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Abstract

Combining concurrency and object orientation is still
difficult. In an approach where methods are concurrency
units, one of the main difficulties is the control of the
behavior of objects.

Our proposal is BDL a language allowing to ex-
press and to achieve this control. We propose a model
where each object includes a so called "execution con-
troller" programmed with BDL. This introduces a con-
ceptually clean separation between processing (method
execution) and control. The controller ensures the re-
spect of scheduling constraints between the executions of
methods. Similarly the behavior of aggregate objects can
be controlled. This language has a convenient formal
base. Thus, using the expression of control, behavioral
properties of an object, or even of a group of interesting
objects can be verified. Our approach allows, for exam-
ple, deadlock detection or verification of safety properties
while the compiled object controller keeps a reasonable
size.

A compiler has been implemented allowing to auto-
matically generate the controller code from a BDL pro-
gram. This compilation is achieved by producing an
Esterel (reactive programming language) code from a
BDL program, the Esterel compiler giving the executable
code. Inter-method concurrency is implemented using
lightweight processes.

1 Introduction

Through a set of mechanisms (inheritance, aggrega-
tion, prototyping) the object-oriented approach is well
suited to describe complex systems. The designers of
such systems have been aware of naturally concurrent
applications existing (such as booking systems) which

cannot be easily described with a sequential program-
ming language [26]. So the notion of concurrent object-
oriented programming has appeared naturally.

However concurrent programming is still problematic
[20, p. 56]. The main problem concerns the control of
concurrency, also called synchronization. This control
aims at preventing the object from being in an incoherent
state as, for example, when two methods concurrently
executed modify attributes. A schedule of method ex-
ecutions is necessary to ensure that such cases do not
occur.

In many concurrent object-oriented languages, the ex-
ecution of methods is controlled by guards checked at
runtime. This approach presents the disadvantage of mix
control code and processing code. We have proposed
[2, 6] an architecture for objects dissociating process-
ings offered by the object (achieved by methods) and the
control of these processings. This model gathers these
conditions in a dedicated structure ensuring, for each re-
quest, that the execution is possibly related to the state
of execution of the other methods. This construction
improves the maintainability of the object by centraliz-
ing the execution conditions of each method in only one
entity (called controller). To express the execution con-
ditions of methods and to program this controller, we
have developed a language named BDL (Behavioral De-
scription Language). This paper shows how BDL could
be used to express the control of the behavior of simple
objects or group of objects. We also describe the BDL
implementation based on a reactive language that allows
us to verify properties on BDL programs.

In section 2, we explain the need of control for a con-
current object and we present the execution controller
achieving this control. The BDL language, which allows
to program this controller, is described in section 3. The
semantics and the implementation of BDL are detailed
in section 4. In section 5, we show how the verification



could be achieved on an object or on a group of objects.
Related work is described in section 6. Finally, we con-
clude in section 7 by emphasizing the outlooks offered
by this new approach.

2 The Control Of Object Behavior

In this section, we explain why a concurrent object
needs an execution control and we describe the object
model in which the control is exercised.

2.1 The Need of Control for a Concurrent Ob-
ject

Inside a concurrent object the method execution may
depend on whether other methods are or not active. For
example, if an object has two methodsread andwrite,
it is easy to understand that these methods cannot be
executed at same time. Their executions must be mutually
exclusive. This is a constraint of scheduling.

We will illustrate this type of constraint using a File
object. The object owns four methods: open, read,
close and write. There are different constraints on
the execution of these methods. Let us suppose first that
the object is in only read mode (write method is not
accessible). In this case, there are two sorts of constraints:
a sequentiality constraint between the three first methods
and a repetition constraint between the former and the
later since the object must be permanently able to process
execution requests.

To express these constraints, we have defined a set
of operators representing the BDL language (see 3.1).
BDL expressions use method names and operators. For
example, the BDL expression specifying that instances
have to execute repeatedly (indicated by * operator) the
sequence (indicated by ; operator) of methods open,
read and close in this order is:

(open ; read ; close)*

This specification may be refined by allowing multiple
executions of read:

(open ; read* ; close)*

Now if we consider the file in read-write mode, we can
specify an exclusive execution (operator "|") between
read and write:

(open ; (write | read)* ; close)*

Our work aims to achieve scheduling constraints be-
tween methods. Before describing our approach, we will
define the concurrent object model upon which the con-
trol is defined.

2.2 The Concurrent Object Model

Concurrent object-oriented languages may be classi-
fied according to three criterias [22]:

� the object model defining the relationship between
the structures of execution (threads) and the object
paradigm;

� the intra-object concurrency concerning the man-
agement of threads (number of threads, ways of cre-
ating and switching threads);

� the interaction between objects describing mech-
anisms that allow to specify the sending and the
receiving of messages by objects.

For each of these criterias, our choices have been se-
lected with the following aims:

1. defining the object as a self contained entity pos-
sessing its own executive structures;

2. designing an application as a set of communicating
distributed objects;

3. improving the capacity of reaction of the object;
this is achieved in two ways. Raising the degree of
concurrency and therefore allowing a request to be
satisfied as soon as the state of the object enables it.
Moreover we give to the object a capacity to con-
trol method executions (possibility of interrupting
or cancelling the execution).

4. possibility to verify the object behavior.

When describing the behavior, we imply the set of the
methods of the object. Controlling the object behavior
consists, in determining according to the state of the ob-
ject, whether the execution of a method is authorized
and, in this case, to launch this execution. If the execu-
tion is not possible, the request may be stored or rejected
following a determined policy.

We have chosen an active object model. This model
has been adopted by a great number of languages on
concurrent object-oriented systems such as Pool-T [1],
Eiffel// [10] and Rosette [27]. An active object decides,
according to the object state, the time when a method
execution can be run. The object has a part of both a client
(when it requires the execution of a method of another
object) and a server (when it executes one of its methods
on the request from another object). Furthermore, this
model is well adapted to the fourth aim: the verification
of the behavior control is easier to achieve if the control
is carried out by the object and not an external structure
because the object is a self-contained entity.



In order to rise the capacity of service, an inter-method
concurrency model has been adopted. So every method
execution takes place in a thread of execution.

Finally the need of verification of some properties
(safety, liveness) on the behavior control of the object
is made easier using a centralized control achieved by a
dedicated structure on which the verifications are carried
out. These properties may be, for example, deadlock
freeness, the respect of mutual exclusion during the ex-
ecutions of methods changing the object state, or still
the respect of the sequentiality constraints between these
executions. The previous example of File object has
shown that scheduling constraints must be respected. We
call the entity in charge of this control, the execution
controller. Furthermore, this centralized control allows
a better reuse by a clear separation between control and
processing.

2.3 The Execution Controller

The controller, depicted by figure 1, has three func-
tionalities. The first one is related to the execution man-
agement. The controller carries out the creation of the
thread for every method having to be executed and then
associates code and thread for the execution.

The second one, more complex, consists of synchro-
nizing the execution according to the BDL program. To
achieve this functionality, the controller must, perma-
nently, be aware of the execution state of methods. At
this time, the model of execution controller is restricted:
the controller does not use object attributes to manage the
executions; the activation conditions of a method that use
attributes are checked in method code. This restriction is
necessary to use verification tools such as FcTools which
works using finite transition systems.

In fact this restriction avoids introducing numerical
data in the controller. Because for checking transition
systems tools use finite structure thus the use of numerical
variables with infinite domains is not possible.

The third one concerns the storage of pending requests.
When a request occurs, and if the object state does not
allow an immediate processing, the controller stores this
request. This request is still stored until the controller
allows the method execution.

3 Programming Controllers With BDL

In the previous examples, we have used operators to
specify scheduling constraints concerning method execu-
tions. These operators allow to construct BDL expres-
sions which specify scheduling constraints.

3.1 The operators of the BDL Language

In BDL, there are only two types: identifiers of meth-
ods and operators of scheduling. A BDL term corre-
sponds either to a method identifier or to one (or two
according to the arity of the operators) term and one oper-
ator. These operators are adapted from the asynchronous
reactive language Electre [11]:

� an unary operator of repetition, quoted "*", indi-
cates that the control specified by the term works
indefinitely;

� a binary operator of sequentiality, quoted ";", indi-
cates that the left term must be executed before the
right one;

� two binary operators of parallelism indicates that
the two terms (left and right) can be executed at
same time. In that case, we consider two types of
parallelism:

– a parallelism so called weak, quoted "|||",
expressing a possibility: the concurrent struc-
ture may be ended when a term has achieved
its execution and the other has not started yet;

– a parallelism so called strong, quoted "||", ex-
pressing a necessity: the concurrent structure
is ended only when both terms have achieved
their execution.

� a binary operator of mutual exclusion, quoted "|",
indicates that executions of both terms are mutually
exclusive;

� a binary operator of priority, quoted "#", indicates
that if an execution request occurs for one of the
methods in the right term, then the execution re-
quests for methods in the left term are no longer
satisfied (and they will be stored). However, the ex-
ecution of methods in the right term is subordinated
to the termination of all the methods being executed
in the left term. In this case when no method of
the left term is being executed and a request for a
method of the right term occurs, then this one is
immediately satisfied;

� two binary operators of preemption indicating that
the execution of the left term can be stopped by the
beginning of the execution of the right term. We
consider both the following preemption types:

– a preemption so called weak, quoted "ˆ": the
execution of the preemptive structure (right
term) can take place only during the execution
of the preempted structure (left term);
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Figure 1: Architecture of a concurrent object with a execution controller

– a preemption so called strong, quoted "/":
the execution of the preemptive structure is
required even if the preempted structure has
terminated its execution.

� all these operators have the same precedence level,
so parenthesis could be used to modify this prece-
dence.

Among these operators, the more complex is certainly
the priority operator. We will illustrate its semantics by
considering theFile object (cf. 2.1) again. The previous
specification was:

(open ; (write | read)* ; close)*

This specification introduces an unwanted behavior due
to the semantic of the "*" operator which corresponds
to an endless execution. Therefore close will never
be executed. The use of preemption is unappropriate
because it is too "rude". We wish to leave the reading
(or writing) running until the end before closing the file
by using a priority operator which allows to specify this
type of control:

(open ; (write | read)* # close)*

Now, when receiving an execution request for close,
then it is executed immediately if read (or write) is
not running. Otherwise the requests for the two methods
are not satisfied any longer and close starts as soon as
one of the two methods terminates.

BDL operators enables one to easily describe different
policies of use. A fair policy between both modes:

(open ; (write | read)* # close)*

or then give priority to reading:

(open ; (write # read)* # close)*

or writing:

(open ; (read # write)* # close)*

3.2 Examples of BDL programs

We give two examples of BDL programs with an object
and a group of objects.

In a first example we illustrate the need of preemption
using an elevator truck. This object has five methods:
init, m on, m back, m up, m down and stop. The
init method describes the initial position of the truck
and must be executed before the four others. Methods al-
lowing the truck to move along a same axis (left/right and
up/down) must have mutually exclusive executions but
the movement may be simultaneous along both of them.
At last, if necessary, the truck can stop any movement by
invoking the stop method. The mutual exclusion (oper-
ator "|") of the movement along a same axis is expressed
by:

m on | m back and m up | m down

Possible parallel execution (operator "|||") is expressed
by:

(m on | m back) ||| (m up | m down)

The preemption (operator "/") carried out by the stop
method by:

((m on | m back) ||| (m up | m down)) /
stop

Finally the global specification is:

init ;
(((m on | m back) ||| (m up | m down))

/ stop



In the second example, the control of the behavior of
a group of objects (or aggregate) is achieved by using
the behavior control for each object as a pattern. To
illustrate how the behavior control of an aggregate can
be defined, we use a simple video player [21] with four
functions: load a tape, play a tape, stop playing and
eject a tape. The video (VideoPlayer object) has
two components: a motor (Motor object) and an eject
mechanism (EjectMech object). The Motor object
has two methods: play and stop. The EjectMech
object has two methods too: load and eject.

The behavior control of the Motor object can be ex-
pressed by the following BDL code where the operator ˆ
means the execution of play method could be stopped
by the execution of stop method:

(play ˆ stop)*

and the one of the EjectMech by:

(load # eject)*

When we aggregate the two objects to build the
VideoPlayer object, the behavior control of the
VideoPlayer can be expressed by:

(load ; (play ˆ stop)* # eject)*

One can notice in this code that hiding method identifiers
of one of the two object produces the code of control of the
other. This sort of aggregation (called aggregation with
hiding) is conformed to the principle defined by Hart-
mann et al. [18]. This principle states that the behavior
of an aggregate restricted to the methods of a component
object must give the behavior of this component.

In the next section, we describe the choices that have
been done for the implementation of BDL.

4 Semantics of BDL

4.1 An Event-Based Semantics

The notion of event is well suited to highlight the differ-
ent steps in the processing of execution requests. These
requests are caught by the controller as arrival events.
These events represent requests either from other ob-
jects or from the object itself. It must be quoted that,
in our model, these events occur at distinct instants and
are separately received (one by one) by the controller.
This distinction allows to model distributed objects more
easily. The executions triggered by the controller can
be considered as reactions to these arrival events. The
execution is triggered by the emission of a start event to-
wards the runtime system. A termination event informs
the controller of the end of execution.

call

return

start

arrival

term

client object server object

Figure 2: The events in the lifespan of a method invoca-
tion

When a method is called, what happens on the client
object side must be also considered. The execution re-
quest is modeled by a call event and once the method is
correctly carried out, a return event is sent back to the
calling object.

Figure 2 describes an event sequence happening when
an object (client) requests the execution of a method from
another object (server).

About the called object, the distinction betweenarrival
and start events is important because it stands for the part
played by the controller upon the execution of a method.
The distinction between start and term events introduces
the notion of duration for an execution. This model of
execution is also present in [19] under the name SOS
(Service Object Synchronisation).

4.2 Using an Automaton as Target Code

From a theoretical point of view, a BDL program en-
sures a correct event trace. An automaton is a well-known
structure to achieve this work. For example, the BDL
program

(open ; read* # close)

could be represented by the automaton of figure 3.
Using an automaton as target code for BDL presents

the following interests:

� efficiency: an automaton described in a program-
ming language produces a fast executable code. This
efficiency is important because this code is often ex-
ecuted and the object must quickly respond to a
execution request;

� proofs: the automata are mathematical structures on
which many verification tools have been developed.



?arvlread , !startread

?termread , !returnread

?arvlopen , !startopen
?termopen , !returnopen

?arvlclose , !startclose

?termclose , !returnclose

?arvlclose , ?arvlread , !startclose

Figure 3: The (simplified) automaton of the BDL program (open ; read* # close)

4.3 From BDL Program to an Automaton

To produce an automaton from a BDL program is pos-
sible but a great part of this work is already done (and well
done because it concerns critical systems) by a family of
languages named reactive languages.

Reactive languages have been designed to program
reactive systems. A reactive system [16] is defined as
reacting instantaneously to events received continually
from the environment by emitting events towards it. The
system does not compute or carry out a function but main-
tains a balance with its environment. That is: maintains
a relationship between its inputs and outputs as time goes
past. Most of real-time systems such as control or signal
processing systems and communication protocols are re-
active. Software implementation of these systems has led
to develop a family of languages so called reactive among
which it may be quoted Esterel [3], Statecharts [17] and
Electre [11]. Due to the critical aspect of the systems
implemented, these languages own a mathematical se-
mantics allowing formal verification of properties on the
behavior of these systems. The compilers of reactive lan-
guages produce an automaton used both by verification
tools to verify properties and by translators to generate a
C (or Ada) code describing the automaton.

In a previous section (see 4.1), we have shown the
method execution could be represented by a sequence of
events, the controller managing this sequence. Thus the
controller behaves as a reactive system.

4.4 The Esterel Language

We choose to use the synchronous reactive language
Esterel [3] for it offers high level control structures and,
on the other hand, it is interfaced with different verifi-
cation tools. Though its execution mode is synchronous

(simultaneous perception of several events) we use it with
asynchronous way to describe the working of the execu-
tion controller. The perception of events is restricted to
only one event per instant.

Esterel is a synchronous imperative language. A quick
introduction to Esterel semantics can be found in [4]. A
program in Esterel consists of a collection of interacting
modules. A module has an interface that defines its in-
put and output signals and a body that is an executable
statement.

There are two basic composition operators: the parallel
composition operator "||" and the sequential composi-
tion operator ";". In a parallel statement, all compo-
nents are activated simultaneously; the parallel statement
terminates instantaneously when both components have
terminated.

Interactions between modules takes place through the
use of "signals". A signal may carry a value. Occurrences
of signals that are emitted by a program’s environment
(input signals) are the unique causes for the program to
react. Input signals correspond to input events from the
model of controller. An Esterel program reacts instanta-
neously to the receipt of input signals by emitting output
signals towards its environment. Output signals corre-
spond to the activation events from our model. A pro-
gram may also emit and receive internal signals, used for
inter-module communication within the program itself.
Internal signals are not visible from the environment.

Two assumptions are made on signals:

� signals are broadcast within the program (ie. each
module in the program receives all signals);

� signals are received instantaneously by all modules
in the program.

An Esterel program does not have an associated clock.



trap T_EXIT in
signal TERMINATED in

trad(T 1) ;

emit TERMINATED
||

abort
await immediate TERMINATED do

exit T_EXIT
end

when immediate [          START m ]

end signal
||

signal TERMINATED in
trad(T 2) ;

emit TERMINATED
||

abort
await immediate TERMINATED do

exit T_EXIT
end

when immediate [          START m ]

end signal
end trap

m ∈ RTS(T 2)

m ∈ RTS(T 1)

Figure 4: Semantics of BDL expression "T1 ||| T2"
expressed with Esterel operators

The synchrony hypothesis (reaction takes no time) cou-
pled with signal assumptions allows a rigorous processing
of multiform time. Time can be handled as an ordinary
signal ("clock signals"); any signal defines a particular
clock.

4.5 Defining BDL Semantics from Esterel Op-
erators

Some BDL operators have a direct equivalent Esterel
operator as "*", ";", "||" operators. But the definition of
"|||", "|", "#", "/", "ˆ" operators needs a sequence of
Esterel statements. The definition of the whole operators
is too long for this paper, the reader will refer to [5] for
the complete semantics.

We present here, as an example, the translation of the
weak parallelism operator ("|||") depicted by figure 4.
Because of the semantics of "|||" operator, when a
branch terminates whereas the other branch has not yet
started, an expression such as T1 ||| T2 terminates (each
term Ti may be composed recursively by other BDL op-
erators).

So, in the Esterel code, at end of each branch trad(Ti),
a TERMINATED event (local to each signal statement)
is emitted. The TERMINATED event throws the T EXIT
exception only if a START event (belonging to RTS set)
concerning a method of the other branch has not yet been
emitted. This is done by Esterel preemption operator

(abort ... when). We will explain the meaning of RTS
(Ready To Start) set. The RTS set is an attribute calculated
on each term T giving the name of the methods ready
to be executed that are located on the left part of BDL
sequential expression. For example

RTS(((A ; C) | (B ; D))) =3D fA, Bg

Disjunction between the differentSTART m events corre-
sponds to different possibilities of executions of m meth-
ods.

4.6 Esterel Architecture of an Execution Con-
troller

An overview of Esterel architecture for an execution
controller managing the execution of two methods (A and
B) is represented on figure 5.

Each method managed by the controller needs three
modules:

� a METHOD STATE module has in charge two func-
tions. The first one indicates the execution state
at every instant by emitting (or not) the ACTIVE
event. The second one to emit a CHANGE event to-
wardsBUFFERmodule at every method termination
to request them to emit their pending requests again.
Therefore a pending request can be executed only
when an execution terminates.

� a BUFFERmodule that stores pending requests then
emits them again (REQUEST emission) when receiv-
ing a CHANGE event. When a method is allowed to
run, the module is informed by the reception of a
START event.

� a REQUEST HANDLER module receiving requests
(ARRIVAL event corresponding to the arrival event
on figure 2). The request is then transmitted
(REQUEST) to BEHAVIOR module. If the request
cannot be served then it is sent to the BUFFERmod-
ule to be stored.

In the execution controller,on figure 5, there is only one
BEHAVIOR module representing the decision structure.
The BEHAVIOR module implements the BDL program
using Esterel language. We have implemented a com-
piler carrying out the compilation of BDL program into
Esterel code and also building the main module Esterel
representing the execution controller.

The Esterel compiler allows to get a finite state au-
tomaton represented by an intermediate code (oc) that is
translated in C by a postprocessor. Of course the trouble
is the blow up of the size of automaton when the number
of methods to control becomes important. Nevertheless,
for a small number of methods, the size of the object
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Figure 5: Esterel architecture of an execution controller managing two methods

code is not too big: for six methods managed in mutual
exclusion, we have an object code of 5 Kbytes1. There is
another alternative to reduce this size. One may use an-
other mode of Esterel compiler that uses boolean circuits
instead of automata but the verification tools working for
this new data structure are under development.

4.7 Implementing a Concurrent Object with an
Execution Controller

The implementation of concurrency in the reactive ob-
ject model relies on the use of the lightweight processes
library C Threads [13] built on the Mach operating sys-
tem [25]. The creation of a reactive object implicates
the creation of a process holding at least a lightweight
process ensuring the object control by receiving the exe-
cution requests and by executing the execution controller
code. Each method execution gives way to the creation
of a lightweight process.

The object-oriented language used is C++. When cre-
ating an object, the constructor call involves the creation
of a process bound to a communication port. The object
is registered to a name server (functionality offered by
Mach facilitating object distribution), and the lightweight
process ensuring the object control is activated. These
mechanisms are gathered in a ReactiveObject class
which every reactive object must inherit.

1Object code obtained on a SparcStation 5 with cc of SunOS 4.1.4.

The implementation of reactive objects is divided into
three steps. The first step consists in building the con-
troller from a BDL program. The second one consists in
the controller implementation which is obtained by link-
ing the code of the controller to the code of the storage
structure. The last one consists of linking the execution
controller code with the code of the object and with the
code ensuring thread management and communication
between reactive objects. Figure 6 depicts these differ-
ents steps.

In the current version, every object has its own reac-
tive script that is a program representing an automaton.
That is trouble for the implementation of large applica-
tions where the number of reactive objects handled is
significant. Nevertheless, in a new implementation, this
problem will be solved by using only one reactive script
for every object class. The reactive script then acts as
a server which the instances submit their current state
and the received event. In response, the automaton sends
back the new state and the events to emit.

5 Verification of The Control Behavior

Verification is an important step in the lifespan of an
object. Object-oriented programming is concerned with
reusing: an object designed for an application may be
reused in other applications. To avoid an error in the
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Figure 6: Development steps of a reactive File object

design of an object being propagated to several applica-
tions, it is important to make sure of correct working of
this object.

In respect to correct working, we mean that the object
must be able to serve execution requests of methods per-
manently as well as respecting the control specification
of its behavior. So we must ensure that a case (sequences
of execution requests) leading to a "blocking" of the ob-
ject does not exist. These blocking cases correspond
to a problem frequently encountered within concurrent
programming: the deadlock.

For example, let us take an object having two meth-
ods met1 and met2 and the behavior control of which is
specified by the following expression

(met1 ||| met2)*

On the other hand, let us consider the met1 method calling
met2 during its execution.

If met2 is the first method being executed, a deadlock
may appear if, during the execution of met2, the execution
of met1 starts. The execution of met1 needs to execute a
the call of met2. As met2 is being executed, met1 must
wait for the end of the current execution ofmet2 to know if
its request is satisfied. However, when met2 is terminated,
it is no longer ready for execution

(met1 ||| met2)* =3D
(met1 ||| met2) ; (met1 ||| met2)*

So the execution request for met1 cannot be satisfied any
longer and so met1 cannot achieve its execution. That

leads to the case when neither of these methods can be
executed any longer.

Because of our approach this problem can be detected
formally. If we are able to statically2 determinate the call
graph of the methods of an object, it is then possible to
build Esterel modules expressing this information. These
modules are compiled with the module representing the
execution controller to generate an automaton on which it
is possible to determinate deadlock states. These modules
"simulate" the execution of a method and communication
between methods may be introduced to allow verification.

The automaton, on which the verification is carried
out, is obtained after compiling an Esterel simulation
module composed of a controller module and modules
representing the execution of every method managed by
the controller. For this simulation module, the start and
term events are considered as internal events (to the ob-
ject) and so are not visible in the interface of simulation
module. This interface takes as inputs the request events
corresponding to the methods managed by the execution
controller and the done events of called methods. The
done events of the methods managed by the controller
and the request events of the called methods are out-
puts.

This modular architecture allows a modular approach
of verification by checking correctness at the object level.
In assembling the simulation modules of several objects

2This constraint excludes obviously the mechanisms such as func-
tion pointers.



it is possible to check the correctness of the behavior of
a group of objects.

Compiling a simulation module, we get an automaton
on which we can verify properties with the Fc2Tools [7]
verification tool developed in INRIA3.

Fc2Tools is designed as the set of programs using the
same automaton format (fc2). The internal representation
of automata is carried out using binary decision diagrams
(BDD) and so a more efficient representation in memory
is allowed. So the limits on the size of automata to be
verified are extended. If a deadlock is detected, then an
event sequence leading to this deadlock is generated by
the tool.

A small example is that of a micro-wave oven. This
object is compound of two objects: a Gate and a
MWGenerator (micro-wave generator). The behavior
control of the Gate object is the following:

(open ; close)*

and that of the MWGenerator is:

(on ; off)*

The behavior control of the aggregate can be defined as:

( (open ; close) #4 (on ; off) )*

But we can refine this control by precising the user to
open the door while the generator is working. As this is
a dangerous situation, the emission of micro-waves must
be stopped:

((open ; close)
# (on ˆ (open ; close) ; off))*

From the automaton generated by this specification, it is
possible to verify the case where the generator works and
the gate is open never occurs.

6 Related Work

Many works have been led to the area of the control of
concurrency in the concurrent object-oriented languages.
Nevertheless as far as we know few works have used a
reactive model to describe the execution control in an
object.

Concerning the control of concurrency in the concur-
rent object-oriented languages, we can distinguish four
approaches:

3Institut National de Recherche en Informatique et Automatique –
France.

4The priority operator "#" expressed here a notion of possibility, the
working of the generator being not mandatory before open it again.

� the mechanisms based on the synchronization coun-
ters developed by ROBERT and VERJUS [24] in which
the execution state of methods is determinated by
updating a set of three counters arrival, start, and
term. These counters are mainly used in guards:
conditions associated to the activation of a method.
We find these counters again in different languages
such as Guide [15] or Dragoon [14]. If the approach
has a great power of expression, using it is still dif-
ficult owing to its complexity.

� the path expressions [9] use a notation derived from
regular expressions to specify synchronization con-
straints. We find these expressions in Procol [28].
These expressions have influenced the designers of
Electre too and thus indirectly the BDL operators.

� in Eiffel// [10] there exists a special method ensuring
the request processing. This method presents many
similitudes with the execution controller. However
our approach owns a management of the intra-object
concurrency and is supported by a formal model.

� in the enabled-sets which has been developped with
the Rosette language [27], the control is defined by
defining states of control. For these states, a specific
set of methods allowed to be executed is defined.

Concerning the works using reactive language and ob-
ject, there are two main ways:

� the Objectcharts [12] which use the Statecharts. The
Statecharts represent a reactive language based on
a visual formalism. If this formalism is pleasant
to use, the designers are not very clear about the
executability of the specifications and on its imple-
mentation.

� BOUSSINOT’s works [8] that consist of defining a
prototype of an object-oriented language based on a
synchronous execution model. In this approach, a
reactive object holds attributes and methods. These
last ones are "reactive agents". Opposite to our ap-
proach, these methods are reactive code and the
aimed purpose is to structure a reactive program
with an object-oriented approach.

7 Conclusion And Future Works

We propose BDL, a language to control the behavior
of concurrent objects. This language allows to program
a special entity in the object: the execution controller.
Adding an execution control allows a concurrent object
to make it permanently receptive to its environment. This
feature of reactive objects is important for the reliability



of an application because it guarantees an answer to the
object requesting a service. The nature of the answer
depends upon the behavioral logic of the receiver object
and its state. The reactive object allows to preempt ex-
ecutions that allows its adaptation to the modification of
its environment.

Using reactive objects is twofold: it allows intra-object
concurrency management and fast adaptation to external
stimuli. A reactive object offers the possibility of ex-
ecution concurrently several methods with respect to a
clearly expressed semantics.

This model extends the object reusability in two ways.
The definition of an execution controller as a complete
entity offers the possibility of modifying the behavior
of an object in a quite simple manner by replacing the
existing controller with a new one. This replacing must
be of course made respecting the type of its inputs and
outputs.

Using an automaton as target code enables us to dis-
pose of a mathematical model upon a certain number of
properties can be verified. Proofs enable us to control that
the initial specification have been correctly translated.

BDL cannot express conditions of activation related to
objet attributes. This restriction is a constraint imposed
by verification tools. We are now working towards this
way be using Toupie [23] a constraint language working
on finite domains instead of Esterel.
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