USENIX

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

Proceedings of the Workshop on Intrusion Detection
and Network Monitoring

Santa Clara, California, USA, April 9-12, 1999

On Preventing Intrusions
by Process Behavior Monitoring

R. Sekar

lowa State University

T. Bowen and M. Segal

Bellcore

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510 548 5738
Email: office@usenix.org ~ WWW: http://www.usenix.org

On Preventing Intrusions by Process Behavior Monitoriné

R. Sekar T. Bowen M. Segal
Department of Computer Science Bellcore
lowa State University, Ames, IA Morristown, NJ
sekar@seclab.cs.iastate.edu {bowen,ms}@bellcore.com
Abstract on sequences of system calls and conditions on the val-

L ues of system call arguments. We compile the specifi-
Society's increasing reliance on networked information.4iigns into finite state automata for efficient runtime

systems to support critical infrastructures has promptefeiection of deviations from the specified (and hence
interest in making the information systemwrvivable, nermissible) behavior. We seamlessly integrate detec-

so that they continue to perform critical functions evenyjon anq reaction by designing our specification lan-

in the presence of vulnerabilities susceptible to ma,l"guage to also allow specification of reactions.

cious attacks. To enable vulnerable systems to survive

attacks, it is necessary to detect attacks and isolate fail-. Introduction

ures resulting from attacks before they damage the

system by impacting functionality, performance or se-Approaches to intrusion detection can be broadly di-

curity. The key research problems in this context invided into anomaly detectiorand misuse detection

clude: Anomaly detection based approaches first create a pro-

o file that describesnormal behaviorsand then detect

* detecting in-progress attacks before they cause yeyiations from this profile [Fox90, Lunt88, Lunt92,
damage, as opposed to detecting attacks after angerson9s). In contrastnisuse detectiomased ap-
they have succeeded, proaches [Porras92, llgun93, Kumar94] define and look

» localizing and/or minimizing damage by isolating for precise sequences of events that damage the system.
attacked components in real-time, and Anomaly detection approaches possess the advantage

« tracing the origin of attacks. that learning to identifjnormal behaviorcan be auto-

We address the detection problem by real-time eve@ﬁéid’ zlrjrtnt'g?tl)lzr% ptronree t% lelse pnﬁgglr\;eesd’ ebser;]eaczliilry
monitoring and comparison against events known to bé PErmisst ut previously u Vi

unacceptable. Real-time detection differentiates oupceurs- Misuse detection approaches are more precise

. . ._—and less prone to false positives. However, since misuse
approach from previous works that focus on intrusion P P

detection by post-attack evidence analysis. We addregs:eteCtlon approaches require specification of damaging

the isolation and tracing problems by supporting autog\ljzlntsl’mvgmh a{tstalcj:sktsja”t)lf]emag_:“leallsgsd ;?g‘g?vgna p;(iar:/s:
matic initiation of reactions. Reactions are programsnew?/ discovered vuln'erabi);ities and attacks 9
that we develop to respond to attacks. A reaction's pri- y :

mary goal is to isolate compromised components ang specification-based approacfirst proposed by Ko
prevent them from damaging other components. A regt g, [K094, Ko96], aims at overcoming the above
action's secondary goal is to aid in tracing the origin ofjrawback of misuse detection. Instead of describing
attack, e.g., by providing an illusion of success to thehe events occurring in known attacks, which may or
attackers (enticing them to continue the attack) whilenay not occur in future attacks, a specification-based
ensuring that the attack causes no damage. approach describes a prograitendedbehavior. De-

Our approach to detecting attacks is based on speci viations from intended behavior can be flagged as in-

. e : : - trusions, th nablin ion of previously un-
ing permissible process behaviors as logical assertionat>1oNs: thus enabling detection of previously u

! This project is supported by Defense Advanced Research Agency's Information Technology Office (DARPA-ITO) under
the Information System Survivability Program, under contract number F30602-97-C-0244. The views and conclusions

contained in this document are those of the authors and should not be interpreted as representing the official policies, either

expressed or implied, of the Defense Advanced Research Projects Agency or the U. S. Government.

known attacks. Our approach uses manual productiotiheir source code. We therefore develop a high-level
of specifications, which while having the drawback ofspecification language called Auditing Specification
requiring a human expert, has the advantage of minikanguage (ASL) for specifying normal and abnormal
mizing false positives, especially those that arise whebehaviors of processes as logical assertions on the se-
intended but infrequently exhibited behavior is ob-quences of system calls and system call argument val-
served. Thus, we can continue to retain the precision afes invoked by the process. ASL specifications are
misuse detection and can therefore initiate defensiveompiled into optimized programs for efficient detec-
actions as soon as any violations are detected. tion of deviations from the specified behavior. When

) . discrepancies are detected at runtime, automatic defen-
An overview of our specification-based approach forgje actions, also described in ASL, to contain or isolate
improving survivability was presented in [Sekar98]. ihe gamage are initiated. A simple defense is to termi-
Our approach comprises a specification language, fate processes that deviate from specified behavior, but
compiler for the specification language, and a runtimgyis apnroach may not be desirable since it may alert
execution environment. This paper provides a more ingackers that the attack has been detected. Instead, we
depth treatment of our specification language, and oufy,5y want to entrap attackers into continuing their ac-
lines an approach for compiling the specifications intGyifies so that we can observe and document their ac-
executable modules for efficient monitoring of programjons This can be accomplished usisglation tech-
behaviors at runtime. While our approach applies in,iq esthat enable the compromised process to continue
principle to any modern operating system, our impley, \yn while ensuring that the process cannot damage
mentation is specific to Linux. the rest of the system. As a result, the attackers may

The rest of this paper is organized as follows. In SecPelieve that they are succeeding, while in reality, they
tion 2 we give a brief overview of our approach, in&'® simply wasting their time and resources. Our defen-

Section 3 discuss related work as it applies to our speciiVe reactions are also written in ASL, which enables a
fication language, in Section 4 we present our Ianguag%'ose yet flexible coupling between detection and reac-

and practical examples of its use, and in Section 5 whON capabilities.

describe language compilation. Our behavioral assertions are divided into two catego-
ries; similar to correctness properties of distributed
systems:

2. Overview of Approach
¢ local correctness assertions involving the actions

We model the survivable system as a distributed system of 3 single process in isolation, and

consisting of hosts interconnected by a network. The

network and the hosts are assumed to be physically

secure, but the network is interconnected to the public

Internet. Since attackers do not have physical access to)
the hosts that they are attacking, all attacks must O illustrate the concept of local correctness, consider a

launched remotely from the public network. Regardprivileged program with a buffer overflow vulnerability
less of how the attack is delivered, any damage to &Uch as théingerd program exploited by the Inter-
target host is effected via the system calls made by %et worm) that allows an attack(_ar to execute the data
process running on the target hbsthus, it is possible INPUt to the program. Since the input data can be con-
in theory to detect all attacks by observing only theStructed to be a machine language program, the vulner-
system calls made by processes executing on the ho&Rility allows execution of arbitrary programs with the
comprising the system, and to prevent damage by f”guthorlty of the attacked program, which in the case of
tering out damage-causing system calls before they af19€rd is root. A popular attack to cause execution of
executed. Basing our techniques on system call obsefProgram usingxecve() — to execute "/usr/bin,” thus
vation has an important advantage in its ability to deProviding an interactive shell with root privilege, al-
fend existing software applications without modifying though other options are possible. The popular attack
can be prevented by the specification shown below,

g]) ~ which prevents the program froexecve ’ing arbi-

This observation does not hold for some denlal-of-serwcqrary programs, while still permitting it to execute the

attacks such as ping-of-death that exploit errors in operatingro ram(s) that it may need to execute in order to pro-
system kernel implementations. We monitor network packet: 9 Y P

to deal with this class of attacks, but this approach is not dis¥ide its normal function
cussed further in this paper.

non-interference assertions that ensure that the
concurrent actions of multiple processes do not
interfere with one another

execve(f) | f 1= “/usr/ucb/finger” Our intrusion detection/prevention system consists of

-> exit(-1) an offline and a runtime component as depicted in Fig-
. . . ures 1 and 2.
As explained in Section 4, the example reads as fol-
lows. Whenevefingerd attempts arexecve() The offline system generates detection engines based
system call, if the name of the file passed as the firgt
argument teexecve() is not/usr/ucb/finger P M 5
then an exit(-1) is performed before the || Program with ., |(ASL specifica;
execve() . possible vulner ~0 tion f(_Jr moni-
abilities \

To illustrate the concept of non-interference, conside)
an attack that exploits a race condition in a privileged | Intended be-

program. The typical race condition exists because i (ngfélgxfotie"

an attempt to correctly manage file permissions in prq | documentation

grams whose effective user and real user are differe -

(for example setuid to root programs), programmer ’Artitéi;krﬁg‘lﬂfg' C

use two system callsiccess() andopen() when lists, hacker we (C++ Class
opening files. Bottaccess() and open() check sites definition of M)

file permissions, buaccess() performs the check
with respect to real user, whilgpen() checks with
respect to effective user. Therefore, to ensure that tf
privileged program does not open a file for which th
real user does not have permission, doeess(), System Call
open() pair is locally sufficient. However, the se- Detection En-
guence is insufficient when interference is possible gine
Another process can change the underlying file in b - - -
tweenaccess() andopen() , so that the real user | Figure 1 - Offline system for production of
has permissions for the file checked bgcess() , detection emjines

but not for the file checked bgpen() . While this 0N the ASL behavioral specifications, and the runtime
appears complicated, from a practical point of view theSyStem executes the generated engines. For each pro-
second process merely needs to execute two ONixgram P to be defended, a specification M is developed
commands,rm and link, to accomplish it. For by a system security administrator who is familiar with
correct permission checking, we need to ensure thdptended behavior of the P (as can be determined from
access() andopen() are executed without inter- its manual pages or other documentation) as well as
ference by other processes. This requires that the dagRecific known vulnerabilities obtainable from sources
read byaccess () is not modified by another process such as attack advisories. The ASL compiler translates
before the completion of thepen() . We capture Minto a C++ class definition, callgdl Cis then com-

the non-interference requirement using the notion of aRiled by the C++ compiler and linked with a runtime
atomic sequence, which has the semantics that if arififrastructure to produce a detection engine. The run-
other process issues system calls that modify the data {fn€ infrastructure provides the mechanism for inter-
the atomic sequence, we detect the modification asepting system calls; delivering them to the detection
violation of the specification. In the example shownengine and providing functions the detection engine
below, the notationd..o " stands for the occurrence USes to take responsive actions.

of an event followed by evenb.

Figure 2 shows how the detection engines generated by

nonatomic (f) in the offline component are used at runtime. When pro-

(access(f,mode) .. open(f)) -> exit(-1) gram P executes as procegs it is monitored using
objectQ, which is an instantiation &. For simplicity,
2.1. System Overview we assumg is the process ID. System calls made by

V, are intercepted by the system call interceptor just
before, and just after the system call's kernel level
functionality is executed. At each interception, the sys-
UNIX is a registered trademark licensed exclusively through,tem Ca!l lnformat.lon IS pgssed @ through method
X/Open Company Ltd. invocation. The interception enables the system call
detection engine's infrastructure a@H to detect se-

guences of system calls requested/pywhich deviate need for constant involvement of teams of human
from expectation, and to modify system call execution experts, thus providing a more cost-effective so-
to prevent detected deviations from causing damage. lution.

DeceptionOur approach allows the development
of reactions that both isolate the attacked process
to prevent damage, and deceive the attacker into
believing that the attack is successful. Deception
enables us to observe and document attacker be-
havior, either for apprehending attackers or to
gain a better understanding of the system vulner-
abilities.

Dynamically tunable monitoringOur technique
allows the granularity of monitoring to be
changed on the fly at runtime. We can use a low-
level of monitoring under normal conditions, but
can quickly increase the level of monitoring
when errors or suspicious activities are detected.

3. Related Work

Use of a specification-based approach for intrusion
detection was first proposed by Ko et al. [Ko94, Ko96].
Similar to their approach, we model the behavior of a
])) process in terms of the system calls and their argu-
Figure 2- Runtime system for execution of ments. However, their approach analyzes logs of sys-
detection engines tem calls to detect deviations from specification, and so
e limited to post-attack detection. Our system inter-
c?pts system calls as they execute, so in addition to
getecting deviations, we camnforcethe specified be-
Raviors at runtime to prevent damage. Runtime detec-
tion demands efficient execution of specifications, so
our specification language design emphasizes effi-

2.2. Salient Features of Our Approach ciency. [Ko96] uses a specification language based on
. Prevention.The preventive ability makes it fea- context-free grammars augmented with state variables,

sible to continue to allow the execution of pro- while our specification Ianguage is clolser to regular
grams that are known to contain exploitable vul- languages augmented with state variables. Use of

nerabilities. Without preventive abilities, the regular languages allows the compilation of specifica-
potential of damage is so great that use of vulner- tions into an extended finite-state automaton (EFSA),

able programs must be prohibited until the pro- which is a finite-state machine that is augmented with
gram is repaired. The same reasoning even ap_state variables. Such an EFSA permits efficient runtime

plies to programs from untrusted sources. With- checking, hWh'le u;"ng bounded regources(jd(QPU or
out assurance of damage prevention, the dangermemory)t at can be determinadriori. In addition,

of damage from untrusted programs precludes we believe that regular languages makes our specifica-
their execution, but with damage prevention tions easier to understand and more concise. Although

even untrusted programs can be executed. regular grammars are less expressive than context-free

i | . grammars, the difference is much less pronounced
* Programmabi !tyenab es a systgm administrator when these grammars are augmented with state vari-
to respond quickly to a newly discovered vulner-

. . .) ables.
ability, without having to wait for a vendor-
supplied patch. Forrestet al. [Forrest97, Kosoresow97] developed in-

« Automated responséinlike previous approaches trusion detection techniques inspired by immune sys-
that focussed mainly on intrusion detection, our t€mMs in animals. They characterize “self” for a UNIX
approach integrates detection and reaction within Process in terms of sequences of system calls that are
a uniform framework’ Since both are Contained in made by the prOCESS under normal Conditions. Intl’usion
the same Speciﬁcation' Automation reduces the iS detected by monitoring f0r “foreign" SyStem Ca” se-

We implement the system call interceptor within the®
operating system kernel. Other alternatives include in-
terception of system calls as they pass through the sys-
tem call library,libc, or using the system call trac-
ing and process control facilities of many UNIX vari-
ants. However, these approaches do not offer the same
level of security as our kernel-based approach, since

Vv, .
(Process running
program P)

Operating System Kernel

they can be easily bypassed. It is also doubtful th
either approach can be made as efficient as the kern
approach since the kernel approach alone allows inte
ception and modification without process context
switching.

guences. Their research results are largely compléntroduction of an interface definition component to
mentary to ours, in that their main focus islearning ASL so as to decouple the ASL compiler from the spe-
normal behaviors of processes, whereas our focus is aifics of the events monitored by the detection engine.
specifyingandenforcingthese behaviors efficiently. As a result, we can now write ASL specifications that
. model system behaviors in terms of any observable
Goldberget al. [Goldberg96] developed the Janus eNnVi-ayents, as opposed to being limited to observation of
ronment for confining helper applications (such asgysiem calls. Moreover, the ASL compiler need not be
those launched by web-browsers) so that they are r@hanged to deal with these new event types — we sim-
stricted in their use of system calls. Like our teCh'pIy need to link the code produced by the ASL com-
niques, their techniques prevent unauthorized opergsjer with appropriate runtime infrastructure that can

tions, such as attempts to modify a usddgin file. ygjiyer these new events to the detection engine.
But their approach is more of a finer-grained access-

control mechanism rather than an intrusion detection o4, Auditing Specification Language (ASL)
prevention mechanism. The key distinction between thgve model the behavior of a process in terms of the
two mechanisms is as follows. Access control mechasystem calls the process makes. We treat these system
nisms restrict access rights for each process to thgalls as events which have the general form
minimum rights required for the process's functionality, e@a,,...,a,), with e denoting the event name and
while intrusion detection verify that a process uses it%l,m,an denoting the event arguments. Two events
access rights in the intended fashion. For instance, agre associated with each system call, namely the entry
tacks based on race conditions and unexpected interagr the system call and exit from the system call. We
tions among multiple processes manifest themselves afstinguish system call entry events from system call

unintended use of access rights. Consequently, OWxit events by prefixing the $-symbol to exit events.
specification language must be able to express se-

quencing relationships among multiple system call#l.1. Interface Declarations
made by one or more processes, whereas Janus offiie interface between the detection engine and the
permits restriction of access to individual system callsmonitored processes supports the conveyance of events
made by a single process. from the process to the detection engine, and the con-
) i o . veyance of response functions from the detection en-
Our approach to isolation has some similarities with theyine tg the monitored process. The functionality of the
approach used in the Deception Toolkit (DTK) jnterfaces is realized via a set of interface functions that
[Cohen98]. In particular, when an intrusion is detectedyqjiver events to the detection engine and provide
our approach enables defenses that deceive the attackgg hanisms for invoking response actions. For gener-
with the illusion of success. The DTK employs a SiMi-ajity, the functionality provided by the interface is

lar strategy. However, with DTK, deception dependssnecified in ASL via interface declarations. These
upon enticing the attacker to use phony versions of thgajarations specify

attacked service. The real service is no longer available
at the DTK server, which contrasts with our approachs datatypes that can be exchanged over the inter-
where standard server functionality is still present for face

legitimate uses. « events delivered over the interface in terms of

As compared to our earlier work in [Sekar98], this pa- €l names, arguments and types

per presents a significantly improved version of ASL. It* external functionsprovided by the interface that
also outlines an approach for compiling the high-level ~ can be invoked by the detection code
specifications into finite-state automata that performwe describe each of these components below.
efficient runtime monitoring of process behavior. Im-

provements to ASL described in this paper are as fo4.1.1 ASL Data Types

lows. We have developed a more elegant approach fdduilt-in typesin ASL includebit, byte, short ,
dealing with race conditions and other similar errorsint , long , double, andstring. All of the inte-
that result due to interference in data access by multiplgral types excludingit andbyte are either signed
processes. The pattern language for behavioral specifor unsigned. Their sizes coincide with the norm for the
cation has also been improved by separating differergpecific host for which the ASL specification is being
classes of patterns. To further improve conciseness of
specifications, the notion of event abstractions has beenye call the response functiexternal functionso differen-
introduced. Another important improvement is thetiate them from internal functions that are built into ASL.

applied. The string type is a variable length byte arrayrhe primary purpose of external functions is to invoke
prefixed with a 2-byte length field. = ASL supports support functions needed by the detection engine or
multi-dimensional arrays of built-in types. reaction operations provided by the system call inter-
_ ceptors. For instance, when an event for opening a file
Foreign types correspond to data that can be eX-g received by a detection engine, the detection engine
changed on one or more of the interfaces, but whosg,y need to resolve the symbolic links and references
representation is opaque to ASL. Foreign types are dgg «» gng « » in the file name to obtain a canonical

signed with the intent of modeling data within the vir- ho o for file. The detection engine may use a support

tual memory space of a monitored process. Depending,ction declared as follows to find the canonical file
on the particular implementation approach used in thg 6.

detection engine, it may or may not be easy (or even

possible) to access such data directly. To address this string realpath(CString s);

problem, we have developethsstypes that cannot be)) i
directly accessed in ASL, but can only be accessed ud€ detection engine may also need to check the file's
ing member functions defined on the type. Class type@CCess permissions, which may be done usingp-
correspond to abstract data types. A sample class defOrt function declared as follows:

nition corresponding to a C-style string is: StatBuf stat(const Cstring s);

class CString { .
string getVal() const; In ASL system call names either represent an event

void setVal(string s); (i.e., invocation of a system call by a monitored proc-
} ess) or are a component of a reaction taken by the de-
A more complex definition suitable for manipulating tection engine (i.e., a statement in the a reaction pro-
data associated the stat system call is given below. gram). We use the same syntax for system calls in both
cases, since the context resolves any ambiguity.

class StatBuf {
int getDev()const;

int getlno()const; 4.2. Modules
int getMode()const; The ASL specifications are structured as a collection of
: parameterized modules, each of which consists of a
int getAtime()const; collection of state variablesandrules. State informa-
:2: gg%g"tti'm&())gggssttf tion can be retained across multiple rules within a mod-
} ' ule via the state variables.

As an aid to programmability, modules may be param-

Note that the return type of a member function could®terized. Parameterization enables specification of ab-
itself be a foreign type. Whether a member functionstract behaviors that can be customized by providing
changes the value of the object or not is given by th¥alues for these parameters. A typical use of param-
presence or absence of thenst keyword in the dec- €terization is to allow a general-purpose module to be
laration of the function. This fact is used by the AsLUsed in nearly identical situations that differ only in a

typechecker to ensure that expressions in ASL do ndgW minor details. The process of generating a com-

cause unexpected errors when evaluated at runtime. ~ Pilable module from a parameterized module is known
as modulenstantiation.

Since ASL specifications may be compiled into detec-

tion engines that run within an operating system kernefAnother important role of modules is that they provide
safety and reliability are especially important. Two@ mechanism for dynamically altering the degree of
important language mechanisms in ASL that promoténonitoring, possibly in response to suspicious events.
safety and reliability are strong typing and the absencd particular, the actioswitch ModuleName can

of pointer types. be used to start monitoring with respect to a module
namedModuleName. It is also useful when a process
4.1.2. External Functions uses theexecve() system call to overlay itself with a

External functions are functions that are defined outsid@ew program. Thewitch action can then be used to

of the detection engines, but can be accessed from tigerform monitoring that is appropriate for the new pro-
detection engines. Semantically, they are no differengram. Finally, if a process is discovered to be compro-
from member functions associated with foreign typesmised, we can alter the behavior of future system calls
In other words, member functions are simply externamade by the process in such a fashion as to isolate the
functions that use a different syntax.

process from the system. This may also be accontor convenience, we define the operator “..

plished by switching to a new specification.

4.3. Event Patterns

ASL general event patterrare used to specify valid or
invalid behaviors. Anatomic patternis of the form
e@a,,...,a,) |C, wheree denotes an event ar@@lis a
boolean-valued expression @,...,a,. C may contain

that can be
applied only to primitive patternsp, .. p, is equivalent

to PuC(PIP)D:; P2 je., p, followed by p,with
possibly other events occurring in between. The re-
striction that “..” be applied only to primitive patterns
is imposed since the operator has unintuitive semantics
on general event patterns.

standard arithmetic, comparison and logical operationd/Ve illustrate the use of temporal operators using sev-

C may also contain comparisons of the fotm expr

eral simple examples below. Note that in general, we

wherex is new variable, with the semantics being thatwish to take reactive action when the behavior of a

of binding the value oéxprtox. A primitive patternis

monitored process fails to satisfy certain properties.

obtained by combining atomic patterns with the dis-Hence, we typically develop patterns that are the nega-

junction operatoi|] , and possibly preceding the entire
expression with the complement operatbt. ‘As an
example of a primitive pattern, consider:

I((open(f)|realpath(f)=/home/*/.plan)
II (close(f))l|(exit(f))

In this pattern, a shorthand notatithome/*/ is used

to refer to any directory that is immediately contained’

within /home . The above primitive event pattern cap-

tures all system calls other than those for opening

“.plan” files, closing files or terminating processes.

(For illustrative purposes this example is simplified, it
does not, for example, permit the opening of some neg-

essary files, such as dynamically loaded libraries.)

General event pattern@re obtained by combining

tion of assertions describing normal behaviors.

el;le2*el asserts tha¢1l mustoccur twice
with no interveninge2. This corresponds to the
negation of the property thatl must always be
followed by e2 before a second occurrence of
el.

(el;'le2*) within [t,] captures viola-
tion of property thatel is followed by e2
within time t

el;le2*;e3 captures violation of property
wheree2 must always occur betweet ande3
e{k} within Jt] captures violation of
property thate occurs less thak times within
timet

L]

primitive patterns using temporal operators. Such op4.4. Event Abstractions
erators enable us to capture sequencing or timing relaxn event abstraction is a convenience mechanism al-

tionships among system calls:

Sequential compositionp, ; p, denotes the event
pattern p, immediately followed by patterip, .

Alternation: p, [|p, denotes the occurrence of

either p, or p,.

Repetition: p{n,;,n,} denotes at leash, repeti-
tions and at mosn, repetitions of p.p{n,} and

p{, n,} are shorthand fop{n,,«} and p{0,n,}
respectively. The notatiorp is shorthand for
p{0, oo} .

Real-time constraintsp within [t ,t,] denotes
the occurrence of events corresponding to pattern
p occurring over a time interval. The shorthand
for [0,t] is [t], whereas the shorthand foredf,is
[t.].

Atomicity: nonatomic d in p corresponds to an

occurrence of pattern p within which the data
item d is not accessed atomically.

lowing programmer definition of abstract events com-
prising arbitrary event patterns. Event abstractions
allow the programmer to name and treat complex event
patterns as if they were primitive events. To illustrate
the use of event abstractions, note that many UNIX
system calls have overlapping functionality. When we
write behavioral specifications, it is cumbersome to
write several variants of the specification based on the
exact system calls used by a particular program. For
convenience, we group similar system calls so that all
of the calls in one group can be viewed as implementa-
tions of a higher level abstract system call. For instance,
thecreat() andopen() system calls can both be
used to open new files, so we define the abstract event
writeOpen which captures this commonality. Then,

a single behavioral specification usingiteOpen

can be used to monitor processes that open new files
using eithercreat() or open().

event writeOpen(path) =
open(path, flags) |
flags&(O_WRONLY|O_APPEND|O_TRUNC)||

ample shows only a subset of those system calls that
must be disallowed for an adequate defense.

open(path, flags, mode) |
flags&(O_WRONLY|O_APPEND|O_TRUNC)||
creat(path, mode);

Code Example 1 - Definition ofwriteOpen()
Abstract Class

Different levels of abstraction may be desired in differ-

ent contexts, and hence there may be overlaps amo

different user-defined abstract events. For instance, w

may have an abstract event that corresponds 1

open(file, mode)|
((f = realpath(file)) &&
((f 1= “/etc/utmp”) &&
(f '= “/etc/passwd”) &&
linTree(f,“/usr/spool/finger™)) ||
(mode = O_RDONLY))
-> fail(-1,EACCESS)
execve || connect || chmod || chown
|| charp || create || truncate
|| sendto || mkdir
-> exit(-1);

readOpen , and another that corresponds to any open,

regardless of whether it is for reading or writing. For
simplicity, we restrict the definition of abstract events
to be primitive event patterns.

4.5.Rules
A rule is of the formpat > action wherepatis a pat-
tern of the form described above, aactionis a se-

Code Example 2 - ASL Specification
for Monitoring fingerd

5.2.Race Conditions

We llustrate two approaches to protect against race
condition attacks. Our first approach monitors for an
access() followed by anopen() and ensures that
both use identical conditions for checking permission.

empty, variable assignment, function invocation, or

switch. Function invocation causes the specified func—R
tion to be executed by the runtime infrastructure, an%
thus may be used by the detection engine for purpose;

such as reading or writing data in the monitored proc
ess, or executing arbitrary system calls in the monitore
process. Theswitch SpecName action enables
switching to the behavioral specification nantgukc-
Namefor monitoring.

5. Example Behavior Specifications
In this section we illustrate ASL using several exampl
specifications.

5.1.Finger Daemon
The following specification restricts tHfenger dae-
mori' so that it can open only specific files for reading,

€

of access().

progl defines two state variables and an event ab-
traction for use in the rules defined subsequently. The
Xent abstraction simplifies the structure of the rules. In
H1e first rule, the comparisons @cl event definition

ind the temporary variableuid . Whenever the
monitored process performs apen() following an
access() on the same file, we temporarily set the
effective user ID of the monitored process to the value
of the real user ID before thmpen() executes. Be-
fore doing this, we save the current value of the effec-
tive user ID in the state varialdavedEuid , and set a
flag changedEuid to record that we have temporar-
ily changed the effective user ID. Whepen() com-
pletes, we use the values stored in the state variables to
restore the original effective user ID.

cannot open any file for writing, cannot execute an
file, and cannot initiate a connection to any host. If an
specified behavior is attempted, the system call asso
ated with the attempt does not execute. Instead, an er|
code is returned or the process terminated. For evel
whose arguments are not of interest, it is not necessa
to specify the arguments. We make use of a suppd
function, inTree, which determines whether a file
resides within a directory or its descendents. The e

* The specification pertains to the GNU finger program, an
in particular, the finger daemon running as the master server

int savedEuid;
bit changedEuid;

event accl(name, ruid) =
access(name, mode)|(ruid = getuid());

accl(name, ruid)..open(namel, flags)|
(name = namel)

-> changedEuid = 1;
savedEuid = geteuid();
setreuid(-1,ruid);

$open(f, fl)|(changedEuid = 1)
-> changedEuid = 0;
setreuid(-1,changedEuid);

Note that GNU finger is implemented differently from the
BSD finger daemon, and does not neecxecve the finger
program.

Code Example 3 - ASL SpecificationProgl
for a Race Condition Vulnerability

The second defense against the race vulnerability uses return faked return value. When a system call

the concept of atomic sequences. The race vulnerabil- that can potentially damage the system is invoked
ity exists because two system cadlscess() and by the isolated process, we can prevent the sys-
open() must be used to accomplish what is essentially tem call from being completed, and instead re-

a single function, that is, opening a file with respect to turn a faked (but legitimate) return value.

real user's permissions. We can execute a sequence of log the activity for later analysis.

system calls as if they were all a single system call b¥

. . . reduce limits on resources that the isolated proc-
placing them in an atomic sequence as follows: P

€SS can consume.

no?:égggé%g) writeOpen() « restrict access to files. We can use the

> fail(-1,EACCESS) setuid() system call to change the effective
user ID of the process to that of a user with very
few access rights and we can usedheot()
system call to change the root directory of the
compromised process.

An atomic sequence is a sequence of system calls exe-
cuted by process P whose execution appears not to be
interleaved with the system calls of any other concur-
rently executing process. Atomic sequences are similar o . o
to transactions in databases. Atomic sequences depef@ illustrate this idea, consider the modification to the
on the definition of read and write sets for all systemPrévious specification for thiinger ~ daemon which
calls. We also note that runtime checking of atomicity'mpleme”ts isolation. In particular, we introduce the
requires coordination among the monitors for differentUl€:

processes, since it depends not only on the system caél;%ecve ~

performed by a process being monitored, but also thechroot("/altroot"); setuid(-1);
calls made by other process. nice(100); switch genericlsolate;

5.3. Program from Untrusted Source This rule changes the root of the monitored process to a
To ensure that a program ffO”_‘ an untrusted source doggcoy file system (called altroot), changes the user ID
not damage the host executing it, we want to ensurg nobody, reduces the priority of the process, and fi-

that the program can read only world readable files, cafa)ly switches to a new monitoring specificatiztied
write only within the/tmp directory, cannot execute

. genericlsolate
any programs, and cannot perform network operations.

open(file, mode) | module genericlsolate
[(linTree(realpath(file), “/tmp”) && connect .
(mode & (O_WRONLY|O_APPEND| -> sleep(60); fail(-1,ETIMEDOUT);
O_CREAT | O_TRUNCQ)))|| bind .
laccessible(realpath(file), mode, -> sleep(5); fail(-1,EADDRINUSE);
“nobody™)) recv
-> fail(-1,EACCESS); -> sleep(1);
open
exec || connect || bind || chmod || -> sleep(1);
chown || chgrp || create || end
_t;uenx‘f&fel)l.l zenaioliimsai Code Example 5 — ASL Specification
' —— for Damage Prevention
Code Example 4 - ASL Specificatiorsandbox As shown,genericlsolate gives only a few of the
for Untrusted Programs rules that would be needed for isolation. Since the iso-

lated process is operating in a decoy file system, file
system operations are allowed. However, network op-
When we detect an attack on processwe can use the grz?Ntlr?ns ir?rel restricted. l\t/lhostt tho pecritbonsn da:e slorwed
switch action to switch to a specification that con- 29WN UsINgs eep() , so that the and resource
usage of the attacked host are reduced, but the attacker

tains ASL rules to isolat®;. The isolation specifica- .
tion contains rules that modify the behavior of systemWIII probably attribute the delay to normal host or net-

calls made by in such a way tha¥, is prevented work congestion.

from executing operations that can damage the surviv6_ Compilation of ASL
able system. For example, the isolation specificatio
can perform one or more of the following:

5.4.Using Specification for Isolation

"rhe main task in translating an ASL specification into a
C++ class definition is to translate the patterns into an
extended finite-state automaton (EFSA). An EFSA is

similar to a finite-state automaton, with the following EFSA, but unbounded growth should happen only
differences: when certain unusually repetitive sequences of system
- calls are observed at runtime, and hence is not a serious
* In addition to the control state of an FSA, an jsgue in practice. We are currently working on tech-
EFSA can make use of a fixed set of state vari- piques that can avoid unbounded growth by restricting
ables. the class of patterns permitted in ASL.

e The EFSA makes transitions based on events,)))]
event arguments and conditions on event argu- The starting points for our algorithm for generating

ments and state variables. The transitions may as-EFSA from ASL patterns are the seminal papers by
sign new values to state variables. Brzozowski [Brzozowski64] and Berry and Sethi

An EFSA may be deterministic (DEFSA) or nondeter-[Berry%]' However, these papers address regular ex-
o - pressions and classical FSA, whereas we must address
ministic (NEFSA). For the sake of efficiency, we al-

ways prefer to generate a DEFSA rather than a NEFS&OndItlonS on event arguments and state variables that

o . . an be complex data structures. Our earlier work on
However, this is not always possible as conversion of

: rst-order term-matching [Sekar95] provides the start-
N.EFSA Into a DEFSA can cause un_gcceptable explol-ng point for addressing this aspect. By combining and
sion in space requirements. For traditional FSA, ever)éxtending these two techniques, we developed an algo-
nondeterministic automaton can be converted into an . ' :
equivalent deterministic automaton with at most anrlthrn for generating EFSA from a restricted class of

d o : ASL specifications. A detailed description of this algo-
exponential increase in the number of (control) states

For performance critical applications (e.g., lexical fithm is beyond the scope of this paper, so we only

) . S . rovide a description of how we map an NEFSA into
analysis phase of a compiler), this increase in stat

; : . ++ .
space is quite acceptable, especially because the worst code

case behavior is unusual. For EFSA, the explosion it code generation time, the EFSA generated from
size is exponential in the product of the number ofASL specifications is turned into a C++ class. Specifi-
control states and the range of values that can be agally, one class is generated from each ASL specifica-
sumed by each of the auxiliary state variables. For inton. This class has one member function for each
stance, a deterministic EFSA that is equivalent to &vent, and these member functions have the same num-
nondeterministic EFSA with one integer (32-bit) stateper and types of arguments as the event. When the
variable and N control states can hagl?” states! runtime infrastructure intercepts an event, it delivers it
This problem leaves us with two choices: to the appropriate detection engine by invoking the
. . corresponding member. For instance, the runtime infra-
:)?aStcré)Cr;[thI?e gliﬁi ngAI;SSII_Apg:terns so that they can structure invokes thepen_entry method when a
P T monitored program enters apen system call, and the
* do not convert an NEFSA into an EFSA, and open_exit method when the process is about to exit
simulate the NEFSA at runtime. this System call.

Note that at runtime, the transitions of an EFSA are h . in th |)
represented in code, whereas its current state (which€ transitions in the EFSA are translated into code as

includes the control state and the state variables) {9!l0Ws- We maintain a list of active EFSA instances at

stored in a data structure. Since we plan to combine difntime. When an event is delivered, we go through
patterns in one ASL specification into a single EFSA the list of EFSA instances and for each of them, make a

there is only one instance of the transition relation af@nsition based on its current state and the newly de-
runtime. To support nondeterminism, we permit multi-livered event. If multiple transitions exist out of the

ple instances of the dynamic state of the EFSA. ThesgU"ent EFSA state for this event, then copies of the
multiple instances capture all of the states the NEFSATSA are made (using the fork operation mentioned

could have reached after examining its input up to thi$alier, so that there is one EFSA to make each of
point. these transitions. If there is no transition for an EFSA

instance, then it is “killed” and any resources used for
If an EFSA needs to make a two-way nondeterministi¢he instance are released.
transition on an event e, we perform a “fork” operation .
on the EFSA, i.e., replicate its current state. The replicd - Conclusions and Future Work
follows one of the non-deterministic choices, while theln this paper we presented an approach for intrusion
parent follows the other choice. This approach can leagletection that is based on specifying the valid behaviors

to an unbounded increase in the number of instances 8f Processes in terms of system call sequences together
with constraints on the argument values that the proc-

esses can make. We described our specification laficERT98] CERT Coordination Center Advisories
guage and illustrated it with several examples. Based988--1998,
on these examples, we are optimistic that concise aruttp://www.cert.org/advisories/index.html

clear specifications of security-related behaviors can be)))]
developed with relative ease in the ASL languagelCheswick92] W.R. Cheswick, An evening with ber-

These examples also indicate that the approach cdfifds in which a cracker is lured, endured and studied,
successfully prevent (or at least quickly detect) attacks/Vinter USENIX Conferenc&992.

Additional preliminary evidence in this context was Cohen98] Fred Cohen and Associates, The Deception
presented in [Sekar98] where we examined the attackq kit Home Pagehttp://www.all.net/dtk/dtk.html
advisories from CERDover the past five years and '

concluded that most of them can be detected by oJConnet72] J. Connet et al., Software Defenses in Real-
approach. Time Control Systems|EEE Fault-Tolerant Comp.

- ')) Sys.,1972.
We are continuing to refine and experiment with our

specification language. We are also developing algofDenning87] D. Denning, An Intrusion Detection
rithms for compiling ASL specifications into determi- Model, IEEE Trans. on Software Engineeringeb
nistic EFSA, rather than non-deterministic EFSA. In1987.

parallel, we are also in the process of developing me- .
dium to large-scale experiments designed to assess tHe?'Test97] S. Forrest, S. Hofmeyr and A. Somayaji,
performance impact of our online monitoring approach Computer Immunologycomm. of ACM0(10), 1997.

Our preliminary indications are that indeed we can dc{FonO] K. Fox, R. Henning, J. Reed and R. Simonian
such monitoring using our current, kernel-level inter- A Neural Network Approach Towards Intrusion Detec-

ception approach easily, especially since our EFSAjqn National Computer Security Conferent890.
enable efficient checking of specification assertions at

runtime. [Goldberg96] I. Goldberg, D. Wagner, R. Thomas, and
E. Brewer, A Secure Environment for Untrusted Helper

References Applications,USENIX Security Symposiuf§96.
[Anderson95] D. Anderson, T. Lunt, H. Javitz, A. Ta-

maru, and A. Valdes, Next-generation Intrusion De[{Hlady95] M. Hlady, R. Kovacevic, J. J. Li. et al., An

tection Expert System (NIDES): A SummaBRI-CSL- Approach to Automatic Detection of Software Failures,

95-07, SRI Internationall995. Proc. IEEE 6" International Symposium on Software
Reliability Engineering1995.

[Aslam96] T. Aslam, I. Krsul and E. Spafford, A Tax-

onomy of Security Faultd\ational Computer Security [llgun93] K. llgun, A real-time intrusion detection

Conference1996. system for UNIX,JEEE Symp. on Security and Privacy,

1993.
[Berry86] G. Berry and R. Sethi, From Regular Expres-

sions to Deterministic Automata,Theoretical Com- [K094] C. Ko, G. Fink and K. Levitt, Automated de-
puter Sciencd8 pp. 117-126, 1986. tection of vulnerabilities in privileged programs by

execution monitoring Computer Security Application
[Bishop96] M. Bishop and M. Dilger , Checking for Conference1994.

Race Conditions in File Acces€omputing Systems

9(2), pp. 131-152, 1996. [Ko96] C. Ko, Execution Monitoring of Security-
_ _ o Critical Programs in a Distributed System: A Specifi-
[Brzozowski64] J.A. Brzozowski, Derivatives of cation-Based Approact?h.D. Thesis, Computer Sci-

Regular Expressionslournal of ACMVol. 11, No.4, ence, University of California at Davi$996.
pp. 481-494, 1964.

. _ o [Kosoresow97] A. Kosoresow and S. Hofmeyr, Intru-
[Cai98] Y. Cai. A Specification-Based Approach for sion detection via system call tracéEEE Software
Intrusion DetectionM.S. Thesis, Department of Com- 'g7.
puter Science, lowa State Universityec 1998.

[Kumar94] S. Kumar and E. Spafford, A Pattern-
Matching Model for Intrusion DetectionNational

CERTO is a registered trademark and service mark of Came@omputer Security Conferenckg94.

gie Mellon University.

[Landwehr94] C. Landwehr, A. Bull, J. McDermott and
W. Choi, A Taxonomy of Computer Program Security
Flaws,ACM Computing Surveys 26(3994.

[Lunt92] T. Lunt et al., A Real-Time Intrusion Detec-
tion Expert System (IDES) - Final RepoBRI-CSL-92-
05, SRI International1992.

[Lunt93] T. Lunt, A survey of Intrusion Detection
TechniquesComputers and Security2(4), June 1993.

[Mukherjee94] B. Mukherjee, L. Todd Heberlein, Karl
N. Levitt. Network Intrusion DetectionEEE Network
pp.26-41, May/June 1994.

[Porras92] P. Porras and R. Kemmerer, Penetration
State Transition Analysis - A Rule Based Intrusion De-
tection Approach Computer Security Applications
Conferencel992.

[Sekar95] R. Sekar, 1.V. Ramakrishnan and R. Ramesh,
Adaptive Pattern MatchingslAM Journal of Comput-
ing, 1995.

[Sekar98] R. Sekar, Y. Cai and M. Segal, A Specifica-
tion-Based approach for Building Survivable Systems,
21st National Information Systems Security Confer-
ence.

[Spafford91] E. H. Spafford. The Internet Worm Inci-
dent, Technical Report CSD-TR-99®urdue Univer-
sity, West Lafayette, IN, September 19, 1991.

[Vankamamidi98] R. Vankamamidi. ASL: A specifica-
tion language for intrusion detection and network
monitoring.M.S. Thesis, Department of Computer Sci-
ence, lowa State Universjtypec 1998.

[Yang98] G. Yang. A Real-time Packet Filtering Mod-
ule for Network Intrusion Detection SysteM,S. The-
sis, Department of Computer Science, lowa State Uni-
versity, Jul 1998.

