. Heberlein and K.N. Levitt:
Network intrusion detection. IEEE Network, Vol.8,
No:3, pp.26-41, May/June 1994.

[18] J.C.Munson, A Functional Approach to
Software Reliability Modeling. In Boisvert, ed.,
Quality of Numerical Software, Assessment and
Enhancement, Chapman & Hall, London, 1997.
ISBN 0-412- 80530-8.

[19] J.C.Munson, “A Software Blackbox Recorder.”
Proceedings of the 1996 IEEE Aerospace
Applications Conference, IEEE Computer Society
Press, Los Alamitos, CA, November, pp. 309-320,
1996.

[20] A.P. Porras and G.P. Neumann: EMERALD:
Event Monitoring Enabling Responses to Anomalous

Live Disturbances. National Information Systems
Security Conference, 1997.

[21] M. Sobirey, Richter and H. Konig. The
intrusion detection system AID. Architecture, and
experiences in automated audit analysis. Proc. of the
International Conference on Communications and
Multimedia Security, pp. 278-290, September 1996.

