
THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

Proceedings of the Workshop on Intrusion Detection
and Network Monitoring

Santa Clara, California, USA, April 9–12, 1999

Preprocessor Algorithm for
Network Management Codebook

J Minaxi Gupta and Mani Subramanian
Georgia Institute of Technology

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual  papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org



Preprocessor Algorithm for Network Management

Codebook

Minaxi Gupta

College of Computing

Georgia Institute of Technology

801 Atlantic Drive, Atlanta, GA 30332-0280

minaxi@cc.gatech.edu

Mani Subramanian

Georgia Institute of Technology

manis@cc.gatech.edu

Abstract

As the size of networks increases, real-time
fault management becomes di�cult due to
the volume of tra�c. A single problem can
generate numerous symptoms, which are re-
ceived as events by a network management
system. These events could be correlated
to deduce the source of the problem. One
of the correlation techniques used is code-

book approach, developed by Yemini et. al.
Codebook is a matrix relating problems with
symptoms. We present a way to transform
the original algorithm used in deriving the
codebook. Our algorithm improves the e�-
ciency by reducing the matrix as well as by
ensuring the selection of minimum number of
symptoms required to uniquely identify each
problem in the codebook. This avoids an ex-
ponential growth in the number of symptoms
as number of problems increase, which in turn
shows up as saving in real-time processing.

1 Introduction

As the size of networks increases, real-time
fault management becomes di�cult due to
the volume of tra�c. A single problem can
generate numberous symptoms, which are re-
ceived as events by a network management
system. These events could be correlated to
deduce the source of the problem.

There are various fault correlation tech-
niques available. Prominent ones out of these
are: Rule-based reasoning (a rule base con-
tains expert knowledge in the form of if-
then or condition-action rules), Case-based

reasoning (these systems store knowledge as a
repository of successful cases of solved prob-
lems and when the system is presented with
a problems, it searches for similar cases in
its database), Reasoning with generic mod-

els (generic models rely on generic algorithms
to correlate events based on an abstraction
of system architecture and its components),
Probability networks (these networks works
on the probability of correctness of hypothesis
about the state of the system), Model-based

reasoning (this involves creating a model
which represents the underlying system be-
ing monitored, an example of this would be a
�nite state machine), and codebook approach

(this approach treats detection and identi-
�cation of exception events in a system as
a coding problem). Out of the above men-
tioned available event correlation and man-
agement approaches, we have selected Code-

book Approach because of its superiority over
the other techniques. The basic idea of this
approach is to form a matrix relating poten-
tial problems with the symptoms that man-
ifest them. Such a matrix is usually very
large and for fast run-time detection, one
needs to apply e�cient algorithms to reduce
its size (the resultant matrix is referred to as
codebook, and is the main focus of this pa-
per), still maintaining enough information to



be able to detect and uniquely identify the
root cause of the problem. Run-time decod-
ing of problems uses the codebook and em-
ploys best-�t approaches to conclude the oc-
currence of problems.

The basis of our present work is the origi-
nal work by Yemini et. al. ( [1, 2]) on code-
book approach. In this paper, we present a
method of pre-processing the matrixmade up
of problems and symptoms which produces
optimal (minimal), mathematically provable
codebook if the matrix lends itself to an op-
timal solution. The work presented in this
paper improves upon the original codebook
approach. The meaning of the terms used
will be explained in more detail in subsequent
sections.

2 Codebook Approach

In codebook approach ( [1, 2]), event corre-
lation (correlating observed symptoms to spe-
ci�c problems) is split into two separate activ-
ities: (1) generating e�cient codes for prob-
lem identi�cation, and (2) decoding the event
stream. Using this technique, detection and
identi�cation of problems in the system can
be done e�ciently due to following reasons.
First, the redundant and ine�cient data is
eliminated during code generation, leaving a
greatly reduced amount of data to be ana-
lyzed during the decoding phase, and second,
comparing codes against observed symptoms
signi�cantly reduces computational complex-
ity.

There is a four-step process that accom-
plishes the above. It includes

� Specifying an event model (possible
problems that can occur in the system
under consideration) and a propagation
model (how these events propagate to
generate observable symptoms) for com-
ponents in the system. This speci�cation
includes the exceptional events associ-
ated with each type of component, their
corresponding local symptoms, and the
potential relationships with other com-

ponents along which events can propa-
gate.

� Creating a representation of possible
problems and their symptoms for the
system to be monitored. The preferred
way for this type of representation is a
matrix. This matrix contains a mapping
of symptoms to likely problems in the
system. Typically, such a matrix will
contain 1s and 0s in each cell. Since some
problems can occur with higher probabil-
ity than other, probabilities can be in-
cluded in this matrix to ensure more fo-
cus on problems that are more likely. By
eliminating loops and repetitions of rows
and columns, the matrix is made well-

formed.

� Finding a minimal codebook by reduc-
ing the amount of information in the
above matrix to the minimum required
to identify uniquely problems. Code-
book should be able to tolerate loss of
events or generation of spurious symp-
toms, this can be done by introducing
redundancy in the selected symptoms.

� Continuously monitoring and decoding
the symptoms by locating the best-�t

problem in the optimal codebook which
matches a particular set of symptoms.

3 Optimal Codebook Genera-
tion

Our work assumes that �rst two stages of
the codebook have been accomplished as de-
scribed by Yemini et. al. [2]. We start with
a well-formed matrix. The goal is to reduce it
to generate the optimal (minimal) codebook.
Initially, we assume no error tolerance by our
codebook. This means that loss of symptoms,
or generation of spurious symptoms will re-
sult in incorrect decoding of problem occur-
rence at run-time.

To motivate the need for such a codebook,
an example follows.

A well-formed matrix for a system with
three problems represented by symptoms



along rows and problems along columns is
shown in Figure 1.

p1 p2 p3
s1 1 0 1
s2 0 0 1
s3 1 1 1
s4 0 1 0
s5 0 1 1
s6 1 0 0
s7 1 1 0

Figure 1: A well-formed matrix for three
problem case

An optimal codebook, however, for above
well-formed matrix would end up as in Fig-
ure 2.

p1 p2 p3
s1 1 0 1
s5 0 1 1

Figure 2: Optimal codebook for matrix in
Figure 1

As this simple example shows, only two
symptoms are needed to distinguish among
three problems, hence keeping seven symp-
toms (as the original well-formed matrix did)
to be decoded at run-time is an overkill. In
the subsequent discussion, we will explain the
mathematical limits of the optimal number of
symptoms that a codebook should have de-
pending on the number of problems and how
to achieve that limit.

3.1 Well-Formed Matrix

Ideally, a well-formed matrix for n prob-
lems should contain only 2n � 1 symptoms
at maximum. This is because, mathemati-
cally, there can be only 2n combinations of 1s
and 0s possible if there are no common rows.
Out of these, the row containing all 0s does
not help us distinguish any problems from
each other(mathematically speaking, the row
containing all 1s also does not help us dis-
tinguish any problem from any other, but in
real world, that can be useful, hence we keep
that), so those can be eliminated. We will

assume that the well-formed matrix provided
to us as input is an ideal one (that it has all
possible combinations of 1s and 0s). This is
what we mean by a matrix lending itself to

optimal solution. A non-ideal matrix may be
have far fewer rows to lend itself to optimal
solution.

3.2 Mathematical Limits

Let's start with some motivation for what
the algorithm should accomplish and what
the mathematical limits are on the optimal
codebook.

Given n problems, to be able to distinguish
each problem from all others, we need follow-
ing number of distinct cases

(n� 1) + (n� 2) + ::::+ 1 = n(n� 1)=2 (1)

This is because the �rst problem needs to
be distinguished from (n-1) other problems
(hence, there are (n-1) cases), the second
problem needs to be distinguished from (n-2)
other problems (because the second problem
has already been distinguished from the �rst)
and so on. The (n-1)th problem just needs to
be distinguished from 1 other problem, the
last one. For a four problem case, the cases
can be pictorially explained in Figure 3.

Total number of cases for four problem
case: 3 + 2 + 1 = 6 If we substitute n = 4
in Equation 1, we get the same result.

Each symptom eliminates several cases. If
k symptoms are required to distinguish n
problems, we want following to hold true:

2k � 1 � n (2)

The reason for this is as follows. If k
symptoms are selected, we have 2k combina-
tions of 1s and 0s available at our disposal.
Out of this, the combination consisting of all
0s needs to be ruled out, since that won't



P1 P2 P3 P4

P1 needs to be distinguished froom P2, P3, and P4 (3 cases)

P1 P2 P3 P4

P1

P2 needs to be distinguished from P3 and P4 (2 cases)

P2 P3 P4

P3 needs to be distnguished from P4 (1 case)

Figure 3: Enumeration of cases for four prob-
lem case

help distinguish any of the problems from any
other.

There is a window of problems, that a cer-
tain number of symptoms can distinguish.
This window (denoted by w) is given by

2k�1 � w � 2k � 1 (3)

Figure 4 gives a feel for that window of
problems. As is clear from the graph, the
window keeps getting wider with n. The fact
that these k symptoms are su�cient can be
proven by checking that they have at least
n(n-1)/2 cases embedded in them.

3.3 Pre-processing the Well-
Formed Matrix

The pre-processing that we propose on the
well-formed matrix is guided by the following
observation. Intuitively, to select the mini-
mum set of symptoms for the codebook, the
best approach is to eliminate as many cases
as possible with each symptom that we select.
Let us now see how we can do that.

To distinguish n problems, if we select the
�rst symptom of the type

1 0 0.... 0 (only one 1, rest (n-1) are 0s),

0 5 10 15 20 25 30 35
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Number of problems

S
ym

pt
om

s 
re

qu
ire

d

Figure 4: Windows of symptoms for various
problem ranges

This would help us distinguish the �rst
problem from all the other problems, but no
other problems can be distinguished from any
other problems. Hence it eliminates (n-1)
cases out of the n(n-1)/2 that we need to elim-
inate. However, it is not the optimal one to
select. Let us consider the case where we se-
lect a symptom that has approximately equal
number of 1s and 0s (approximate, because
for odd number of problems, number of 1s
and 0s are not equal), i.e., the symptom was
of the type

1 0 1 0 .... 1 0 (approximately n/2 0s and
n/2 1s)

The 1s and 0s need not be in any speci�c
order { we call such symptoms as balanced

symptoms). This could eliminate 50% of the
cases we need to eliminate right after the �rst
symptoms is chosen (because of complemen-
tary nature of the symptom). Eliminating
50% would mean eliminating n(n-1)/4, which
is larger than (n-1) for n>4 (implying larger
the problems, better it is to start with bal-
anced symptoms). The exact number of cases
eliminated for each problem will depend on
the particular combination of 1s and 0s in the
balanced symptom.

For subsequent symptoms also, if we could
eliminate as many rows as possible (upto
50%) of the remaining cases at each stage fol-
lowing similar procedure, we are guaranteed



to select the minimum number of symptoms,
because this would imply that we select ap-
proximately log2(n + 1) symptoms (this ex-
pression can be derived fromEquation 2). We
are now ready to detail pre-processing steps.

� Step 1: Sort the well-formed matrix,
bring the balanced symptoms on top.

� Step 2: Eliminate compliments to pre-
pare the matrix for our algorithm that
selects codebook.

We would illustrate the e�ect of each step
on sets of three and four problems.

4 Pre-Processing Algorithm

4.1 Step 1

We �rst sort the well formed matrix in our
hand. We call this new matrix as sorted-well-
formed matrix. The idea behind sorting is to
keep the balanced symptoms on the top of
the matrix (as explained in the previous sec-
tion, balanced symptoms are the best ones
to select). Figuring out whether a symptom
is balanced or not takes O(n). This can be
done in one pass and the time taken for this
would be O(mn), where n is the number of
problems and m is the number of symptoms.
The next pass can naively go through this list
of numbers and puts the balanced symptoms
before the unbalanced ones (it will be a lit-
tle more involved for matrices with odd num-
ber of problems, because for odd number of
problems, rows with (n-1)/2 and (n+1)/2 1s
in them will be balanced, as against the n/2
for even number of problems). The sort also
takes time O(m2), where m is the number of
symptoms. There are many better algorithms
that can be employed for this purpose, but
since it does not a�ect the complexity of our
solution, we would keep this simple one for
the time being.

We now illustrate examples of sorting three
(odd number of problems) and four (even
number of problems) problem matrices.

A three problem well-formed matrix can
have only seven combinations (of course many
permutations of the rows are possible and the
real world matrix may not even have all of
them). Figure 5 shows a three problem well-
formed matrix.

p1 p2 p3
s1 0 0 1
s2 0 1 0
s3 0 1 1
s4 1 0 0
s5 1 0 1
s6 1 1 0
s7 1 1 1

Figure 5: Another well-formed matrix for
three problem case

After sorting, it would not change for this
particular case because all but the last com-
bination of all 1's are balanced (except the
last one).

For four problems, maximumwell-formed
matrix would look like (�fteen combinations
possible) Figure 6.

p1 p2 p3 p4
s1 0 0 0 1
s2 0 0 1 0
s3 0 0 1 1
s4 0 1 0 0
s5 0 1 0 1
s6 0 1 1 0
s7 0 1 1 1
s8 1 0 0 0
s9 1 0 0 1
s10 1 0 1 0
s11 1 0 1 1
s12 1 1 0 0
s13 1 1 0 1
s14 1 1 1 0
s15 1 1 1 1

Figure 6: Well-formed matrix for four prob-
lem case

After sorting, the balanced symptoms get
pushed to the top and the well formed matrix
for four problems changes to give us Figure 7.



p1 p2 p3 p4
s3 0 0 1 1
s5 0 1 0 1
s6 0 1 1 0
s9 1 0 0 1
s10 1 0 1 0
s12 1 1 0 0
s1 0 0 0 1
s2 0 0 1 0
s4 0 1 0 0
s7 0 1 1 1
s8 1 0 0 0
s11 1 0 1 1
s13 1 1 0 1
s14 1 1 1 0
s15 1 1 1 1

Figure 7: Sorted-well-formed matrix for four
problem case

4.2 Step 2

Eliminate all the compliment rows from the
well-formedmatrix. If the matrix had all pos-
sible combinations in it, it would cut down
the matrix size in half. The reason we elimi-
nate the compliments is because although the
compliments mean di�erent symbols physi-
cally, they do not contain any di�erent infor-
mation from each other mathematically. To
see that, consider symptoms in Figure 8.

p1 p2 p3 p4
s1 1 1 0 1
s2 0 0 1 0

Figure 8: Figure showing compliment symp-
toms

The �rst symptom distinguishes p1, p2 and
p4 from p3. The same is the case with the
second symptom.

While deciding to eliminate one of the com-
pliments, we give preference to the symptom
with more 1s in it. The reason for this choice
is completely physical. The symptom with
more 1s is likely to be more useful (because
it shows up for more problems) than the one
with more 0s. If there are equal number of
1s and 0s, we simply choose the one that

has more 1s in the beginning. From the face
of it, it seems more like a convention. But
in reality, this helps select better symptoms.
There can be other choices as well for choos-
ing symptoms, logically, this seems to work
the best.

This operation takes O(m2n) time, where
m is the number of symptoms because for ev-
ery row, one may have to go all the way down
to �nd the compliment and at each stage,
O(n) comparisons are required for n prob-
lems.

After eliminating the compliments, while
giving priority to the symptoms with more 1s
than 0s, we get Figures 9, and 10 matrices for
three and four problems respectively.

p1 p2 p3
s3 0 1 1
s5 1 0 1
s6 1 1 0
s7 1 1 1

Figure 9: Minimized-sorted-well-formed ma-
trix for three problems

p1 p2 p3 p4
s9 1 0 0 1
s10 1 0 1 0
s12 1 1 0 0
s7 0 1 1 1
s11 1 0 1 1
s13 1 1 0 1
s14 1 1 1 0
s15 1 1 1 1

Figure 10: Minimized-sorted-well-formedma-
trix for four problems

In the matrix for four problem case, s9
was given a priority over s6 while eliminat-
ing compliments because, although they have
the same number of 1s and 0s in them, s9 has
more 0s in the beginning than s6. Also, the
matrix might look a little di�erent depend-
ing on the exact algorithm that is used while
re-shu�ing the symptoms. We just mark the
symptoms that we would eliminate and later
just copy the un-marked ones in order.

These matrices are called minimized-



sorted-well-formed matrices.

The number of balanced symptoms in the
matrix for even and odd number of problems
can be expressed by the formulae in Equa-
tions 4 and 5 respectively.

nCn=2

2
even case (4)

nC(n�1)=2 +
nC(n+1)=2

2
odd case (5)

This is because for even number of prob-
lems, we just need to choose n/2 positions
for 0s and 1s can go in the rest of the po-
sitions (and vice versa). For odd number of
problems, there are two ways to choose bal-
ances symptoms. Hence correspondingly, for
odd number of problems, there are two terms.
Since we have eliminated compliments, the
number of combinations that we get need to
be halved, hence the above formulae. These
formulae can be veri�ed with the following
results.

5 Codebook Algorithm

Having pre-processed the well-formed ma-
trix, we will analyze the behavior of code-
book algorithm using pre-processed matrix.
Because of the pre-processing steps, the al-
gorithm will always generate minimal code-
book if the well-formed matrix contains ade-
quate symptoms to uniquely distinguish be-
tween problems, i.e., it is always optimal.

The idea behind the algorithm is very sim-
ple. We start with the �rst problem and
see how many symptoms will uniquely dis-
tinguish it from all other problems. For all
other problems, we �rst check to see if the
symptoms that have been already selected
will su�ce to distinguish it from all other
problem. If the answer is yes, then we move
on to the next problem, if not, then we deter-
mine which symptoms are to be added. We
work our way through the input matrix se-
quentially.

We will illustrate the working of this algo-
rithm on the minimized-sorted- well-formed

matrix for three problems �rst.

� It chooses s5. s5 distinguishes p1 from p2
(s3 distinguishes p1 from p2, but does
not show up for p1, while s5 shows up
whenever p1 happens).

� To distinguish p1 from p3, the algorithm
selects s6. Now p1 has been distin-
guished from all other problems.

� Now it will move on to other problems.
In this case, it is just p2. The algorithm
will �rst check to see if already selected
symptoms are enough. It turns out that
both s5 and s6 can be used to distinguish
p2 from p3 as well. It should be noted
that even s5 can be used to distinguish
p2 from p3, though it does not show up
for p2 (as explained later, a sanity check
will eliminate the worst case scenario of
running into a case where mathemati-
cally a problem can be diagnosed, but
practically it can not be). Only when we
pick a new symptom do we make sure
that the symptom actually shows up for
that particular problem.

The algorithm selects two symptoms for
three problems, which is the minimum re-
quired mathematically. The resulting code-
book is shown in Figure 11.

p1 p2 p3
s5 1 0 1
s6 1 1 0

Figure 11: Codebook for matrix of Figure 5



Running this algorithm on Figure 5 with-
out pre-processing it, produces Figure 12.

p1 p2 p3
s4 1 0 0
s6 1 1 0
s1 0 0 1

Figure 12: Codebook for matrix of Figure 5,
without pre-processing

This is not the optimal codebook because
it has one more symptom than the mini-
mum codebook. This shows that without
pre-processing, optimal algorithm could fail
to produce optimal codebook.

The algorithm will work on minimized-

sorted well-formed matrix for four problems
as follows.

� It chooses s9 because that is the �rst
symptom that shows up for p1. s9 dis-
tinguishes p1 from p2 and p3.

� To distinguish p1 from p4, the algo-
rithm will select s10 (the algorithm al-
ways starts from the �rst symptom). At
this point, p1 has been distinguished
from all other problems.

� For p2, s9 (which has already been se-
lected), distinguishes it from p4 but not
from p3 and s10 distinguishes it from p4.
So, p2 is also taken care of.

� p3 can be distinguished from p4 using
s9. So, all problems can be distinguished
from each other.

� The algorithm does a sanity check at this
stage (because it claims to have distin-
guished all problems in less symptoms
than mathematically required). It turns
out that if only s9 and s10 are used, even
if p2 occurs, it would not show up. To
avoid this, the algorithm selects s12 and
is done generating the codebook at this
time.

The resulting minimal codebook for four
problem case would be as shown in Figure 13.

p1 p2 p3 p4
s9 1 0 0 1
s10 1 0 1 0
s12 1 1 0 0

Figure 13: Codebook for matrix of Figure 6

It is clear that the algorithm selects three
symptoms for four problems. It is easy to
show that if the initial rows of the matrix are
not made the right kind by pre-processing,
because of the nature of the algorithm, it
would selected many more symptoms (max-
imum number equal to the number of prob-
lems) than the optimal (hence the argument
that the pre-processing work that we have
done will eliminate the possibility of bigger
codebooks). For small problem sets, this dif-
ference is not very prominent, but for larger
problem sets, it could e�ect the run-time
problem identi�cation adversely. However,
it should be noted that there could be some
real-world matrices that will not have enough
balanced symptoms (in particular, they may
have lesser than the optimal codebook re-
quirements). In that case, the algorithm will
be forced to generate a sub-optimal code-
book. In practice, the redundancy in the ma-
trices is so much that such a case would be
rare, else we will not really need codebooks
at all!

6 Discussion

Figure 14 shows that the number of prob-
lems that can be detected at run-time by
same number of symptoms increase exponen-
tially. We have used the lower limit of the
window of problems that can be detected us-
ing the same number of symptoms to be on
the conservative side. We have used the rela-
tion n = 2k�1 (lower end of the window from
Equation 3) as our y-axis parameter.

We now compute net savings due to pre-
processing input matrices.

At the higher end of a window (for exam-



0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Number of symptoms

N
um

be
r 

of
 p

ro
bl

em
s

Figure 14: Number of problems that can be
detected at run-time using same number of
symptoms increase exponentially

ple, n = 15, k = 4), savings are given by

n � dlog2(n+ 1)e (6)

At the lower end of the same window (n =
8, k = 4), savings are given by

n � (dlog2(n)e + 1) (7)

Equations 6 and 7 give the reduction in the
number of symptoms our preprocessor algo-
rithm guarantees over worst case codebook (if
the pre-processing of well-formed matrix was
not done and codebook algorithm was run on
it). The way we compute savings is as follows.
Without pre-processing, in the worst case, for
n problems, n symptoms will be selected by
codebook algorithm to uniquely identify the
problem. However, if the well-formed ma-
trix is pre-processed, only dlog2(n + 1)e or
dlog2(n)e + 1 symptoms are needed for opti-
mal codebook, depending on which end of the
window one is in (these formulae are derived
using Equation 3). Average number of symp-
toms required for a given number of problems
are given by

(dlog2(n+ 1)e + dlog2(n)e + 1)=2 (8)

Hence the average savings are given as

n� (dlog2(n+ 1)e + dlog2(n)e + 1)=2(9)

Figure 15 brings about some of these points
more explicitly. It compares the number of
symptoms in the �nal codebook generated us-
ing the codebook algorithm with and with-
out the pre-processing of input matrix. As is
very clear from the �gure, pre-processing re-
duces the number of symptoms substantially.
Also, as the number of problems increases,
the savings increase, making the di�erence
more prominent (and in turn, ensuring more
real-time savings).

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Number of problems

N
um

be
r 

of
 s

ym
pt

om
s

SAVINGS

Without pre−processing
With pre−processing   

Figure 15: Comparison of number of symp-
toms in output codebook with and without
pre-processing of input matrix

7 Summary

We have developed a two step pre-
processing algorithm that ensures that the
codebook algorithm would generate mathe-
matically provable optimal codebook. Us-
ing the pre-processing algorithm for a given
number of symptoms, number of problems
that can be identi�ed increases exponentially.
For a practical situation, number of prob-
lem being �nite, number of symptoms needed
reaches a plateau, if the pre-processing algo-
rithm is used.



References

[1] United States Patent. Apparatus and
method for event correlation and prob-
lem reporting. Yemini et al. Jun-18-1996.

[2] High speed and robust event correlation.
Yemini et al. May-1996.


