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Abstract

After summarizing the EMERALD architecture and
the evolutionary process from which EMERALD
has evolved, this paper focuses on our experience
to date in designing, implementing, and applying
EMERALD to various types of anomalies and mis-
use. The discussion addresses the fundamental im-
portance of good software engineering practice and
the importance of the system architecture — in at-
taining detectability, interoperability, general appli-
cability, and future evolvability. It also considers the
importance of correlation among distributed and hi-
erarchical instances of EMERALD, and needs for
additional detection and analysis components.

1. Introduction

EMERALD (Event Monitoring Enabling Responses
to Anomalous Live Disturbances) [6, 8, 9] is an en-
vironment for anomaly and misuse detection and
subsequent analysis of the behavior of systems and
networks. EMERALD is being developed under
DARPA/ITO Contract number F30602-96-C-0294
and applied under DARPA/ISO Contract number
F30602-98-C-0059. EMERALD has farsighted goals
for real-time detection, analysis, and response for a
broad range of threats other than just security.

Anomaly detection involves the recognition of devi-
ations from expected normal behavior, whereas mis-
use detection involves the detection of various types
of misuse. The term “intrusion detection” is of-
ten used to encompass both, but unfortunately sug-
gests only the detection of intrusions rather than the
broader scope of EMERALD.

2. EMERALD

EMERALD targets both external and internal
threat agents that attempt to misuse system or net-
work resources. It is an advanced highly software-
engineered environment that combines signature-
based and statistical analysis components with a re-
solver that interprets analysis results, all of which
can be used iteratively and hierarchically. Its mod-
ules are designed to be independently useful, dynam-
ically deployable, easily configurable, reusable, and
broadly interoperable. Its design scales well to very
large enterprises. The objectives include achieving
innovative analytic abilities, rapid integration into
current network environments, and much greater
flexibility of surveillance whenever network config-
urations change.

EMERALD employs a building-block architectural
strategy using independently tunable distributed
surveillance monitors that can detect and respond
to malicious activity on local targets, and can in-
teroperate to form an analysis hierarchy. The basic
architectural structure is shown in Figure 1. The
figure shows the three main types of existing anal-
ysis units (profiler engines, signature engines, and
resolver) surrounding the target-specific resource ob-
jects. It also shows the possible integration of third-
party modules, including inputs derived from other
sources, and outputs sent to other analysis platforms
or administrators and emergency response centers.
This architecture is explained in the following text.

A key aspect of this approach is the introduction
of EMERALD monitors. An EMERALD monitor
is dynamically deployed within an administrative
domain to provide localized real-time analysis of
infrastructure (e.g., routers or gateways) and ser-
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Figure 1: The Generic EMERALD Monitor Architecture

vice (privileged subsystems with network interfaces).
An EMERALD monitor may interact with its envi-
ronment passively (reading activity logs or network
packets) or actively (via probing that supplements
normal event gathering). As monitors produce ana-
lytical results, they are able to disseminate these re-
sults asynchronously to other client monitors. Client
monitors may operate at the domain layer, corre-
lating results from service-layer monitors, or at the
enterprise layer, correlating results produced across
domains.

Under the EMERALD framework, a layered analysis
hierarchy may be formed to support the recognition
of more global threats to interdomain connectivity,
including coordinated attempts to infiltrate or de-
stroy connectivity across an enterprise.

Equally important, EMERALD does not require the
adoption of this analysis hierarchy. Monitors them-
selves stand alone as self-contained analysis mod-
ules, with a well-defined interface for sharing and
receiving event data and analytical results among
other third-party security services. An EMERALD
monitor is capable of performing both signature
analysis and statistical profile-based anomaly detec-
tion on a target event stream. In addition, each

monitor includes an instance of the EMERALD re-
solver, a countermeasure decision engine capable of
fusing the alerts from its associated analysis engines
and invoking response handlers to counter malicious
activity. The statistical subsystem tracks subject
activity via one of four types of statistical variables
called measures: categorical (e.g., discrete types),
continuous (e.g., numerical quantities), traffic inten-
sity (e.g., volume over time), and event distribu-
tion (e.g., a meta-measure of other measures) [9].
EMERALD’s signature analysis subsystem employs
a variant of the P-BEST (Production-Based Expert
System Tool) expert system [6] that allows adminis-
trators to instantiate a rule set customized to detect
known “problem activity” occurring on the analysis
target. Results from both the statistical and sig-
nature engines are then forwarded to the monitor’s
resolver — which acts as the coordinator of the moni-
tor’s external reporting system and the implementor
of the monitor’s response policy.

Fundamental to EMERALD’s design is the abstrac-
tion of analysis semantics from the monitor’s code
base. Under the EMERALD monitor architecture,
all analysis-target-specific information is contained
within each resource object, specifying items from
a pluggable configuration library. The resource ob-



ject encapsulates all the analysis semantics neces-
sary to instantiate a single service monitor, which
can then be distributed to an appropriate observa-
tion point in the network. Resource-object elements
customize the monitor for the analysis target, con-
taining data and methods, such as the event collec-
tion methods, analytical module parameters, valid
response methods, response policy, and subscription
list of external modules with which the monitor ex-
changes alarm information. This enables a spectrum
of configurations from lightweight distributed moni-
tors to heavy-duty centralized analysis platforms.

In a given environment, service monitors may be in-
dependently distributed to analyze the activity of
multiple network services (e.g., FTP, SMTP, HTTP)
or network element (router, firewall). Resource ob-
jects are being developed for each analysis target. As
each EMERALD monitor is deployed to its target, it
is instantiated with an appropriate resource object
(e.g., an FTP resource object for FTP monitoring,
and a BSM resource object for BSM Solaris kernel
analysis). The monitor code base itself is analysis
target-independent. As EMERALD monitors are re-
deployed from one target to another, the only thing
that is modified is the content of the resource object.

See the paper by Lindqvist and Porras [6] for dis-
cussion of the analysis of FTP (which currently ex-
ists for SunOS, FreeBSD, and Linux) and BSM (on
Solaris). In particular, that paper gives specific ex-
amples of rules for failed authentication, buffer over-
flows, and SYN flooding attacks.

Resource objects lend themselves to the key project
objectives of reusability and fast integration to new
environments. The project is developing a library
populated with resource objects that have been built
to analyze various service and network elements. In-
stallers of EMERALD will be given our monitor code
base, which they do not have to touch. They can
then download appropriate resource objects associ-
ated with their analysis targets, modify them as de-
sired, and instantiate the monitors with the down-
loaded resource objects.

The project is also working toward new techniques in
alarm correlation and management of analytic ser-
vices. The concept of composable surveillance will
allow EMERALD to aggregate analyses from inde-
pendent monitors in an effort to isolate commonali-
ties or trends in alarm sequences that may indicate
a more global threat. Such aggregate analyses are
classified under four general categories: commonal-
ity detection, multiperspective reinforcement, alarm
interrelationships, and sequential trends.

Briefly, commonality detection involves the search
for common alarm indicators produced across in-
dependent event analyses. In such cases, the re-
sults from one monitor’s analyses may occur un-
der a threshold that warrants individual response,
but in combination with results from other moni-
tors may warrant a global response. This approach
can address low-rate distributed attacks and coop-
erative attacks, as well as widespread contamination
effects. Multiperspective analysis refers to efforts to
independently analyze the same target from multi-
ple perspectives (e.g., an analysis of a Web server’s
audit logs in conjunction with Web network traf-
fic). Alarm interelationships refer to EMERALD’s
ability to have a monitor model an interrelationship
(cause and effect) between the occurrence of alarms
across independent analysis targets. For example,
an alarm regarding activity observed on one host or
domain may give rise to a warning indicator for a dif-
ferent threat against a second host or domain. Last,
sequential trends in alarms seek to detect patterns
in alarms raised within or across domains. These
patterns of aggressive activity may warrant a more
global response to counteract than can be achieved
by a local service monitor.

The EMERALD project represents an effort to com-
bine research from distributed high-volume event
correlation with over a decade of intrusion-detection
research and engineering experience. It represents
a comprehensive attempt to develop an architecture
that inherits well-developed analytical techniques for
detecting intrusions, and casts them in a framework
that is highly reusable, interoperable, and scalable in
large network infrastructures. Its inherent generality
and flexibility in terms of what is being monitored
and how the analytical tools can be customized for
the task suggest that EMERALD can be readily ex-
tended for monitoring other forms of malicious and
nonmalicious “problem activities” within a variety
of closed and networked environments.

3. Experience Gained

This section summarizes our experience in the
EMERALD development thus far.

Earlier Experience

EMERALD has drawn on our earlier experience in
developing and using IDES (Intrusion Detection Ex-
pert System [7]) and its successor NIDES (Next-
Generation IDES [1, 2, 3, 4]. Particularly for those



people who are not aware of our earlier work, we
summarize a few conclusions.

e From IDES, we attained considerable flexibil-
ity and runtime efficiency in the use of P-
BEST [7]), which we have now adapted into
EMERALD’s pluggable analysis-engine frame-
work as a self-sufficient component. The P-
BEST approach proved to be very useful, and
rules are relatively easy to write. P-BEST was
adapted by Alan Whitehurst from its previous
incarnation in MIDAS [10]. IDES also gave us
the second generation of our statistical algo-
rithms, begun in 1983 in an earlier project [5].

e From the NIDES development [1], several obser-
vations influenced the EMERALD effort. (1)
Much of the available audit data (e.g., from
C2 Unix and BSM) was not naturally well
suited for our analytical purposes, and differ-
ent sources of data would have been desirable.
Greater abstraction would have been useful. (2)
Although we did experiment with some higher-
level audit data (from database management
systems in relatively closed environments), at-
tempting to detect misuse was less fruitful be-
cause the security policies of the DBMSs gen-
erally permitted what was closer to acceptable
behavior. (3) We recognized that the NIDES
statistical detection system as then configured
would not scale well to distributed and net-
worked environments, for two reasons. First,
the measures needed to be treated in their en-
tirety, rather than subsetted — as would be de-
sirable for lightweight instances. Second, the
results were not in a form that could be used
recursively at a higher-layer instance. (4) We
recognized the importance of the administra-
tor interface, and observed that its complexities
are unavoidable if flexibility in detection and re-
sponse is required. However, we initially spent
too much effort on developing our own GUI
tools, until we decided to rely on some newly
developed generic tools. In retrospect, we be-
lieve we would have progressed faster if we had
had more emphasis on software engineering and
on in-house applications.

e From the NIDES Safeguard effort [2], we ob-
served that profiling functionality proved to be
more effective than profiling individual users.
That approach resulted in far fewer profiles,
each of which tended to be much more stable.
The resulting false-positive and false-negative
rates were reduced considerably. We concluded

that statistical analyses could be very effective
in dealing with systems and subsystems such as
servers and routers. (As a consequence, EMER-
ALD subsequently broadened the statistics al-
gorithms to improve handling of network pro-
tocols, by having a master profile of client us-
age against which a single service can be com-
pared. For example, anonymous FTP sessions
can simultaneously be profiled against the mas-
ter profile for anonymous sessions.)

These observations have had a significant impact
on the EMERALD architecture and its implemen-
tation, particularly in moving to a distributed and
networked target environment.

EMERALD Experience

The underlying generic analysis-engine infrastruc-
ture uniformly wraps the signature analysis, sta-
tistical engine, resolver, and any future engines we
might wish to integrate. The infrastructure provides
the common EMERALD API, event-queue man-
agement, error-reporting services, secondary stor-
age management (primarily for the statistical com-
ponent), and internal configuration control. The
statistical and P-BEST components are integrated
as libraries. The infrastructure was assembled first
for the EMERALD statistics component (estat), but
proved its generality when we attempt to integrate
P-BEST as the EMERALD expert system (eXpert).
The integration of P-BEST inference engines re-
quired some linkage code to bind with the underly-
ing EMERALD libraries, and is now automatically
generated as part of the compilation process.

After more than two years developing EMERALD,
our experience thus far is summarized as follows.

e Generality of approach. We have attempted to
solve some difficult problems rather generally,
and have typically avoided optimizing our ap-
proach to any domain-specific assumptions. In
particular, the decoupling of generic and target-
specific concepts simplifies reusability of compo-
nents and extensibility, and enhances integra-
tion with other data sources, analysis engines,
and response capabilities. The hierarchically
iterative nature permits analyses with broader
scope across networks and distributed systems.
Although the advantages of such a farsighted
approach may not be evident until EMERALD
is more widely used and extended to new ap-
plication areas, we firmly believe that this ap-



proach can be very instructive to us and to other
groups, from the perspective of research and de-
velopment potential — and can have major long-
term advantages. (Platform-specific optimiza-
tions are of course possible, if they are deemed
necessary.)

Software engineering. =~ We believe that our
strong emphasis on good software engineering
practice in EMERALD has already had sub-
stantial payoffs, particularly in enabling us to
rapidly incorporate different analytic engines
into the generic framework. (The modular-
ization and integration of the P-BEST expert
system component is discussed below.) This
emphasis clearly improves the general evolv-
ability of the system, and also has signifi-
cant benefits with respect to interoperability
— within EMERALD, with independently de-
veloped analysis engines, with analysis data
from arbitrary sources, and in terms of the
distribution of analysis results. The software-
engineering emphasis also helps facilitate the
iterative use of EMERALD analytic engines
by making the layered instances of the sys-
tem symmetric. These benefits remain to
be demonstrated explicitly with extensive and
well-documented experiments, but our expec-
tations are very high. A fuller justification of
the extent to which this software engineering
approach is actually paying off requires a more
detailed description of the architecture, which is
beyond the scope of this workshop paper; how-
ever, such a description is high on our priority
list for the future.

Scope of applicability. We believe that our at-
tention to software engineering simplifies the
broadening of EMERALD’s domains of applica-
bility — for example, detecting, analyzing, and
responding to potential threats to survivability,
reliability, fault tolerance, and network man-
agement stability. There is nothing intrinsic in
the EMERALD architecture and implementa-
tion that would limit its applicability. The ap-
plication to requirements other than security is
basically a matter of writing or modifying the
relevant resource objects and configuring the
system appropriately, and is not expected to
require major changes to the existing analysis
infrastructure.

Relative merits of various paradigms. It
should be no surprise to those in the intrusion-
detection community that signature-based anal-

ysis is good at detecting and identifying well-
defined known scenarios, but very limited in
detecting hitherto unknown attacks (except for
those that happen to trigger existing rules
serendipitously). On the other hand, statistical
profile-based analysis can be effective in detect-
ing unknown attacks and providing early warn-
ings on strangely deviant behaviors; however,
the statistical approach does not naturally con-
tribute to an automated identification and di-
agnosis of the nature of an attack or other type
of deviation that it has never identified before.
Although inferences can be drawn about the
nature of an anomaly, based on the statistical
measures that were triggered, further reasoning
is typically necessary to identify the nature of
the anomaly — for example, is it an attack in
progress, or a serious threat to system surviv-
ability.

Precisely because it is aimed at detecting poten-
tially unforeseen threats rather than very spe-
cific scenarios that can be easily detected by
signature-based analyses, the statistical compo-
nent can be expected to turn up false positives.
In the EMERALD framework, this is not nec-
essarily a problem. We believe it is much more
effective for the resolver to discard statistical
anomalies that it deems nonserious rather than
try to reduce the false positives in the statistical
component itself (which requires greater knowl-
edge of the potential threats — which is what
can otherwise be avoided). Furthermore, once
new attacks and threats are identified, it is de-
sirable to add new rules to the expert-system
rule base.

Overall, we believe that each type of analysis
(such as the expert system, the statistical com-
ponent, the resolver, or any additional analysis
engines) will have its own areas of greatest ef-
fectiveness, but that no one paradigm can cover
all types of threats. Therefore we endorse a plu-
ralistic approach. Inference and reasoning en-
gines, Bayesian analysis, and other paradigms
may also be applicable to detection, identifica-
tion, and resolution of the nature of anomalies
and attacks.

Local, hierarchical, and distributed correlation.
One of the most far-reaching observations re-
lates to the importance of being able to corre-
late local results from different target platforms
at the same or different layers of abstraction,
and also to correlate results relating to differ-
ent aspects of system behavior. The inherent



layered iterative nature of the EMERALD ar-
chitecture is significant in this respect, because
the same analytic component can be used at dif-
ferent layers of abstraction. We are just now be-
ginning to conduct some experiments to demon-
strate the power of this approach. In so doing,
we are extending the existing EMERALD re-
solver to interpret the results of different ana-
lytic engines and to recommend responses ap-
propriate to the specific layer of abstraction.
Further analytic engines may also be required
at various layers of abstraction, such as some
reasoning tools.

Importance of further research, prototype de-
velopment, and experimentation. EMERALD
continues to explore advanced concepts, as did
IDES and NIDES. Although most of the nec-
essary analysis infrastructure is now in place,
R&D advances are still required for EMERALD
relating to inference necessary to enhance cor-
relation in the analysis of and response to coor-
dinated attacks and interdependent anomalies
in distributed environments, and in generaliza-
tions of applicability beyond security. These are
ongoing efforts.

Interoperability. The Common Intrusion De-
tection Format (CIDF) and the ongoing IETF
standardization effort are important. Both are
expected to increase the interoperability within
and among different analysis and response sys-
tems. EMERALD is very much in line with
these efforts, and compatibility is not expected
to be a problem. CIDF interface definitions are
based on an architectural decomposition that is
aligned closely to that of EMERALD’s moni-
tor design. In particular, EMERALD’s target-
specific event-generation components are equiv-
alent in function to CIDF E-boxes; EMER-
ALD’s statistical and signature analysis engines
are equivalent in function to CIDF A-boxes;
EMERALD’s resolver is equivalent in function
to a CIDF R-box. In hierarchical composition,
an EMERALD service layer monitor is capable
of passing alerts to a domain monitor. The ser-
vice layer monitor can operate as a CIDF E-box,
and the domain monitor can operate as a CIDF
A-box. CIDF working documents are available
online (seclab.csl.ucdavis.edu/cidf).

EMERALD’s Expert System

With respect specifically to the integration of P-
BEST into EMERALD [6], our experience has
strongly reinforced our conceptual framework.

o The software engineering quality of the EMER-
ALD monitor architecture was put to a test
when a summer visitor previously unfamiliar
with the system joined us to integrate the sig-
nature analysis engine into the generic moni-
tor framework. The statistical anomaly detec-
tion engine had been developed in concert with
the EMERALD API, and the NIDES expert-
system-based signature engine was the first ad-
ditional component to use the API. The revision
and integration procedure went very rapidly
(about a man-week), and minor problems that
were discovered and solved were due to con-
straints in the expert-system tool rather than in
the EMERALD API. This supports our claim
that the EMERALD API is well suited for inte-
gration of various kinds of third-party modules
into the monitor architecture. Although this is
not an exciting gotcha, it was important to the
development effort.

e The data-driven nature of the EMERALD mon-
itors makes the intermonitor and intramonitor
message-passing a central function of the API.
The programmer is provided with a set of ab-
stract data types, including a set of methods to
handle messages and fields within messages. An
example of a powerful feature of the EMERALD
message format is the possibility of defining a
message field as an array of message fields. This
allows the programmer to effectively encapsu-
late one EMERALD message inside another. In
the signature-analysis engine, this capability is
used to include the original event record(s) in
every alert message sent to the resolver, in ad-
dition to the information provided by the trig-
gered rules. This also allows a hierarchy of anal-
ysis units (including resolvers) to be able to pass
along any or all information produced earlier.

e The generality of the API with respect to
the abstract data types is also reflected by
the ease with which we were able to write a
code-generation utility for the interface code
that connects the expert system to the moni-
tor. This utility is used when redirecting the
signature-analysis engine to a completely new
event stream, using the information in the re-
source object to fit the engine to the analysis



target. The purpose of the utility is to relieve
the creator of a resource object from the inner
workings of the monitor. The API design made
it easy to isolate the target-dependent code and
let it be machine-generated.

4. Conclusions

Overall, the progress to date in developing and using
EMERALD has been very promising. However, con-
siderable further effort is needed to demonstrate the
effectiveness of the software engineering approach
and the power of the analytic capabilities.

e The software engineering practice used in
EMERALD’s modular design and the attention
devoted to well-defined interfaces and informa-
tion hiding in the sense of David Parnas have
proven very valuable in EMERALD’s develop-
ment thus far, and will be even more valuable to
the ability to interoperate with components de-
veloped elsewhere, to its long-term evolvability,
and to subsequent generalizations of EMER-
ALD beyond security applications to address
human safety, enterprise survivability, reliabil-
ity, real-time performance, and other critical at-
tributes.

e Hierarchical and distributed correlation is nec-
essary in analyzing highly distributed environ-
ments, because of the inability to recognize
global patterns from isolated local events. How-
ever, additional analysis techniques are likely to
be required.

e The iterative nature of EMERALD instantia-
tions will enable lightweight detection compo-
nents to specialize in particular areas of con-
cern, for different event spaces and at different
layers of abstraction.

A few general conclusions are also noted in an at-
tempt to put the EMERALD experience in perspec-
tive.

e Commercial intrusion-detection systems have
concentrated mostly on string matching and
other forms of signature identification to detect
classes of outsider attacks. To date, primarily
the easy parts of the problem have been ad-
dressed by the commercial community.

e Research advances in the community at large
seem to have slowed, along with the increased

emphasis on detecting known types of outsider
attacks. Detecting, identifying, and respond-
ing to hitherto unknown attacks and anoma-
lies remain as very challenging problems, in-
cluding highly coordinated attacks, subtle forms
of misuse by insiders, and anomalous network
behavior resulting from malfunctions and out-
ages. Providing global rather than local analy-
sis is still a very important research area that
is relatively uncharted. Generalizations beyond
known security attacks are also challenging.

Further Information

See http://www.csl.sri.com/intrusion.html for
background and online versions of papers and re-
ports [2, 4, 6, 8, 9]. See also Web pages for Porras
and Neumann (www.csl.sri.com/users/porras/
and www.csl.sri.com/users/neumann/).
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