
THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

Proceedings of the Workshop on Intrusion Detection
and Network Monitoring

Santa Clara, California, USA, April 9–12, 1999

Defending Against the Wily Surfer—
Web-based Attacks and Defenses

Daniel V. Klein
Cybertainment, Inc.

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org

Defending against the wily surfer – Web based attacks and defenses

Daniel V. Klein
Cybertainment, Inc.
dvk@erotika.com

Abstract

Intrusions are often viewed as catastrophic events
which destroy systems, wreak havoc on data through
corruption or substitution, yield access to closely
guarded sensitive information, or provide a
springboard for hackers to attack other systems.

Yet not all intrusions on the Web are the blatant,
smash-and-grab, trash-the-site kind of attacks. Many
attacks are more subtle, and some involve what
appears to be normal access to the site (but
appearances are deceiving!) This paper presents a
compendium of some of the dirty tricks on the Web.
These are used to steal bandwidth and server load
(as well as revenue) from web sites around the
Internet. Other tricks funnel hits to sites other than
the intended destination, while additional, more
obvious techniques are used to bypass payment
schemes and gain free access to sites. A different
class of attacks targets the client, instead of the
server. Some of the dirty tricks are preventable up-
front, while others can only be detected after the
security holes have been exploited – and always,
there needs to be a balance between accessibility
and vulnerability. We present a compendium of
problems, attacks, and solutions. Many of the
attacks and preventions seem “obvious” once
known – this paper aims to forearm by forewarning
the reader.

1. Explanation (and expiation)

Many of the intrusion techniques cited in this paper
are prevalent in the adult web site domain, although
this is not to say that they don’t exist elsewhere. The
reasons for the prevalence of attacks on the adult
market are:

1) The adult market is one in which content is
actually worth money. Although E-Commerce is
roaring along strongly in other arenas, it is
usually material product which is being sold
(e.g., although eBay and Amazon.com have huge
amounts of traffic, they sell hard commodities,
whereas adult web sites generally sell streams of
bits).

2) Although some non-adult sites sell data (e.g.
programs or stock market tips), few of these are
interchangeable, but a lot of smut is.

3) People will share passwords to adult sites,
because there is rarely any personal information
associated with the account. People are far less
likely to share their account on a stock
investment site, since electronic stock trades are
legally binding to the account holder.

4) Computer enabled teenagers (and there are an
awful lot of them on the net today) generally
couldn’t care less about stocks, bonds, news, or
books. Sex, on the other hand, occupies a
substantial fraction of their attention.

None of these reasons make the information in this
paper less valuable to non-adult web sites. As the
electronic medium becomes more and more
available to the general public, attacks of the kind
outlined here will become more prevalent in every
marketplace. The experiences of the adult market
are hard won victories that can forewarn, and thus
forearm other markets.

2. Domain name spoofing

If you have a new site with a hot new domain name,
what kind of traffic can you expect? Who will come
to your existing site, and who will visit it based on
the advertisements you take out? The more difficult
the name is to spell, the more likely it will be that
surfers mistype the name. The more popular the site,
the greater the chance that someone will try to
imitate your site, or simply steal hits by parasitizing
your domain name. When AT&T introduced their 1-
800-OPERATOR collect-call system, MCI diverted a
noticeable fraction of the income stream by
activating a similar service on 1-800-OPERATER (a
number they conveniently already owned). There is
a whole set of Internet domain names that capitalize
on surfers’ inability to spell.

Domains like netscape.com have their
typographical-error equivalents netscpae.com and

netscap.com, taken by a British and California
group of entrepreneurs. Although neither currently
have active web pages, there is income potential
from either of these sites. Even more income
potential can be realized by the clever Russians who
registered quiken.com, since the real
quicken.com sells advertisements, and thus is an
income generating site itself. Were any of these
domain name parasites to create a site that visually
appeared the same as their host company’s site, they
could easily steal credit card information or
disseminate false information with the cachet of a
real-looking web site.1

Most newbie surfers have been indoctrinated with
www.something.com. Regardless of the real
address, a web site simply must be prefixed with www
and every domain must end in .com (as if a
“domain” is a term that is readily understood outside
of hacker circles). Smart companies register their
domain in all of the available top-level domains
(e.g., webtv.com and webtv.net, or
usenix.org and usenix.com), and both with
and without hyphens, where appropriate. Uninformed
groups fail to do so, and lose traffic, name
recognition, and money.

In 1995 a local web-based company created
pittsburgh.net, with the marketing slogan of
“Pittsburgh on the Net”. I asked myself how many
people would type .com instead of .net, and
promptly registered pittsburgh.com. I also
aliased it to my fledgling Pittsburgh-based web-
hosting company. Without ever advertising the
domain name, I started getting hits, and within 3
months (thanks to my competitor’s aggressive
advertising campaign), fully 40% of my hits were
coming to pittsburgh.com.

Perhaps the most renowned of these domain name
“thefts” are the hits redirected from
whitehouse.gov to the similarly named
whitehouse.com. Far from being the
governmental information site that most surfers
probably expect, it is an adult-oriented site instead.

The proliferation of top-level domains only makes
this problem worse. The Pacific island nations of

1 Prior to the transfer of the altavista.com domain
name to Digital/Compaq, Altavista would pass queries
through to the “real” altavista.digital.com, while
selling their own ad space and rewriting the search
engine's page content.

Niue and Tonga have gotten into the domain name
business, so you can register domains like who.nu
and incogni.to for $35/year. The island nation of
Tuvalu auctions domain names2, ostensibly for
television-related companies, so you can also
register color.tv. The Cocos Islands sells
domains like mail.cc (with premium prices being
charged for 2-letter domain names), the British
Indian Ocean Territory does the same with domains
like scenar.io, and until recently, Turkmenistan
was also selling domain names. However, the
TMNIC realized that some of the names it registered
may be legally obscene in Turkmenistan, and as a
result the TMNIC registry is reviewing its naming
policy for future registrations (and has suspended
registrations until a new policy can be implemented).
But domains such as trademark.tm were up for
grabs until the suspension took effect.

I shudder to think the confusion that will be sown
when it will be possible to have not only a
foo.com, foo.org, and foo.net, but also
foo.web, foo.shop, foo.firm, foo.info,
foo.arts, foo.rec, and foo.nom.3 The
potential for content misdirection and identity theft is
stunning.

Regrettably, there is only one defense against
domain name spoofing. First, have a domain name
which is difficult to misspell (and that can cost a lot
of money if you want a common, readily
recognizable name that someone else already owns).
Second, you need to spend more money and register
the domain in each one of the of the possible top-
level domains (although realistically, you can
probably skip Turkmenistan and the various islands).

3. Domain name stealing

The NIC provides a number of mechanisms for
protecting your domain registration. Unfortunately,
few novice web registrants are aware of them.

2 According to their web site, the minimum bid is
$1000. Tuvalu is also a “discriminating” registry in that it
does not allow registration of pornography, hatred, or
gambling content sites.

3 As proposed by the Department of Commerce,
National Telecommunications and Information
Administration, Statement of Policy, “Management of
Internet Names and Addresses”, Docket Number:
980212036-8146-02 (see http://www.gtld-mou.org/
for more details).

Once a domain is registered, its attributes can only
be changed by the administrative, technical, or
billing contact. By default, the identity of the person
submitting a change request is validated via email
address, and notification of changes to the domain is
made after the fact (a PGP signature verification
option is also available, but newbies often don’t
understand it).

Unscrupulous individuals can readily forge an email
message that appears to originate from one of the
contacts. If the change request is to modify the
primary and secondary domain name servers, the
original registrant is still financially responsible for
the domain without benefiting from its use. The best
way for a thief to do this is adjust their reverse IP
lookups, such that the name of the counterfeit DNS
server is the same as the real thing. When the
domain change confirmation is mailed to the
legitimate contacts, they are likely to miss the
change in IP numbers, and see only that the DNS
names are the same. Since contact email addresses
are often obsolete and non-functional, when
confirmation email is sent, the confirmation may go
completely unnoticed. If the email addresses are
valid, a clever domain thief can even maintain MX
records while changing A records, redirecting the
web hits while preserving email identity.4

4. Password hacking and sharing

The reason aphorisms are so often repeated is not
because we have all heard them so often – it is
because they are correct. An aphorism for web site
maintenance is “Member site passwords are a weak
point”. Passwords on a web site are as vulnerable to
hacking as they are anywhere, and password sharing
is the same problem as it is on any computer. And
as with any computer system, a good site
administrator needs to check for hackers and
password sharing. The advantage to the web is that
log files (which are often examined daily as a matter
of course) contain information that can be used to
readily identify both problems.

There are numerous sites on the web dedicated to
publishing accounts and passwords, and there are at

4 Although it sounds implausible, a number of very
large adult web sites have been stolen in this way, and the
theft was only noticed months later when someone finally
decided to check server logs. As we will see over and over
again, log files are your friend.

least half a dozen newsgroups dedicated to nothing
else.5 The newsgroups and web sites are a mix of
three things, and as with most newsgroups, the
signal-to-noise ratio is fairly low. The first group
consists of people actually publishing passwords. A
second group is people seeking passwords (or
offering to trade them, but generally only if you give
away your secrets first). Finally, there are numerous
shameless marketing ploys disguised as password
postings. This latter group entices you to visit a web
site with promises of free passwords, when in fact the
supplicant is greeted with either a membership site
and/or a plethora of banner ads and pop-up windows
(either of which having the potential to make money
for the web site maintainer).

But because valid passwords are often posted by
unscrupulous individuals, the threat of password
sharing is indeed real. The following chart shows 6.5
months of HTTP transfers from one member-based
web site (from site-launch until just before this paper
went to press). The load on the system varies
throughout the week, with troughs generally
occurring on the weekends, and with an average
network load of 500Mb of data per day (with a recent
surge up to 1Gb per day, due to a successful
advertising campaign). As adult sites go, this one is
a relatively small one – large sites can easily push
100 times this much data (or more) out the pipe
every day.

Bytes Transferred per Day,
Password Publication Incidents

0 Gb

1 Gb

2 Gb

3 Gb

4 Gb

5 Gb

6 Gb

At the middle (14 Nov 1998) and just at the end of
the graph (8 Feb 1999), an account/password pair

5 A search for “pass” in newsgroup names yielded the
following 6 newsgroups: alt.etc.passwd,alt.ipl.passwords,
alt.japanese.neojapan.shareware.password-exchange,
alt.sex.commercial-sites.password-exchange,
alt.sex.password, and alt.sex.passwords. Searching for
“crack” resulted in 15 more newsgroups related to cracking
commercial and shareware programs. So much for honesty
and integrity on the Net.

was published on a password web site (by persons
unknown), and the load on the server surged to
nearly ten times it’s normal value, almost
completely filling my T1 link. While an intrusion
can rarely be considered fortuitous, the timing of the
second event was such that this paper benefited from
an significant additional data point.

Raw Hits per Day,
Password Publication Incidents

0 K

100 K

200 K

300 K

400 K

500 K

600 K

Cutting off the password in question roughly 20 hours
after it was posted alleviated the server load, and
restored operating parameters back to normal within
a day or so. The hit rate stayed high for a slightly
longer time period than the byte transfer rate, since
surfers were still attempting to access the site via the
now-disabled account.

A couple of statistics are worth noting on these
incidents. For the previous two years (on this, and
all other member sites I maintain), an average
account was visited from no more than 3 domain
addresses (as defined in the script in the following
section), and generally one of those domains
accounted for over 85% of the total hits for an
account. In the second event, over 2,675 domains in
85 countries were evident (comprising an unknown
number of individuals). The chart below shows the
number of hits for the top-10 domains visiting the
site:

47207 bellatlantic.net 8359com.au

35687 aol.com 7874home.com

31429 tele.dk 7668 net.au

11769 edu.tw 6373 ripe.net

8762 uu.net 5673 dfn.de

It is not at all surprising that the big ISPs account for
the vast majority of the hits. What is perhaps a little
more surprising is that the University system in
Taiwan accounts for such a large fraction of this hits.
When the top-20 TLDs are listed, we see the
following distribution of accesses:

171906 .net 6922 .fr

95117 .com 6688 .it

35109 .dk 6350 .uk

24998 .de 4572 .kr

23889 .edu 3795 .fi

16952 .au 3698 .ch

14169 .ca 3611 .my

13019 .tw 3075 .no

9649 .se 3028 .at

9076 .nl 2865 .mx

Considered collectively, the greatest number of hits
originated in the United States, with Denmark and
Germany (long viewed as a source of adult
materials) occupying a substantial fraction of the
free-password surfers’ hits.

What affect do these intrusions have on member
signups? Prior to these two incidents, I posted a
password myself to alt.sex.passwords on 22
Dec 1997. This was both as a test of my then-new
intrusion detection software, and as my own
shameless marketing ploy. I had predicted that after
access to my site was cut off, people would pay to
sign up, having been hooked by the content. The
software worked as planned, but the marketing
attempt failed miserably – most people who frequent
the password sites and newsgroups are looking for a
free ride. The same was true following the two real
intrusions, namely that no perceptible increase in
member signups occurred.

It is interesting to note that for the test incident, the
greatest number of surfers originated in Russia. At
the time, it made sense that smut-hungry surfers in
countries that were short on hard currency would find
themselves compelled to purloin access to member
sites. Of course another interpretation could be that
in countries where religion had not been suppressed,
people were more interested in spending the winter
holidays with family than surfing for smut. The latter
seems perhaps more reasonable, since Russia ranked
41 in the TLDs of the real attacks, and accounted for
less than 2.5% of the number of hits of Denmark,
while the reverse was true of the test incident.

It is difficult to do more than speculate on the nature
of the surfers, although the statistics do pose an
interesting set of sociological questions. The bottom
line, though, is that if your site’s passwords are

posted (and you don’t have software to detect it),
you’re in serious trouble.

4.1. Detecting password sharing

The following is a simple-minded Perl script which
tests for password sharing. It examines a standard
HTTP log file, and tallies the number of domains
from which a password has been used. The script
makes the following simplifying assumptions:

1) All hits from within a domain are considered to
be the same. So if a surfer shares a password
with their coworkers (or legitimately views the
site from two different machines in the same
domain), this script will not detect it.

2) All hits from within the same Class-C subnet are
also considered to be the same. For those sites
for which reverse DNS is inaccurate or
unavailable (or for web servers which choose not
to do DNS lookup), this simplification will
remove a large number of false positive reports
of password sharing (although it will remove
some true positive reports, too).

Although these assumptions reduce the effectiveness
of the script, experience has shown that casual
sharing is not the main concern of a site, it is blatant
password publication that matters most. It is also not
unusual for a surfer to view a site from different ISPs
at work and at home, so it is up to the site monitor to
make the distinction between password sharing and
office/home viewing.

#!/usr/bin/perl

#
Parse the log files. We only really care
about the first three fields (and not
really about the middle one of those).
#
while (<>) {

($addr, $rfc931, $acct) = split;
next if $acct eq "-";
$total{$acct}++;
if ($addr =~ /^(\d+\.\d+\.\d+)\.\d+$/) {

$addr = $1;
}

else {
$addr =~ s/^.*\.([^.]+\.[^.]+)$/$1/;
}

$acct{$acct}->{$addr}++;
}

#
Extract the various cheaters in magnitude
order
#

for $acct (sort
{ $total{$b} <=> $total{$a} }

keys %count) {
if (keys %{ $count{$acct} } > 2) {

push @multi, $acct;
}

}
exit unless @multi;
#
Print the cheaters outÊÐ account and
domain/IP addresses
#
for $acct (sort

{ $total{$b} <=> $total{$a} }
@multi) {

print "$acctÊÐ $total{$acct}:\n";
while (($ip, $num) =

each %{ $count{$acct} }) {
printf "%5d %s\n", $num, $addr;
}

}
}

Because my sites are only very infrequently attacked
(and because income loss is consequently minimal),
I run this script once a day. Were I more paranoid, I
would run it a few times a day, and enhance it to
automatically disable accounts when an obvious
intrusion had occurred.

4.2. Password cracking

Dictionary-based attacks on a web site are as time-
consuming as they are on any networked system, but
from the standpoint of the cracker, there are two
profound advantages to a web-based attack.

1) The stateless nature of the web almost
guarantees that a web server does not retain a
count of failed attempts (login, on the other
hand, maintains state information and logs
incidents when a surfeit of failed attempts occur,
in addition to breaking the TCP connection after
a small number of failures).

2) Because web servers are designed to handle
multiple simultaneous connections, a cracker
can easily launch multiple simultaneous attacks.

It is almost trivially simple to write a script which
hammers away at a server, attempting to crack a
password. Here is one such script that forks off 10
copies of itself to do the work. The script will only
attempt about 10-20 connections per second, but
that’s fast enough if you know someone’s account
name…

#!/usr/bin/perl

die "Usage: $0 URL acct\n" unless @ARGV == 2;
($url, $acct) = @ARGV;

require HTTP::Request;
require HTTP::Response;
require LWP::UserAgent;
use URI;

$ua = new LWP::UserAgent;
$url = new URI $url;
$req = new HTTP::Request 'GET', $url;
#
Read the dictionary into memory, and
figure the size of each piece
#
open (DICT, "/usr/share/dict/words");
@words = <DICT>;
$each = @words / 10;
#
Spawn 10 children, and give each of them
a piece of the dictionary.
#
FORK: for $kid (0..9) {

#
Parent forks off kids and continues,
child does the real work
#
next FORK if ($status = fork);
for $w (@words[($kid * $each) ..

($each-1 + $kid * $each)]) {
$req->authorization_basic($acct, $w);
$response = $ua->request($req);
#
401 is "authorization denied". If
you get anything else, you're in!
#
$response->code == 401 && next;
die "Kid $kid cracked it! $w\n";
}

exit;
}

0 until ($status = wait) ==ÊÐ1;
printf "Total elapsed time %d seconds\n",

timeÊÐ $^T;

4.3. Detecting password cracking

If I am going to tell you how to crack passwords on
the web, then I also must show how to detect a
cracker at work. Here is trivial Perl script which
looks for HTTP password cracking. It simply
examines a standard HTTP error log file, and tallies
the number of failed attempts to access an account.
It then reports those accounts for which greater than
30 attempts have been made (with the rationale that
any fewer number of attempts are either a surfer who
has forgotten their password, or a cracking attempt of
no strength).

#!/usr/bin/perl

$reasons = "not found|password mismatch";
while (<>) {

if (/reason: user (.*) ($reasons)/o) {
next if length($1) == 0;
$botch{$1,$2}++;
}

}

for $bad (keys %botch) {
($user, $why) = split /$;/, $bad;
if ($botch{$_} >= 30) {

print "user $user $why $botch{$_}\n";
}

}

I have not detected any intrusion attempts using this
script (credit-card fraud is more often the means used
to gain a password), but I still run this script daily,
just in case someone tries to break in.

5. DNS cache poisoning

When your web browser goes to www.foo.com,
how does it know how to get there? DNS provides
the name-to-number mapping, so that your browser
connects to the appropriate IP address. If the DNS
server can be convinced that the IP address of
www.foo.com is something other than what it
should be, then web hits can be redirected to another
site.

It turns out that it is relatively simple to do so (and
in the good-old-days of the pre-cracker Internet, it
used to be almost trivially so). Essentially, a cache
poisoning attack works like this (the details have
been simplified somewhat):

1) DNS works via UDP, to increase speed by
eliminating the startup costs of TCP connections.
When a DNS client wants to know a name-to-IP
address mapping, it sends a UDP message to a
DNS server, and awaits a UDP reply. If the
server does not have the answer it its local
cache, it recursively queries other servers for the
answer (down a very short chain from a root
server to the authoritative server for the domain).

2) Since UDP packets are connectionless and
therefore stateless (all state information must be
maintained by the programs which use them), it
is possible to send a message to a DNS server
that claims “here’s the (fraudulent) answer to
the (nonexistent) query you just sent me”. The

“answer” contains your bogus information, and
most DNS servers simply accept the answer!6

Now, why would someone want to poison a DNS
cache? Here are a couple of reasons:

1) Profit – point a popular site’s name at your IP
address, and reap the benefits. These can be in
the form of advertising income, membership
income (typically from a third site, since the
poisoning will eventually be corrected), or
bragging rights for the crackers.

2) Sabotage – point a very popular site’s name at
your competitor’s IP address, and cause a
meltdown. Imagine poisoning AOL’s DNS cache
during the Olympics to point cnnsi.com at
someone with mere T-1 connectivity. Most sites
simply cannot handle 10 million hits/day.

Unfortunately, the only defenses against DNS attacks
lie within BIND itself (and other DNS agents like
Microsoft’s DHCP) – there is little that the average
web site can do to prevent them (and in any event,
the most effective attacks are made against major
upstream providers and ISPs).

6. Bandwidth thieves

A large number sites offer free content. Some of
these sites have a huge traffic load (e.g., search
engines, stock market sites, adult sites), so the costs
of maintaining the sites is non-trivial. Altruism is
probably not the main motivation for these sites’
existence. Since the more likely culprit is monetary
gain, where is the income generated if content is
given away for free? The answer is advertising – the
more surfers who come through a site, the more ad
impressions are made, and the more money can be
made. Regardless of the payment mechanism, the
larger the volume of traffic, the more money to the
web site.

The problem (from the standpoint of a web site) is
that bandwidth costs money, but you need to have a
lot of bandwidth before you can entice high-paying
advertisers to your site. But advertisers who pay via

6 The latest versions of BIND keep track of the requests
they have sent out, and will not accept an answer from a
server unless they have actually asked a question. This is
harder to subvert, but still possible, by sending streams of
forged answers with a question-inducing query inserted in
the middle of the stream.

profit sharing don’t necessarily care if a site has high
volume, as long as they make sales.

One technique used by low-volume web sites to
increase their advertisement income is bandwidth
theft. With this technique, the HTML on the site
consists of the look-and-feel of the site, the
advertisement, and the content. The first two items
originate at the site itself, and generally do not
produce a large bandwidth load. The last item – the
content – is (typically) an image whose URL is on a
different site, being parasitized. This site is the one
that pays for the majority of the bandwidth, but it
derives no benefit (that is, the ads being displayed
do not credit the host site, but instead credit the
parasite site). Bandwidth theft is most common
when the URL of the image does not change.7

Automated defenses are possible at the cost of CPU
utilization, but they also require the assumption that
browsers will deliver accurate referrer information.
In order to prevent bandwidth theft on an automated
basis, the service for each request for an image must
check for the referrer URL. If the browser tells the
truth (one expects that it might), then a referrer
whose domain is different from the one on which the
image resides is probably a bandwidth thief, and the
request can be denied (or a replacement image can
be supplied which suggests that a theft might be
occurring).

This proactive approach is CPU intensive, since
each request requires the execution of a CGI script
(the author is unaware of any modules in the
common web servers that do this function directly).
A different, reactive approach is to maintain a
referrer log file, and simply scan (programmatically,
of course) for image files being requested by off-site
HTML pages. When theft is detected, you can either
put the thief on notice (usually a futile effort), or
change the image URL.

Another reactive method is to use the advanced
search features of the various search engines, to look
for pages which reference your sites’ images. This

7 While the notion of an unchanging URL seems correct
from a site-maintenance standpoint, it is in fact the wrong
model to use when giving away free content. If a “picture
of the day” page references today.jpg, then any other
page (on any other site) can trivially reference the same
image URL, and steal bandwidth from your site. A URL
which changes daily requires the parasite to change daily,
too – something which is beyond most bandwidth thieves.

approach is certainly sub-optimal, as it can take a
long time for search engines to index the thieves
sites (if they even permit indexing via the
robots.txt file).

The most effective deterrent against bandwidth theft
(and regrettably, the most expensive from a
bandwidth standpoint) is to simply not use static file
names. Two easy ways of accomplishing this are:

1) If the free content is relatively static (that is, if
it changes fairly infrequently), the directory
name in which it resides can be changed. This
presents a number of challenges, the first of
which is that search engines need to be
continually re-notified (or better, discouraged
from indexing the low-level directory which
contains the content). The second problem is
that the bandwidth load on the server increases
because various web caches will not contain the
newly updated file names.

2) If the content changes frequently, then reloading
(and the concomitant bandwidth load) is an
issue that already has been addressed. In this
case, it is far better to choose non-trivially-
predictable file names for the content. This
means that it is necessary to edit the HTML that
references the images (and expire the HTML
pages to reference the changed images).

Unfortunately, in addition to being time consuming
and expensive, legal recourse is of questionable
merit. When someone references your image on
their HTML page, the law is unclear on whether a
copyright violation has occurred8 – after all, the thief
is not republishing the image, you are!

7. Data theft

Another form of intrusion on the web is out-and-out
theft of content. This typically presents itself as your
images appearing on a different site (often with your
identifying marks trimmed off, and sometimes with
different marks tacked on), but can also extend itself
to complete mirroring of a site. Clearly, this is a

8 In fact, the law is having very serious trouble keeping
up with the the Internet and other electronic transmissions
as regards all aspects of information dissemination (see
Robert Reilly, “Mapping Legal Metaphors in Cyberspace:
Evolving the Underlying Paradigm”, and Keith
Kupferschmid, “Lost in Cyberspace: The Digital Demise of
the First-Sale Doctrine”, J. Computer & Information Law,
vol XVI 1998)

violation of copyright law, but how can you detect
it? Surfing the web for your imagery requires you to
look at the assorted images, and some companies
have people whose job is nothing more than to surf
for stolen images.

Of course it would be nice to automate the process,
and some proponents of the process have proposed
the “watermarking” of images. The method here is
to invisibly encode identifying information in the
images. The simplest mechanism is to use the
comment field in the GIF or JPG image. Another
method is to encode repeating serial numbers in the
low-order bits of the image pixels (single bit
differences are indiscernible to the human eye, but
could easily be read by a program). Other, more
sophisticated techniques are also proposed, and are
beyond the scope of this paper.

The problem with all of these methods is that images
are just data in a standardized format, and data can
be manipulated. Copyrights can be trimmed off or
blotted out, comments can be altered, and marks
created by the watermarking system that this author
experimented with were erased by simply re-saving
the image with a different image viewer (without
even trying to remove the watermark).

An alternative approach is to place visible markers
on images. Many sites put a “banner bar” at the top
or bottom of the picture, but these can be readily
trimmed off. Other sites emboss the images with
their site name, but this noticeably degrades image
quality (and it is images that your paying customers
are looking for). A third approach puts a visible
marker (words, a logo, a copyright notice, or some
combination) in a “non-intrusive” location on the
picture. In this case, a delicate balance needs to be
maintained so that the marker is not so big that it
pollutes the image and not so small that it can be
airbrushed out. The marker also needs to be placed
in such a way that trimming it out of the image
would degrade the image content to an unacceptable
degree.

The best solution is probably to use a combination of
GIF/JPG comment fields, combined with a marker
directly in the picture. But even with this solution, a
human generally needs to be employed to simply
look for images that have been purloined. A low
tech solution, but an effective one.

8. Click-bots

A lot of money can be made on the web by creating
free-content sites that sell advertising. This model
has worked well for search engines, stock-market
sites, Internet malls, and of course, adult sites.
Advertisers typically pay sites by one of three
mechanisms:

1) Per impression – that is, the number of times an
ad is presented to surfers. Most of the search
engines use this mechanism, since it is the most
favorable to the site carrying the ads (payment is
directly related to both the surfer traffic through
the site and the bandwidth used by the site), and
it is also the most easily tracked by the site
carrying the ads.

2) Per click – that is, every time a surfer clicks on
an ad, revenue is generated. This mechanism is
used by some stock-market sites and also by
adult sites. The payment rate is related to both
the traffic through the site and the effectiveness
of the ad, so in some ways, this payment
mechanism is fairest to both parties. Tracking
can be done by both parties, although the site
displaying the ads can expect to see slightly
higher click-through percentages than the
advertiser (due to aborted connections, time-
outs, etc.)

3) Per sale – that is, for each click-through that
results in a sale a percentage of the income is
paid. This mechanism is fairest to the advertiser
(since ads placed in an unfavorable location do
not make sales, but also do not cost the
advertiser), but sales tracking can only be done
on the seller site.

To some degree, a lot of advertising on the web
needs to be based on mutual trust. In the adult
marketplace, there is little trust (and often little
technical savvy on the part of web site maintainers),
so per-impression advertising is rarely seen.
Although per-sale advertising is rapidly becoming the
payment of choice, per-click advertising is still
prevalent (often the payouts are scaled to the
conversion rate9).

The problem with click-through advertising is that it
can be trivially spoofed. The following simple Perl

9 The fraction of sales over the number of clicks.

script fakes a click on a counting web page on the
pigeon site10 every 8 seconds, on average:

#!/usr/bin/perl

use HTTP::Request;
use LWP::UserAgent;

$ua = new LWP::UserAgent;
$ua->agent("Mozilla/3.01");
$req = new HTTP::Request(GET =>

"http://pigeon.com/count/143");

while (1) {
 $response = $ua->request($req);
 sleep int rand 16;
 }

There are a number of defenses against this blatant
form of spamming. The most prevalent one is the
counting of so-called “uniques”. Most web sites use
proprietary algorithms to distinguish unique hits, and
do not publish their techniques. This is ostensibly so
that spammers cannot circumvent whatever checks
are in place, but most likely it is to hide the crudity
of the algorithms.

In general, most sites simply count one hit per IP
address in a set time period (3-6 hours is a
reasonable guess). While this certainly eliminates
spammers, it also fails to count almost all legitimate
hits from proxy servers in place at AOL,
Compuserve, etc.

To circumvent unique-checking, sophisticated
spammers can use the FTP indirection attack. This
attack takes advantage of the fact that “classic” FTP
connections use the control connection to specify a
destination IP address and port for the data
connection. In practice, the data IP address should
be the same as the originating control connection,
but the protocol can be spoofed and a third-party
address can be given (newer FTP servers prevent this
type of attack, but they are by no means prevalent).
With this attack, an FTP server can be used as a
proxy for HTTP (or other) requests, and an attacker
with a specialized FTP client can use a large
collection of FTP servers to generate what appears to
be numerous non-unique HTTP click-throughs.

If this type of attack is used, an automated defense is
difficult to implement.11 In general, human vigilance

10 A “pigeon” is a mark, a stooge, a patsy, or more
simply put, the target of a scam.

11 I am not providing an example of a script which

is the only way guard against them. Periodic checks
need to be made of the purported source of the click-
throughs, and spammers can often betray themselves
with their own cleverness. Many web sites feature
hit counters. These counters are often provided by
third-party web sites, which also rank sites by the
number of hits they generate per day, and thus
provide a popularity rating of the site (the web
counter sites are free, and also make their money
through advertising).

Since most ads generate a known click-through rate
(depending on the ad itself and the other information
on the page), the web counters can be correlated
with the click-through rate to detect obvious
spamming. If the frequency of click-throughs is too
high, the most likely culprit is fraud.

9. Banner hijacking

Depending on site content and the advertisement
itself, ads typically generate between a 1-2% click-
through rate on search engines to a 5-15% click-
through rate on adult sites. This disparity is due to
the fact that surfers on a search engine are looking
for information content (that is, the pages the search-
engine has located, and not the possibly unrelated
ads), while adult-site surfers have learned that
numerous free images can be seen by simply
clicking through ad after ad. The more successful
ads are, of course, worthy of imitating. Or
plagiarizing. Or out-and-out copying.

Some sites actually use their competitors’ banners to
advertise their own sites. Alas, there is very little
that can be done to detect this so-called banner
hijacking, because not only do you have to look for
your banners on other’s pages (which is where they
belong, in order to advertise your site), you have to
ascertain whether or not the banner’s click-through
URL points to your site (this is not always obvious,
especially if banner rotation software12 is in use).
One way of detecting your banners is through the
aforementioned watermarking, since not many sites
are likely to edit the banner, unless it contains an

performs this type of attack, precisely because guarding
against it is so difficult.

12 Some sites have static ads (ads which are only
changed by editing the enclosing HTML), while others use
ad rotation software (working in conjunction with SSI,
Javascript, or Active Server Pages) for ads which can
change based on advertiser-defined constraints, including
having a different ad load each time a page request is
made).

image of a URL. Another strategy involves looking
for banners with dimensions and byte counts similar
to your own, then parsing the HTML of such
candidates to determine whether or not your banner
is being used to advertise some other site.

Fortunately, banner hijacking is relatively rare
(people usually choose to steal content, instead). In
cases where it exists, though, manual searching is
usually the only way to find it.

10. Meta-tag Hijacking

If you have a site that you want to publicize, what is
the fastest way to do it for a minimal cost? Banner
ads have a limited click-through rate (and can be
expensive), ads in print, TV, and radio have a long
lead time and a prohibitive cost (both in production
and display), and link trades and link circles are only
minimally useful. Getting listed in the search
engines is really the best way to get noticed. But
with between 40 and 100 million pages catalogued in
most of the major search engines, how do you get
listed near the top?

There are a number of sites which will automatically
examine your pages and suggest the most appropriate
keywords, but the best way to get good placement is
to copy the META tags13 of the top-listed site! If it
was good enough to put them at the top of the list, it
will do the same for your site.

Depending on the keywords and phrases used, there
may be nothing at all illegal with meta-tag
hijacking, and there is nothing you can do to prevent
someone from using your well-thought-out keywords.
Only where copyrighted names are used is there any
recourse, and your pursuit of hijackers must be
aggressive, or you can lose your copyright
protection.14 But if your choice of keywords is
merely clever, there is not much you can do to

13 In the <HEAD> section of pages indexed by many
search engines, the tags <META NAME=“description”…>
and <META NAME=“keywords”…> give the engines the
information on how to index the page. This places
indexing control in the hands of the web author, instead of
a heuristic in the indexing engine.

14 In a 1997 ruling, Playboy Enterprises successfully
sued a number of sites which were fraudulently using the
word “Playboy” in their meta tags to draw in surfers. But
in 1998, another suit ruled that since Playboy had awarded
the title “Playboy Playmate of the Year” to one of its
models, that model was allowed to use the term in her
site’s meta tags.

prevent your meta tags from being hijacked
(although if you copyright the description, that can
be protected in court). But unless you’re near the top
of the list, there also is not much point in searching
out hijackers.

But if you’re at the top of the list, how can you
determine when your meta tags have been hijacked?
By using essentially the same technique used by the
hijackers – surf the search engines, and look for sites
that appear near yours. Examine their meta tags, and
see if they resemble (or are copies of) yours. This
process can be automated, but the script is of
sufficient complexity that it is beyond the scope of
this paper.

11. Search Engine Misdirection

If you don’t want to blatantly purloin someone else’s
meta tags, how do you get a lot of surfers to visit
your site? The answer is simple: lie to the search
engines.

My favorite example of this occurred when the first
wave of public interest in Viagra™ was in full swell.
Some industrious web sites simply placed a few
informative paragraphs about the drug on their pages
(sometimes in a tiny point size), and resubmitted
them to the search engines. Many was the hapless
surfer who was lured into an adult-oriented site while
researching information on the drug.

Another technique is for a site to make a comparison
between their product and their competitor’s, and list
that page on the search engines. In this way, no
matter which product the surfer is looking for, they
will find the misdirecting site’s pages (and more hits
mean the potential for more sales).

Unfortunately, there is nothing at all that can be
done to prevent this type of attack (other than a ban
by the search engines). The only defense is the ever-
useful advice of caveat emptor. It is up to the surfers
not to fall for the misleading ads.

12. Frame spoofing

An interesting vulnerability in frames enables the
author of a nefarious web site or email message to
“spoof” information presented by another web site.15

15 See
http://www.securexpert.com/framespoof/ for
complete details and a working example.

This vulnerability exists in all the popular web
browsers that support frames, and is exploitable both
with and without Javascript being enabled.

Almost every site using frames is vulnerable to this
form of attack, which enables an attacker to have
their information represent itself as having originated
at your web site. In this way, an attacker can steal
credit card information, disseminate misleading or
damaging information, steal passwords, etc.

The vulnerability occurs simply because Netscape
and MSIE fail to protect the frames[] array from
cross-domain write access. This enables one web
site (or an HTML email message) to replace a frame
displayed by another site with content that is under
the attacker's control.

All that is required for a web site to exploit the
vulnerability is either one of the following:

1) The attacker has opened the victim site's
window –either by sending HTML email, or from
a scripted web page (required for the Javascript-
based variant of the attack).

2) The attacker knows the name of a frame in the
victim site (for the HTML-based variant).

Detecting this type of intrusion from a web site is
well-nigh impossible, since the attack is done on the
browser, and not on the web site. Using the search
engines to hunt for links to your frames is one
defense, but a weak one (especially since attacks
can be HTML email based). Checking referring
URLs is another reactive test, but it is time
consuming and extremely labor intensive.

Protecting against this form of attack is done in a
twofold manner, since both surfers and sites can
guard against it. For surfers, not having more than
one window open at a time is the surest defense
(since exploiting the bug requires a window to attack
and a window to attack from).

For web sites, SecureXpert offers solutions only to
their paying clients, so I am unable to comment on
them. However, eliminating frames from your HTML
is certainly one defense, albeit a draconian one.

13. Revenge of the Nerds

It is worth noting that surfers are not the only ones
guilty of hacking and spamming. Web sites are often

just as guilty of the same offenses. Many of the site-
induced intrusions involve Javascript, so preventing
the attacks is as simple as disabling Javascript (a
technique which regrettably also compromises some
sites’’ functionality). Some examples of these
attacks are shown below:

13.1. The surfer-motel

Surfer’s check in, but they can’t check out. This is
an annoying technique that many web sites use to
spam surfers and entice them to spend money by
inundating them with new windows. Javascript is
used to open a new window whenever the surfer
attempts to leave the site.

Typically, one company will have dozens (or
hundreds) of web sites, so when the surfer attempts
to leave one web site, a new window pops up for one
of the other sites. This is done using the onUnload
method in Javascript, which is invoked whenever a
window or frame is replaced with another window (or
when the window is closed). So one site would have
code that looks like this, which references another
site:

<html>
<head><title>One Site</title></head>
<body onUnload="

window.open('http://other.com', 'S2')">

This simple example can be extended to create “the
window that would not die” (in this case, the
Javascript should be placed in a file named
rude.html, so that the URL points to itself).16

<html>
<head><title>Rudeness!</title></head>
<body onUnload="
window.open('http://www.rude.com/rude.html',

'_blank')">
<h1>Try and get rid of me!</h1>
</html>

As long as Javascript is enabled, any time the
offending window is unloaded or closed, it reappears.
On the OS/2 version of Netscape 3.5, if the surfer
tried the radical approach of killing the browser (with
no less powerful an incantation than CTRL-ALT-
DEL), it would immediately restart itself and re-open
this window!

16 An absolute URL (including the site name) is
required, otherwise Netscape outsmarts the malicious code.

13.2. URL masking

This is a fairly benign attack using Javascript,
wherein the surfer is persuaded to go to a site other
than what they intend. Ordinarily, the URL of a
hyperlink is displayed in the bottom left of the
browser window when the mouse is moved over the
link. Some sites obscure this, or even intentionally
mislead the surfer by using Javascript. Here is a
simple example where a link advertises one site, but
takes the surfer to a competitor.

<A HREF="http://www.pepsi.com/uncola.html"
onMouseOver=

"window.status='http://www.coke.com';
return true"

onMouseOut=
"window.status='';
return true">It's The Real Thing

In this example, when the surfer moves the mouse
over the hyperlink, the browser indicates that it will
go to one company, when in fact it is the competitor
that is visited when the link is traversed. Combining
this attack with frame spoofing can create a fraud
that is very difficult to detect by the average surfer.

13.3. Credit-card Churning

Unscrupulous web sites can steal from unsuspecting
surfers in a number of ways. One of the most
prevalent forms of attack is with recurring billing. A
credit card is required (as a means of proving the
surfer is the age of majority) for a “free” one-week
membership, but the fine print states that the card
will be re-billed at monthly intervals if the
membership is not canceled. Many surfers fail to
read the fine-print, and so are re-billed each month
for membership in a site they have long forgotten
about. Another technique is to place the “cancel my
membership” page in a hard-to-locate place.

Of course, some sites ask for credit cards with no
intention of giving a membership, but only to steal
credit-card information. Fortunately, this virulent
attack is rare, but it is all too easy to make. Surfer
awareness is the only defense – only deal with
companies you know, or who use credit-card
verification systems that you know. And as obvious
as it sounds, you should always examine your credit
card bills for mysterious charges.

14. Conclusions

Although the Internet started out as a nice, safe
place to travel, we must realize that with all the gold
to be won, the day of the Information
Superhighwayman is upon us. Unless we are careful
and ever-watchful, he (or she) will come riding –
riding, riding – up to our electronic front door.17

Some attacks, such as those upon surfers using
Javascript, are indirectly the result of well-
intentioned but security-unaware browser developers,
and the exploitation of their security holes by
webmasters. With no oversight of proprietary
browser develpment, there is little that the average
surfer can do to protect themselves. Other attacks,
such as those involving data theft, password cracking
and password posting, are the actions of malicious
surfers or competitors. These attacks can be
defended against with proactive or reactive detection
systems.

Whatever the origins of the attacks, awareness and
constant (potentially automated) vigilance are the
only means to defeating them. And since the law
appears to be not a idiot, but merely a long way from
catching up from the recent rapid advances in
technology, it is up to the netizens themselves (and
most especially, the potential targets of attacks), to
provide their own security perimeters.

Hopefully this brief examination of some of the
common attacks used on the Web will raise the
reader’s awareness enough to effect a secure
perimeter.

17 With apologies to Alfred Noyes (1880-1958) author of
The Highwayman

