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Abstract

Pro�ling the behavior of programs can be a useful
reference for detecting potential intrusions against
systems. This paper presents three anomaly detec-
tion techniques for pro�ling program behavior that
evolve from memorization to generalization. The
goal of monitoring program behavior is to be able
to detect potential intrusions by noting irregularities
in program behavior. The techniques start from a
simple equality matching algorithm for determining
anomalous behavior, and evolve to a feed-forward
backpropagation neural network for learning pro-
gram behavior, and �nally to an Elman network for
recognizing recurrent features in program execution
traces. In order to detect future attacks against sys-
tems, intrusion detection systems must be able to
generalize from past observed behavior. The goal of
this research is to employ machine learning tech-
niques that can generalize from past observed be-
havior to the problem of intrusion detection. The
performance of these systems is compared by testing
them with data provided by the DARPA Intrusion
Detection Evaluation program.

1 Introduction

Intrusion detection tools seek to detect attacks
against computer systems by monitoring the behav-
ior of users, networks, or computer systems. In-
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trusion detection techniques are the last line of de-
fense against computer attacks behind secure net-
work architecture design, secure program design,
carefully con�gured network services, �rewalls, pen-
etration audits, and personnel screening. Attacks
against computer systems are still largely successful
despite the plethora of intrusion prevention tech-
niques available. For instance, insider attacks and
malicious mobile code have been able to penetrate
most security defenses. Largely, however, most com-
puter security attacks are made possible by poorly
con�gured software or by buggy software.

Some of the �rst intrusion detection activities were
performed by system administrators who examined
audit logs of user and system events recorded by
computer hosts. Activities such as super user login
attempts, FTP transfers of sensitive �les, or failed
�le accesses were 
ags for potential intrusive ac-
tivity. Soon thereafter, expert systems were used
to automatically detect potential attacks by scan-
ning audit logs for signs of intrusive behavior or
for departures from normal behavior. The Intrusion
Detection Expert System (IDES) developed at SRI
performed intrusion detection by creating statisti-
cal pro�les for users and noting unusual departures
from normal pro�les [16]. IDES keeps statistics for
each user according to speci�c intrusion detection
measures, such as the number of �les created and
deleted each day. These statistics form the statisti-
cal pro�le of each user. The pro�les are periodically
updated to include the most recent changes to the
user's pro�le. Therefore, this technique is adaptive
with changing user pro�les. However, it is also sus-
ceptible to a user slowly changing his or her pro�le
to include possibly intrusive activities.

More recently, network-based intrusion detection
tools have gained popularity among researchers and
even in commercial tools. Network-based intrusion



detection tools will typically search network data
for signatures of known computer attacks. For ex-
ample, network probing attacks, which map out the
network topology of a site, can often be detected by
their characteristic \pings" to the range of network
services across many machines.

Today, there are generally two types of intrusion
detection systems: anomaly detection and misuse
detection. Anomaly detection approaches attempt
to detect intrusions by noting signi�cant departures
from normal behavior [7, 5, 20, 18, 15, 17, 16]. Mis-
use detection techniques attempt to model attacks
on a system as speci�c patterns, then systemati-
cally scan the system for occurrences of these pat-
terns [22, 14, 10, 9, 19]. This process involves a
speci�c encoding of previous behaviors and actions
that were deemed intrusive or malicious.

It is important to establish the key di�erences be-
tween anomaly detection and misuse detection ap-
proaches. The most signi�cant advantage of misuse
detection approaches is that known attacks can be
detected fairly reliably and with a low false posi-
tive rate. However, the key drawback of misuse de-
tection approaches is that they cannot detect novel
attacks against systems that leave di�erent signa-
tures. So while the false positive rate can be made
extremely low, the rate of missed attacks (false neg-
atives) can be extremely high depending on the inge-
nuity of the attackers. As a result, misuse detection
approaches provide little defense against novel at-
tacks, until they can learn to generalize from known
signatures of attacks.

Anomaly detection techniques, on the other hand,
directly address the problem of detecting novel at-
tacks against systems. This is possible because
anomaly detection techniques do not scan for spe-
ci�c patterns, but instead compare current activities
against models of past behavior. One clear draw-
back of anomaly detection is its inability to identify
the speci�c type of attack that is occurring. How-
ever, probably the most signi�cant disadvantage of
anomaly detection approaches is the high rates of
false alarm. Because any signi�cant deviation from
the baseline can be 
agged as an intrusion, it is
likely that non-intrusive behavior that falls outside
the normal range will also be labeled as an intrusion
| resulting in a false positive. Another drawback
of anomaly detection approaches is that if an at-
tack occurs during the training period for establish-
ing the baseline data, then this intrusive behavior
will be established as part of the normal baseline.

In spite of the potential drawbacks of anomaly de-
tection, having the ability to detect novel attacks
makes anomaly detection a requisite if future, un-
known, and novel attacks against computer systems
are to be detected.

In this paper, we consider three techniques for intru-
sion detection that are based on anomaly detection.
Our primary goal in this work is to be able to detect
novel attacks against systems, i.e., attacks that have
not been seen before by our intrusion detection sys-
tem. Our secondary goal is to reduce the false posi-
tive rate, i.e., the rate at which our system classi�es
normal behavior as intrusions. Our approach is to
learn the normal behavior of programs (using di�er-
ent techniques) and then 
ag signi�cant departures
from normal behavior as possible intrusions. This
approach is designed to achieve our primary goal of
detecting novel attacks.

To achieve our secondary goal of reducing the false
positive rate, our approach is to generalize from past
observed behavior to inputs the system did not en-
counter during training. To this end, we have de-
veloped three algorithms that range in their ability
from being able to simply memorize past events to
being able to classify inputs previously unseen based
on a similarity measure, to being able to recognize
recurrent patterns. Before developing the three al-
gorithms, we �rst present related work in program-
based intrusion detection.

2 Analyzing Program Behavior for

Anomaly Detection

Analyzing program behavior pro�les for intrusion
detection has recently emerged as a viable alterna-
tive to user-based approaches to intrusion detection
(see [7, 21, 12, 5, 3, 6, 14] for other program-based
approaches). Program behavior pro�les are built by
capturing system calls made by the program under
analysis under normal operational conditions. If the
captured behavior represents a compact and ade-
quate signature of normal behavior, then the pro�le
can be used to detect deviations from normal be-
havior such as those that occur when a program is
being misused for intrusion.

One of the �rst groups to develop program-based
intrusion detection was Stephanie Forrest's research
group out of the University of New Mexico. Their



work in [5, 6] established an analogy between the hu-
man immune system and intrusion detection. The
approach consisted of using short sequences of sys-
tem calls (called a string or N-gram) from the target
program to the operating system to form a signature
for normal behavior. A database of system calls is
built for each monitored program by capturing sys-
tem calls made by the program under normal usage
conditions. The Linux program strace was used in
their work to capture system calls.

Once constructed, the database essentially serves
as the repository for self behavior against which
all subsequent online behavior will be judged. If
a string formed during the online operation of the
program does not match a string in the normal
database, a mismatch is recorded. If the number
of mismatches detected are a signi�cant percent-
age of all strings captured during the online session,
then an intrusion is registered. The application of
this technique was shown viable for Unix programs
sendmail, lpr, and ftpd.

It was later recognized by a research group out of
Columbia University [14] and by another research
project at UNM [12] that program anomalies were
temporally located in clusters. Thus, averaging the
number of anomalies over the entire execution trace
as performed in the UNM's earlier work could po-
tentially \wash out" the intrusive behavior among
normal variation in program behavior. Hence, the
notion of �xed-length frames in which anomalies
were to be counted was used in both groups' subse-
quent work.

The Columbia group applied a rule learning pro-
gram (RIPPER [2]) to the data to extract rules for
predicting whether a sequence of system calls is nor-
mal or abnormal. Because the rules made by RIP-
PER can be erroneous, a post-processing algorithm
is used to scan the predictions made by RIPPER to
determine if an intrusion has occurred or not. The
post-processing algorithm uses the notion of tempo-
ral locality to �lter spurious prediction errors from
intrusions which should leave temporally co-located
abnormal predictions. The results in [14] veri�ed
that system calls can be used to detect intrusions,
even with di�erent intrusion detection algorithms.

Subsequent work performed by the UNM group and
reported in [12], applied �xed-length frames to the
equality matching approach developed earlier in [6].
However, their work was further distinguished by
their analysis of the structure of system calls made

by the program. The empirical analysis found re-
current patterns of system calls in execution traces
of any given program. For instance most programs
have a pre�x, a main portion, and a su�x. Within
these portions, system calls tended to be repeated
in a regular fashion. As a result, they hypothe-
sized that a deterministic �nite automaton (DFA)
could be constructed to represent this behavior us-
ing a macro language. For each program, they
manually selected macros that matched the pat-
tern they believed to represent the normal behav-
ior. Anomalies were then detected by applying the
macros against the observed behavior and noting
mismatches. However, because their technique in-
volves creating DFAs heuristically and by hand, the
technique will not scale well to real systems. Fur-
thermore, an exact DFA representation of the pro-
gram behavior could lead to a state explosion prob-
lem.

In a similar vein as the work of [12] in creating
�nite state automata, a group from Iowa State
is implementing a program-based intrusion detec-
tion approach that analyzes system calls using state
machine models of program behavior [21]. How-
ever, their approach is not concerned with detecting
anomalies, as much as detecting violations of speci-
�ed behavior. As a result, the approach of the Iowa
State group requires the development of speci�ca-
tion models for acceptable program behavior, where
the work of [12, 14, 5, 6] used models of program be-
havior derived from empirical training. An auditing
speci�cation language (ASL) is used to develop a
representation of expected or allowed program be-
havior based on speci�cation models of programs;
violations of this model are used to detect poten-
tial intrusions and isolate the program in question
from privileged resources. This approach is simi-
lar to sandbox models of programs that constrain
program behavior based on policies or models of ac-
ceptable program behavior [8, 11].

In this paper, we build upon the work of the UNM
group in creating normal program behavior pro�les
from system calls and performing anomaly detec-
tion from these pro�les. We present an evolution
of techniques that begin from a table lookup equal-
ity matching approach (similar to the UNM work in
[5]) to machine learning approaches that can gener-
alize from past observed behavior. Our goal in ap-
plying the equality matching technique was to ver-
ify the feasibility and performance of the technique
on a much larger scale than previously performed.
Our approach was simply to improve on the equality



matching technique where it was obvious improve-
ments could be made.

In the equality matching approach, we use �xed-
size frames to capture temporally co-located events
similar to [14, 12]. However, unlike the approach
in [12], our technique automatically builds pro�les
for programs and performs anomaly detection. No
heuristics or hand coding of macros are necessary
to do anomaly detection. We have been able to
scale up our program-based anomaly detection ap-
proach signi�cantly over previous studies [12, 14, 5]
to monitor over 150 programs as part of the 1998
DARPA Intrusion Detection Evaluation program1.
Hence the results presented here represent the �rst
signi�cant study of applying an equality matching
technique for system calls to a realistic system in a
comprehensive intrusion detection study.

One of the key drawbacks in using an equality
matching approach in its current form is the in-
ability to generalize from past observed behavior.
Thus, if the normal program behavior is not ad-
equately captured, future unseen normal behavior
will be classi�ed as anomalous, thus contributing to
the false positive rate. Desiring the ability to reduce
the false positive rate while still providing the ability
to detect novel attacks consistently, we investigated
machine learning approaches for learning program
behavior. Neural networks were the best �t for
learning associations between observed inputs and
desired outputs. We implemented a standard back-
propagation neural network (a feedforward multi-
perceptron network) to be able to generalize from
previously seen inputs to map future unseen inputs
into normal or anomalous outputs. We tested our
backpropagation networks against the same corpus
of data provided by the DARPA evaluation pro-
gram. The results show both the bene�ts and pit-
falls of using backpropagation networks for this pur-
pose.

While working with neural networks, we re-visited
the input domain for our networks in order to de-
velop a proper encoding function to the network.
We noticed recurrent patterns of system calls in the
execution traces of the programs similar to what
Kosoresow et al. noted in [12]. Unlike the approach
developed by Kosoresow et al., however, we were
interested in automatically learning the behavior of
the program that would be able to exploit the recur-
rent features in the data. Furthermore, we desired

1See www.ll.mit.edu/IST/ideval/index.html for a sum-
mary of the program.

our learning algorithm to be able to generalize to
recognize future, previously unseen behavior | un-
like the equality matching algorithm. These require-
ments led us to the development of Elman networks.
Elman networks use the sequential characteristics of
the input data to learn to recognize sequentially re-
lated (or in our case temporally co-located) features
of variable length. Hence, we applied the Elman net-
works to the DARPA evaluation data for anomaly
detection.

The study presented in the rest of this paper is able
to provide a side-by-side comparison of three di�er-
ent algorithms for anomaly detection that represent
evolutions from pure memorization to generalization
based on the recurrent characteristics of system calls
made by programs. The results are signi�cant be-
cause the data on which the algorithms are evalu-
ated represents a signi�cant corpus of scienti�cally
controlled data by which the false positive rate of a
given intrusion detection algorithm can be simulta-
neously measured against the correct detection rate.
Hence, we are able to scienti�cally validate our ap-
proaches against a good set of data. In the rest
of this paper, we describe the algorithms and the
results from their implementation.

3 Equality Matching: A Simple

Anomaly Detection Approach

The �rst approach we implemented built on the
work of Forrest et al. [5, 12, 6]. But rather than
using the strace(1) program on Linux for captur-
ing system calls, we used Sun Microsystem's Basic
Security Module (BSM) auditing facility for Solaris.
This approach is practical because no special soft-
ware need be written to capture system calls. The
BSM events serve as an adequate representation of
the behavior of the program for our purposes be-
cause any privileged calls that might be made by a
program are captured by BSM. Furthermore, a pro-
gram can only abuse system resources if it is mak-
ing system calls. Our study also �nds that out of
approximately 200 di�erent BSM events that can
be recorded, programs typically make only 10 to 20
di�erent BSM events. Therefore, capturing BSM
events also serves as a compact representation of
program behavior, while still leaving ample room to
detect deviant behavior (through odd BSM events
or odd sequences of BSM events). Finally, the BSM
events we recorded for program executions showed



regular patterns of behavior such as a common be-
ginning and ending sequence, as well as recurrent
strings of system calls. Any anomaly detection al-
gorithm will perform better when the entity it is
monitoring has well-de�ned regular patterns of be-
havior. For all these reasons, in addition to the
simplicity of the algorithm and the early success of
the UNM group, we applied this algorithm with im-
provements to a large set of data to benchmark its
success.

The equality matching algorithm is simple but e�ec-
tive. Sequences of BSM events are captured during
online usage and compared against those stored in
the database built from the normal program behav-
ior pro�le. If the sequence of BSM events captured
during online usage is not found in the database,
then an anomaly counter is incremented. This tech-
nique is predicated on the ability to capture the
normal behavior of a program in a database. If
the normal behavior of a program is not adequately
captured, then the false alarm rate is likely to be
high. On the other hand, if the normal behavior
pro�le built for a program includes intrusive behav-
ior, then future instances of the intrusive behavior
are likely to go undetected.

The data is partitioned into �xed-size windows in
order to exploit a property of attacks that tends to
leave its signature in temporally co-located events.
That is, attacks tend to cause anomalous behavior
to be recorded in clusters. Thus, rather than aver-
aging the number of anomalous events recorded over
the entire execution trace (which might wash out an
attack in the noise), a much smaller size window of
events is used for counting anomalous events.

Several counters are kept at varying levels of granu-
larity ranging from a counter for each �xed window
of system calls to a counter for the number of win-
dows that are anomalous. Thresholds are applied at
each level to determine at which point anomalous
behavior is propagated up to the next level. Ulti-
mately, if enough windows of system calls in a pro-
gram are deemed anomalous, the program behavior
during a particular session is deemed anomalous,
and an intrusion detection 
ag is raised.

The equality matching algorithm was evaluated by
MIT's Lincoln Laboratory under the DARPA 1998
Intrusion Detection Evaluation program. Unlabeled
sessions were sent by Lincoln Labs and processed by
our intrusion detection algorithm. These sessions
had an unspeci�ed number of attacks of the follow-

ing four types: denial of service (DoS), probe, user
to root (u2r), and remote to local (r2l). A user to
root attack is de�ned as an attack that elevates the
privilege of a user with local account privileges. Re-
mote to local attacks grant a remote user with no
account privileges to local user account privileges.
Because this approach is mainly suited to u2r and
r2l types of attacks, and because there were a sta-
tistically insigni�cant amount of DoS and probe at-
tacks in the BSM data, we present results only from
the u2r and r2l attacks.

Attack Instances Detections Percent
Type Detected
u2r 22 19 86.4
r2l 3 2 66.7

Total 25 21 84%

Table 1: Performance of table look up intru-
sion detection algorithm against user to root
(u2r) and remote to local (r2l) attacks.

Table 1 shows the performance of the equality
matching algorithm for detecting attacks at a par-
ticular threshold of sensitivity. If the threshold is set
too low, then the false alarm rate will be low, but
detection rate will be low, too. Similarly, a thresh-
old set too high may end up detecting most intru-
sions, but su�er from a high false alarm rate. False
alarm rates are not shown for these attacks because
our algorithm will not label a particular attack |
it only notes when an attack (any attack) is occur-
ring. As a result, false positives cannot be tracked
to particular attack types.

While the table is useful for quickly determining
how many attacks of a particular type were de-
tected, a more useful measure of the performance
of the method can be obtained from Receiver Oper-
ating Characteristic (ROC) curves.

A measure of the overall e�ectiveness of a given
intrusion detection system can be provided by the
ROC curve. An ROC curve is a parametric curve
that is generated by varying the threshold of the
intrusive measure, which is a tunable parameter,
and computing the probability of detection and the
probability of false alarm at each operating point.
The curve is a plot of the likelihood that an intru-
sion is detected, against the likelihood that a non-
intrusion is misclassi�ed (i.e., a false positive) for a
particular parameter, such as a tunable threshold.
The ROC curve can be used to determine the perfor-
mance of the system for di�erent operating points
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Figure 1: Performance of the equality matching technique as a function of false positive percentage (hori-
zontal axis) and the correct detection percentage (vertical axis). This graph shows both the worst possible
ROC curve (i.e., y = x) as well as the ROC curve generated from actual data using the equality matching
algorithm.

such as con�gurable thresholds, or for comparing
the performance of di�erent intrusion detection al-
gorithms for given operating points.

Figure 1 shows performance of the equality match-
ing algorithm as a ROC curve. To better under-
stand this performance measure, consider an intru-
sion detection oracle that scores a session with a
value of one if and only if it is an intrusion, and a
value of zero otherwise. The resulting ROC curve
would actually not be a curve, but rather, a single
point at the location (0,1) since it is would detect
intrusions with a likelihood of 1/1, and it would
misclassify non-intrusions with a likelihood of 0/1.
Further, as the threshold varied between zero and
one (exclusive), there would be no change in the
way sessions are classi�ed, so the parametric value
would remain at that one point. This can be called
the oracle point. However, at the thresholds of 1
and 0 (inclusive), the (0,0) and (1,1) points remain
�xed. Connecting these points and computing the
area under the curve gives an area of 1, or a power
of 100%.

At the other end of the spectrum, consider the curve
that de�nes the worst possible intrusion detection
system. The ROC curve for the worst case scenario
is the y = x line shown in Figure 1. Assume a
system that randomly assigns a value between zero

and one for every session. Starting from a threshold
of zero, we derive the (1,1) point because all ses-
sions would be classi�ed as intrusions. As the ses-
sion threshold increases, the likelihood of both cor-
rectly classifying an intrusion and incorrectly classi-
fying a non-intrusion decrease at the same rate un-
til the session threshold is 1 (corresponding to the
point (0,0)). The power of this system is 50%, cor-
responding to the area under this curve of 0.5. If
an intrusion detection system were to perform even
worse than this curve, one would simply invert each
classi�cation to do better. Therefore, the y = x plot
represents the benchmark by which all intrusion de-
tection systems should do better.

The results in Figure 1 for the equality matching
algorithm represent an optimal tuning of the win-
dow (or frame) size to 20 and an N -gram size to
six. These parameter values were found to be op-
timal through experimental analysis. The y = x

curve is shown as the benchmark for the worst case
scenario. The equality matching method was able
to detect 68:2% of all intrusions with a false posi-
tive rate of 1:4%. Higher detection rates could be
achieved at the expense of more false positives. At
a detection rate of 86:4%, the false positive rate rose
to 4:3%. Similar curves are generated and compared
for the two other intrusion detection approaches.



4 The Backpropagation Network

The goal in using neural networks for intrusion de-
tection is to be able to generalize from incomplete
data and to be able to classify online data as being
normal or anomalous. Applying machine learning
to intrusion detection has been developed elsewhere
as well [4, 1, 13]. Lane and Brodley's work uses ma-
chine learning to distinguish between normal and
anomalous behavior. However, their work is di�er-
ent from ours in that they build user pro�les based
on sequences of each individual's normal user com-
mands and attempt to detect intruders based on
deviations from the established user pro�le. Simi-
larly, Endler's work [4] used neural networks to learn
the behavior of users based on BSM events recorded
from user actions. Rather than building pro�les on
a per-user basis, our work builds pro�les of software
behavior and attempts to distinguish between nor-
mal software behavior and malicious software be-
havior. The advantages of our approach are that
vagaries of individual behavior are abstracted be-
cause program behavior rather than individual us-
age is studied. This can be of bene�t for defeating
a user who slowly changes his or her behavior to
foil a user pro�ling system. It can also protect the
privacy interests of users from a surveillance system
that monitors a user's every move.

The goal in using arti�cial neural networks (ANNs)
for intrusion detection is to be able to generalize
from incomplete data and to be able to classify on-
line data as being normal or intrusive. An arti�-
cial neural network is composed of simple processing
units, or nodes, and connections between them. The
connection between any two units has some weight,
which is used to determine how much one unit will
a�ect the other. A subset of the units of the net-
work acts as input nodes, and another subset acts
as output nodes. By assigning a value, or activation,
to each input node, and allowing the activations to
propagate through the network, a neural network
performs a functional mapping from one set of val-
ues (assigned to the input nodes) to another set of
values (retrieved from the output nodes). The map-
ping itself is stored in the weights of the network.

In this work, a classical feed-forward multi-layer
perceptron network was implemented: a backprop-
agation neural network. The backpropagation net-
work has been used successfully in other intrusion
detection studies [7, 1]. The backpropagation net-
work, or backprop, is a standard feed-forward net-

work. Input is submitted to the network and the
activations for each level of neurons are cascaded
forward.

In order to train the networks, it is necessary to
expose them to normal data and anomalous data.
Randomly generated data were used to train the
network to distinguish between normal and anoma-
lous data. The randomly generated data, which
were spread throughout the input space, caused the
network to generalize that all data were anomalous
by default. The normal data, which tended to be
localized in the input space, caused the network to
recognize a particular area of the input space as non-
anomalous.

During training, many networks were trained for
each program, and the network that performed the
best was selected. The remaining networks were
discarded. Training involved exposing the networks
to four weeks of labeled data, and performing the
backprop algorithm to adjust weights. An epoch of
training consisted of one pass over the training data.
For each network, the training proceeded until the
total error made during an epoch stopped decreas-
ing, or 1,000 epochs had been reached. Since the
optimal number of hidden nodes for a program was
not known before training, for each program, net-
works were trained with 10, 15, 20, 25, 30, 35, 40,
50, and 60 hidden nodes. Before training, network
weights were initialized randomly. However, initial
weights can have a large, but unpredictable, e�ect
on the performance of a trained network. In or-
der to avoid poor performance due to bad initial
weights, for each program, for each number of hid-
den nodes, 10 networks were initialized di�erently,
and trained. Therefore, for each program, 90 net-
works were trained. To select which of the 90 to
keep, each was tested on two weeks of data which
were not part of the four weeks of data used for
training. The network that classi�ed data most ac-
curately was kept.

After training and selection, a set of neural networks
was ready to be used. However, a neural network
can only classify a single string (a sequence of BSM
events) as anomalous or normal, and our intention
was to classify entire sessions (which are usually
composed of executions of multiple programs) as
anomalous or normal. Furthermore, our previous
experiments showed that it is important to capture
the temporal locality of anomalous events in order
to recognize intrusive behavior. As a result, we de-
sired an algorithm that provides some memory of
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Figure 2: Performance of the backpropagation network expressed in a ROC curve. The horizontal axis
represents the percentage of false positives while the vertical axis represents the percentage of correct
detections for di�erent operating thresholds of the technique.

recent events.

The leaky bucket algorithm �t this purpose well.
The leaky bucket algorithm keeps a memory of re-
cent events by accumulating the neural network's
output, while slowly leaking its value. Thus, when
the network computes closely related anomalies, the
leaky bucket algorithm will quickly accumulate a
large value in its counter. Similarly, as the network
computes a normal output, the bucket will \leak"
away its anomaly counter back down to zero. As a
result, the leaky bucket emphasizes anomalies that
are closely temporally co-located and diminishes the
values of those that are sparsely located.

Strings of BSM events are passed to a neural net-
work in the order they occurred during program ex-
ecution. The output of a neural network|that is,
the classi�cation of the input string|is then placed
into a leaky bucket. During each timestep, the level
of the bucket is decreased by a �xed amount. If the
level in the bucket rises above some threshold at any
point during execution of the program, the program
is 
agged as anomalous. The advantage of using a
leaky bucket algorithm is that it allows occasional
anomalous behavior, which is to be expected during
normal system operation, but it is quite sensitive to
large numbers of temporally co-located anomalies,
which one would expect if a program were really be-
ing misused. If a session contains a single anomalous

program, the session is 
agged as anomalous.

The performance of the IDS should by judged in
terms of both the ability to detect intrusions, and
by false positives|incorrect classi�cation of nor-
mal behavior as intrusions. We used ROC curves
to compare intrusion detection ability of the back-
propagation network to false positives. The results
from the backpropagation network are shown in Fig-
ure 2. The test data consisted of 139 non-intrusive
sessions, and 22 intrusive sessions. Di�erent leak
rates from the leaky bucket algorithm produce dif-
ferent ROC curves. A leak rate of 0 results in all
prior timesteps being retained in memory. A leak
rate of 1 results in all timesteps but the current one
being forgotten. We varied the leak rate from 0 to
1.

In Figure 2, the ROC curve is shown for a leak rate
of 0.7. The curve and performance is similar to the
equality matching algorithm results shown in Fig-
ure 1. A detection rate of 77:3% can be achieved
with a false positive rate of 2:2%.

Purely feed-forward network topologies possess a
major limiting characteristic. That characteristic
is that the output produced by any input is inde-
pendent of prior inputs. While this characteristic is
appropriate for tasks which require processing of in-
dependent inputs, it is not optimal when the inputs



are sequential elements of a stream of data. In the
next section, we discuss an alternative network that
can recognize recurrent features in the input.

5 Elman Networks

In this section, we motivate the reasons for using
recurrent networks, then describe the Elman recur-
rent network used for anomaly detection. Results
from applying the Elman network to the DARPA
data are presented in comparison to the previous
techniques.

The BSM events produced by a single program dur-
ing a single execution can be considered to be a
stream of events. That is, each event is part of an
ordered series. A given portion of a program will
typically generate similar sequences of BSM events
during di�erent executions. Since there is a limited
number of ways in which a transition (or branch)
from one portion of the program to another can oc-
cur, it is often possible to determine what sequence
of events will follow the current sequence of events.

By using a feed-forward topology (with backpropa-
gation learning rules), as described in the preceding
section, we train ANNs to recognize whether small,
�xed-sized sequences of events are characteristic of
the programs in which they occur. For each se-
quence, an ANN produces an output value that rep-
resents how anomalous the sequence is (based on the
training data). In addition, the leaky bucket algo-
rithm used to classify the program behavior ensures
that two highly anomalous sequences have a larger
impact on the classi�cation of a program if they are
close together than if they are far apart. However,
as determined by investigation of raw BSM data, the
large-scale structure of a stream of BSM data has
features that cannot be captured within individual
sequences of lengths being used in our experiments.

In order to accommodate the large-scale structure
of BSM features during a given execution trace, two
options are apparent: 1) increase the size of indi-
vidual sequences so that large-scale structures of
the stream are represented within individual strings,
or 2) use a system which maintains some degree of
state between inputs. The �rst option will fail be-
cause in order to capture large-scale structures, in-
dividual sequences would necessarily be very large.
As sequence sizes grow, so do the network and the

di�culty in accurate classi�cation.

The second alternative|to maintain state informa-
tion between sequences|is more appealing. It al-
lows the system to retain the generality of small
sequences. It simply adds information concerning
prior sequences. One possible way to maintain state
information is through the use of a deterministic �-
nite automaton (DFA). This approach was applied
manually by a UNM group [12]. However, DFAs
have several drawbacks. The primary drawback is
the lack of 
exibility. If the BSM stream brie
y en-
ters a state not represented in the DFA, the DFA
cannot recover to recognize that the state was a
slight aberration of the sort one would expect to
encounter even during normal runs of a program.
Thus, the DFA would need to be completely speci-
�ed to represent all possible allowable sequences of
BSM events, or a heuristic-based approach similar
to the UNM approach would need to be adopted
with its perils [12]. If the DFA is completely spec-
i�ed such that it represents enough states that no
normal execution of a program produces states out-
side of the machine, then the machine will have rep-
resented so many of the target program's possible
states that recognizing anomalous behavior may be
di�cult. Beyond the lack of 
exibility of DFAs, it
should be recognized that determining what consti-
tutes a state of a program (and should be repre-
sented in the DFA) can be a di�cult task. While
neither of these issues is insurmountable, ANNs ad-
dress each of them quite naturally.

We originally employed ANNs because of their abil-
ity to learn and generalize. Through the learning
process, they develop the ability to classify inputs
from exposure to a set of training inputs and ap-
plication of well de�ned learning rules, rather than
through an explicit human-supplied enumeration of
classi�cation rules. Because of their ability to gener-
alize, ANNs can produce reasonable classi�cations
for novel inputs (assuming the network has been
trained well). Further, since the inputs to any node
of the ANN used for this work could be any real-
valued number, no sequence of BSM events could
produce an encoding that would fall outside of the
domain representable by the ANN.

In order to maintain state information between in-
puts, we required a recurrent ANN topology. A
recurrent topology (as opposed to a purely feed-
forward topology) is one in which cycles are formed
by the connections. The cycles act as delay loops|
causing information to be retained inde�nitely. New
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Figure 3: In each of the examples above, the nodes of the ANNs are labeled as input nodes (I), hidden
nodes (H), output nodes (O), or context nodes (C). Each arc is unidirectional, with direction indicated by
the arrow at the end of the arc. A) A standard feed-forward topology. B) An Elman network.

input interacts with the cycles, both the activations
propagating through the network and the activa-
tions in the cycle are a�ected. Thus, the input can
a�ect the state, and the state can a�ect the classi-
�cation of any input.

One well known recurrent topology is that of an El-
man network, developed by Je�rey Elman. An El-
man network is illustrated in Figure 3. The Elman
topology is based on a feed-forward topology|it has
an input layer, an output layer, and one or more hid-
den layers. Additionally, an Elman network has a
set of context nodes. Each context node receives in-
put from a single hidden node and sends its output
to each node in the layer of its corresponding hidden
node. Since the context nodes depend only on the
activations of the hidden nodes from the previous
input, the context nodes retain state information
between inputs.

Because an Elman network retains information con-
cerning previous inputs, the method used to train
purely feed-forward ANNs to perform anomaly de-
tection (see Section 4) will not su�ce. We em-
ploy Elman nets to perform classi�cation of short
sequences of events as they occur in a larger stream
of events. Therefore, we train our Elman networks
to predict the next sequence that will occur at any
point in time. The nth input, In, is presented to
the network to produce some output, On. The out-

put On is then compared to In+1. The di�erence
between On and In+1 (that is, the sum of the ab-
solute values of the di�erences of the corresponding
elements of On and In+1) is the measure of anomaly
of each sequence of events. We continue to use
the leaky bucket algorithm that causes anomalies to
have a larger e�ect when they occur closer together
than when they occur farther apart. However, the
classi�cation of a sequence of events will now be af-
fected by events prior to the earliest event occurring
within the sequence.

We implemented an Elman net and applied it for
anomaly detection against the same set of DARPA
evaluation data. Despite being the least extensively
tuned of the three methods employed, the Elman
nets produced the best results overall. The per-
formance of the Elman nets in comparison to the
equality matching (table lookup) technique and the
backpropagation network is shown in Figure 4. The
Elman ROC curve is the left-most curve that quickly
reaches 100% detection. With a leak rate of 0.7, the
Elman networks were able to detect 77:3% of all in-
trusions with no false positives | a very signi�cant
improvement over the other algorithms. Further,
the Elman nets were able to detect 100:0% of all in-
trusions with signi�cantly fewer false positives than
either of the other two systems.
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Figure 4: Performance of three anomaly detection algorithms expressed as ROC curves against the DARPA
evaluation data. The horizontal axis represents the percentage of false positives while the vertical axis
represents the percentage of correct detections for di�erent operating thresholds of the technique.The Elman
network performs the best overall.

6 Conclusions

This paper presented three di�erent anomaly de-
tection algorithms for detecting potential intrusions
by using program behavior pro�les. The algorithms
range from pure memorization using an equality
matching approach to the ability to generalize, to
the ability to recognize recurrent features in the
input. The results show that though the equality
matching approach worked fairly well, the perfor-
mance can be signi�cantly improved (particularly
in reducing the false positive rate) by using Elman
networks.
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