
The following paper was originally published in the
Proceedings of the Conference on Domain-Specific Languages

Santa Barbara, California, October 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

ASTLOG: A Language for Examining Abstract Syntax Trees

Roger F. Crew
Microsoft Research

ASTLOG: A Language for Examining Abstract Syntax Trees

Roger F. Crew

Microsoft Research

Microsoft Corporation

Redmond, WA 98052

rfc@microsoft.com

Abstract

We desired a facility for locating/analyzing syntactic

artifacts in abstract syntax trees of C/C++ programs,

similar to the facility grep or awk provides for locat-

ing artifacts at the lexical level. Prolog, with its im-

plicit pattern-matching and backtracking capabilities,

is a natural choice for such an application. We have

developed a Prolog variant that avoids the overhead

of translating the source syntactic structures into the

form of a Prolog database; this is crucial to obtain-

ing acceptable performance on large programs. An in-

terpreter for this language has been implemented and

used to �nd various kinds of syntactic bugs and other

questionable constructs in real programs like Microsoft

SQL server (450Klines) and Microsoft Word (2Mlines)

in time comparable to the runtime of the actual com-

piler.

The model in which terms are matched against an

implicit current object, rather than simply proven

against a database of facts, leads to a distinct \inside-

out functional" programming style that is quite unlike

typical Prolog, but one that is, in fact, well-suited to

the examination of trees. Also, various second-order

Prolog set-predicates may be implemented via manip-

ulation of the current object, thus retaining an impor-

tant feature without entailing that the database be dy-

namically extensible as the usual implementation does.

1 Introduction

Tools like grep and awk are useful for �nding and

analyzing lexical artifacts; e. g., a one-line command

locates all occurences of a particular string. Unfor-

tunately, many simple facts about programs are less

accessible at the character/token level, such as the

locations of assignments to a particular C++ class

member. In general, reliably extracting such syntactic

constructs requires writing a parser or some fragment

thereof. And after writing one's twenty-seventh parser

fragment, one might begin to yearn for a more general

tool capable of operating at the syntax-tree level.

Even given a compiler front-end that exposes the

abstract syntax tree (ast) representation for a given

program, there remains the question of what exactly to

do with it. To be sure, supplying a C programmer with

a su�ciently complete interface to this representation

generally solves any problem one might care to pose

about it. One may just as easily say that all problems

at the lexical level may be solved via proper use of the

UNIX standard IO library <stdio.h>, a true, but ut-

terly trivial and unsatisfying statement. The question

is rather that of building a simpler, more useful and

exible interface: one that is less error-prone, more

concise than writing in C, and more directly suited to

the task of exploring asts. We �rst consider a couple

of prior approaches.

1.1 The awk Approach

One of the more popular approaches is to extend the

awk [AKW86] paradigm. An awk script is a list of

pairs, each being a regular-expression with an accom-

panying statement in a C-like imperative language.

For each line in the input �le, we consider each pair

of the script in turn; if the regular-expression matches

the line, the corresponding statement is executed.

Extending this to the ast domain is straightfor-

ward, though with numerous variations. One de�nes

a regular-expression-like language in which to express

tree patterns and an awk-like imperative language for

statements. The tree nodes of the input program are

traversed in some order (e.g., preorder), and for each

node the various pairs of the script are considered as

before.

We have two objections to this approach, the �rst

having to do with the hardwired framework that usu-

ally implicit. In some cases (e. g., tawk [GA96]), the

traversal order for the ast nodes is essentially �xed;

using a di�erent order would be analogous to attempt-

ing to use plain awk to scan the lines of a text �le in re-

verse order. In a* [LR95], while the user may de�ne a

general traversal order, only one traversal method may

be de�ned/active at any given time, making di�cult

any structure comparisons between subtrees or other

applications that require multiple concurrent traver-

sals. Since the imperative language is quite general

in both cases, little is de�nitively impossible, however

for some applications one may be little better o� than

when programming in straight C.

The second objection has to do with the kinds of

pattern-abstraction available. Inevitably there exist

simply-described patterns that are a poor �t to a

regular-expression-like syntax. This tends to happen

when said simple descriptions are in terms of the id-

ioms of a particular programming language; most of

the various tree-awk pattern languages tend to be de-

signed with the intent of being language independent.

Suppose one wishes to �nd all consecutive oc-

currences of one statement immediately preceding

another, e. g., places where a given system call

syscall(); is followed immediately by an assert();

(on the theory that testing of outcomes of system calls

should be done in production code rather than just

debugging code). A tree-regular-expression pattern of

the form

hsyscall() patterni; hassert() patterni

(where ; is the regular-expression sequence operator)

�nds all instances of the two calls occurring consecu-

tively within a single block, but it misses instances like

syscall();

{

assert();

...

}

and

if (...) {

syscall();

}

else {

...

}

assert();

While the tree-awk languages allow one to write

patterns to match each of these cases, without a

pattern-abstraction facility, we may be back at square

one when it comes time to look for some di�er-

ent pair of consecutive function calls. We pre-

fer to write a single consecutive-statement pattern-

constructor once and then be able to use it for a vari-

ety of cases where we need to �nd pairs of consecutive

statements satisfying certain criteria, invoking it as

follow stmt(hsyscall() patterni;

hassert() patterni)

for the above problem, or, if we instead want to be

�nding all of the places where a C switch-case falls

through, as

follow stmt(not(hunconditional-jump patterni);

hcase-labeled stmt patterni)

One solution, used by tawk, is to use cpp,

the C preprocessor, to preprocess the script, al-

lowing for pattern-abstractions to be expressed as

#define macros whose invocations are then expanded

as needed. This is unsatisfactory in a number of

ways, whether one wants to consider the problem of

recursively-de�ned patterns, macros with large bodies

that result in a corresponding blow-up in the size of

the script, or the di�culty of tracing script errors that

resulted from complex macro-expansions.

Another way out is to fall back on the procedural

abstraction available in the imperative language that

the patterns invoke. One essentially uses a degenerate

pattern that always matches and then allows the im-

perative code to test whether the given node is in fact

the desired match, de�ning functions to test for par-

ticular patterns. Once again, it seems we are back to

programming in straight C and not deriving as much

bene�t from having a pattern language available as we

could be.

In general, the philosophical underpinning of the

awk approach is that the designer has already de-

termined the kinds of searches the user will want to

do; the e�ort is put towards making those particu-

lar searches run e�ciently. There is also an assump-

tion that the underlying imperative language for the

actions has all the abstraction facilities one will ever

need, so that if the pattern language is lacking in vari-

ous ways, this is not deemed a serious problem. While

this is not an unreasonable approach, we have less con-

�dence of having identi�ed all of the reasonable search

possibilities, and thus would prefer instead to make

the pattern language more exible and extensible, be-

ing willing to sacri�ce some e�ciency to do so.

1.2 The Logic Programming Approach

Another common approach is to run an inference en-

gine over a database of program syntactic structures

[BCD
+
88, BGV90, CMR92]. Prolog [SS86] is a con-

venient language for this sort of application. Back-

tracking and a form of pattern matching are built in,

the abstraction mechanisms to build up complex pred-

icates exist at a fundamental level, and �nally, Prolog

allows for a more declarative programming style.

script ::= named-clause* script �le syntax

query ::= imports? (varname*) clause-body ; query syntax

imports ::= { varname+ }

named-clause ::= opname anon-clause

anon-clause ::= (term*) clause-body? ;

clause-body ::= <- term+

Essential Term Syntax

term ::= literal reference to denotable object

::= varname

::= opname (term*) compound term

::= FN imports? (anon-clause+) anonymous predicate-operator-valued (\lambda") term

::= ' opname arity-spec? named predicate-operator-valued (\function quote") term

::= (term)(term*) \application" term

Gratuitous Term Syntax

::= # constname named constant (� corresponding literal number)

::= [term*] [] � nil(), [term] � cons(term; nil()), etc: : :

::= [term+ | term] [term1 | term2] � cons(term1,term2), etc: : :

arity-spec ::= / integer

Figure 1: Complete Syntax of astlog

The problems with using Prolog are two-fold. First

there is the issue of e�ciency. Second, we must rep-

resent the ast for our source program in the Prolog

database. Large programs (10
5 � 10

6
lines) will result

in correspondingly large Prolog databases, most likely

with a signi�cant performance penalty.

We �nesse the second problem by not attempting to

import the source program's ast at all, instead opt-

ing to modify the interpretation of the predicates and

queries of Prolog so as to be applicable to external

objects rather than just facts provable in the existing

database. Removing reasons that require the database

to grow beyond the initial script creates signi�cant op-

portunities for optimization. This, however, requires

removing primitives like assert() and retract() that

allow for the dynamic (re)de�nition or removal of pred-

icates, which in turn removes many higher-order logi-

cal features that are de�ned in terms of them. Fortu-

nately, some of the more essential ones can be restored

at relatively little cost.

2 Elements of astlog

Figure 1 gives the complete syntax for our language,

astlog. The astlog interpreter reads a script of

user-de�ned predicate operator de�nitions and then

runs one or more queries.

As in Prolog, the de�nition of a user-de�ned predi-

cate operator is composed of one or more clauses. A

compound term opname(term; : : :) appearing at top

level in a clause body is interpreted as a predicate,

whether opname be primitive or user-de�ned. In the

latter case, the script is searched for a de�ning clause

whose head terms successfully unify with the respec-

tive operand terms of the given compound term, vari-

ables are bound accordingly, and the terms of the

clause body are likewise interpreted. The clause suc-

ceeds (i. e., is found to be true) if all of its body terms

succeed. Whenever a clause head fails to unify, or a

clause body term fails (i. e., is found to be false), or

any primitive term fails by the rules of evaluation of

that primitive, we backtrack to the last point where

there was a choice (e. g., of clauses to try for a given

compound term) and continue.

A query is a clause whose head terms are all vari-

ables. Ultimately, whenever all terms of a query body

succeed, the bindings of any variables listed in the

query head (qhead) are reported. Otherwise, we re-

port failure. Thus far, this is all exactly like Prolog.

2.1 Objects

astlog refers to external objects. Given a C/C++

compiler front end that provides a (C++) interface

to the syntactic/semantic data structures built dur-

ing the parse of a given program, it is simple to graft

this onto the core of astlog so that it may recognize

object references corresponding to

� whole C/C++ programs,

� single �les,

� symbols,

� ast nodes (including statements, expressions, and

declarations), and

� C/C++ type descriptions.

For the purposes of astlog, an object is simply some

external entity that is signi�cant for its identity and

for the primitive predicates that it may satisfy. To

simplify the language we regard the traditional con-

stants (integers, oats, and strings) to be references

to \external" objects as well, though one could just as

easily take the converse view in which the universe of

object references is just a (very large) pool of constants

(\atoms" in the usual Prolog terminology).

In any case, object references are terms in astlog.

Only references to equal objects can unify, equal-

ity meaning numeric equality for numbers, same-

sequence-of-characters for strings, and identity for all

other classes of objects. Only objects that have deno-

tations (numbers, strings and the unique null object *)

can �nd their way into scripts.

2.2 The Current Object

The �rst signi�cant departure from the Prologmodel is

that a query or predicate term always evaluates under

an ambient current object. Every query and every term

being evaluated as a predicate is not so much a stand-

alone statement that may or may not be intrinsically

true (i. e., provable from the \facts" in the script) as it

is a speci�cation that may or may not be satis�ed by

the current object, or, alternatively, a pattern that may

or may not match the current object. For example, in

Prolog

odd(3)

always succeeds by virtue of 3 being odd or because

the \fact" odd(3) exists in the script somewhere. By

contrast, in astlog

odd()

succeeds if the current object happens to be the integer

3, fails if the current object is 4, and raises an error

if the current object is the string "Hi mom". Another

way to view this is that every predicate term takes an

extra, hidden current-object operand.

While one normally only expects to see compound

(and application) terms in predicate position, astlog

allows variables and object references there as well.

The rules for matching are as follows:

� An object reference matches the current object i�

it references an equal object.

� A bound variable matches according as whatever

term it is bound to.

� An unbound variable gets bound to reference the

current object (and thus automatically matches

it).

� A compound term whose operator is de�ned via

clauses matches i� there exists a clause whose

head operands unify with the term operands and

whose body terms themselves all match the cur-

rent object.

Section 3.1 describes the operator-valued and applica-

tion terms.

The evaluation rules for compound terms having

primitive operators are widely varied, however the

operands are usually treated one of two ways:

1. (foo-pred) requiring the operand to be match some

object (which becomes the current object for that

evaluation), not necessarily the same current ob-

ject as that which the full term is being matched

against. For example, the operand of strlen (see

Figure 2) and the second operand of with are

treated this way.

2. (foo) requiring the operand be an object reference,

whether this be a literal or an object-reference-

bound variable. The operands of re, gt, and the

�rst operand of with are treated this way.

Most primitives also expect a current object to be of

a particular kind and raise an error if confronted with

something di�erent.

The use of an implicit current object is not by it-

self an increase in expressivity. If we had, in a Prolog

database, terms representing the various ast nodes,

there would be a fairly straightforward translation of

astlog terms into Prolog terms, one in which we sim-

ply modify all terms to make the current object an

explicit operand.

Nevertheless, astlog programs exhibit a distinct

style of programming. Consider as an example that

we might, in a typical functional language, write a

function call

strlen(string)

to �nd the length of the string returned by the ex-

pression string. Here the length result is implicitly

returned to the context of the call. In Prolog, the nat-

ural style would be to express this as a relation

strlen(string; length)

which stipulates that length is in fact the length of

string. In astlog, we would write

strlen(length-pred)

where now it is the string argument that is implic-

itly supplied (as the current object) by the context

while the length result is returned to the subterm

length-pred, which in turn can be some arbitrary term

expecting a numeric current object as its implicit ar-

gument. For example, given an odd() predicate as

� and(object-pred; : : :)

The current object satis�es every object-pred operand.

� or(object-pred; : : :)

The current object satis�es some object-pred operand.

� if(object-pred; then-pred; else-pred)

The current object satis�es then-pred or else-pred ac-

cording as it satis�es or fails to satisfy object-pred

(once; if object-pred matches but then-pred does not,

we do not retry object-pred).

� not(object-pred)

= if(object-pred; or(); and())

� with(object; object-pred)

object satis�es object-pred (outer current object is ig-

nored).

� strlen(integer-pred)

The current string object has length satisfying

integer-pred.

� re(string)

The regular expression string matches the current

string.

� gt(integer)

The current integer is greater than integer.

� minus(integer-pred; integer)

integer-pred matches the current integer + integer.

� minus(integer; integer-pred)

integer-pred matches integer � the current integer.

(An error is raised if neither operand of a minus term

is an integer object reference.)

� plus(integer-pred; integer)

integer-pred matches the current integer � integer.

Figure 2: Some core astlog primitives

above, the term strlen(odd()) would match any string

consisting of an odd number of characters. It is this

\inside-out functional" evaluation strategy that makes

astlog well-suited to constructing anchored patterns

to match tree-like structures.

2.3 Examples

Given the set of ast node primitives in Figure 3, we

could write

and(op(#=); kid(#LEFT; asym(sname("foo"))))

which would be satisi�ed by any ast node that is an

assignment (=) expression whose left-hand side is itself

a symbol expression where the symbol name is "foo".

Here, #= and #LEFT are numeric literals for the assign-

ment node opcode and the assignment target's child-

index, respectively.

To de�ne a predicate assignment/2 to match as-

signment nodes, a script could include the clause

assignment(target; value)

<- op(#=);

kid(#LEFT; target);

kid(#RIGHT; value);

which would then allow writing the previous term as

assignment(asym(sname("foo")); _)

As in Prolog, the underscore (_) is \wild-card" vari-

able, i. e., one that is internally given a distinct iden-

tity so as not to be conated with any other instances

of _. Such a variable, being guaranteed to be unbound,

will match any object or unify with any term.

De�ning a general purpose node-traversal predicate

is also straightforward

somenode(pred)

<- or(pred; kid(_; somenode(pred)));

Given this de�nition, an attempt to match

somenode(test) to a given node will create an instance

of the de�ning clause of somenode/1 above with pred

bound to test. Satisfying the clause body requires that

either pred match the current node, or, if (when) that

fails, that kid(_,somenode(pred)) match the current

node. The latter in turn will attempt to match the

variable _ with 0 (easy) and the term somenode(pred)

with the �rst child, and, when that fails, _ with 1 and

somenode(pred) with the second child, etc: : :Making

the interpreter fail and backtrack after each hit (in the

usual manner of Prolog) eventually causes test to be

matched with the original node and all of its descen-

dants.

� parent(ast-pred)

This ast node is not a root node and its parent sat-

is�es ast-pred.

� kid(integer-pred; ast-pred)

This ast node has a child satisfying ast-pred whose

(0-based) index satis�es integer-pred.

� kidcount(integer-pred)

The number of children of this ast node satis�es

integer-pred.

� op(integer-pred)

The opcode of this ast node satis�es integer-pred.

� atype(type-pred)

This ast node has a return type satisfying type-pred.

� asym(symbol-pred)

This ast node is a symbol satisfying symbol-pred.

� aconst(const-pred)

This ast node is a constant (integer, oat or string)

satisfying const-pred.

� sname(string-pred)

This symbol's name satis�es string-pred.

There are named constants available for designating the

opcodes of various kinds of nodes for use in op() terms, and

the indices of particular children for use in kid() terms.

Figure 3: Some primitive node and symbol predicates

So, if we issue the query

(v) <- somenode(

assignment(asym(sname("foo")); v)

);

on the root node of some function's ast, we obtain, via

the successive bindings reported for v on each hit, all

of the expressions assigned to variables named "foo"

within that function.

As an example that makes less trivial use of back-

tracking, consider the problem of whether two trees

have the same structure (i. e.., root nodes have the

same opcode and all corresponding children have the

same structure).

sametree(node)

<- op(nodeop);

with(node; op(nodeop));

not(and(with(node; kid(n; nkid));

kid(n; not(sametree(nkid)))));

This de�nes a predicate sametree(node) that holds i�

node is a reference to an ast node with the same struc-

ture as the current object. The �rst line of the clause

body binds the current node's opcode to nodeop, the

second line compares that to the opcode of node, while

the remaining lines search for children whose subtrees

have distinct structure. The term kid(n; nkid) will

match each child of node, since both variables are ini-

tially unbound. If sametree(nkid) happens to be true

of the corresponding child of the current node, the in-

ner not fails and we go back and try another child of

node. If sametree(nkid) happens to be true of ev-

ery corresponding child of the current node, then the

enclosing not and thus the outer sametree(node) in-

vocation succeeds.

The preceding version of sametree/1 is a purely

structural comparison; there is no attempt to take ac-

count of the commutativity/associativity of the vari-

ous operators, e. g., a+b and b+a are not considered

the same. If, say, we did want to consider commuta-

tivity, we could de�ne

csametree(node)

<- op(nodeop),

with(node,op(nodeop)),

kidcount(if(with(nodeop,commutes()),

any_perm(perm),

id_perm(perm))),

not(and(with(node,kid(corresp(perm,n),

nkid)),

kid(n,not(csametree(nkid)))));

along with suitable de�nitions of

commutes()

the current integer is the opcode of a commutative

operator,

any_perm(perm)

perm is any permutation of the sequence 0, : : : ,
(hcurrent-objecti � 1),

id_perm(perm)

perm is the identity permutation of the sequence

0, : : : , (hcurrent-objecti � 1),

corresp(perm;n)
permutation perm takes the current integer to

something matching n.

Here, permutations can be represented by list terms.

Note that since all of the commutative C/C++ opera-

tors are, in fact, binary, this all simpli�es signi�cantly.

It should, incidentally, be clear that there is nothing

about the core language that is speci�cally tailored for

the examination of compiler-produced asts, let alone

asts for a given language. The language in fact lends

itself to the examination of a wide variety of exter-

nal structures, e. g., hierarchical �le systems, or col-

lections of web pages. All that is needed is a suitable

collection of primitive astlog predicates for querying

said structures.

// FOLLOW_STMT(P1 P2)

// <=> P1 and P2 are true of consecutive statements in this AST

follow_stmt(p1, p2)

<- if(op(#FUNCTION),

kid(#FUNCTION/BODY, follow_stmt(p1,p2,*)),

follow_stmt(p1,p2,*));

follow_stmt(p1, p2, after)

<- cond(op(#BLOCK), follow_block_stmt(p1, p2, after),

op(#IF), kid(not(#IF/PRED),follow_stmt(p1, p2, after)),

op(#SWITCH), kid(#SWITCH/BODY, follow_stmt(p1, p2, after)),

op(#WHILE), follow_iter_stmt(#WHILE/BODY,p1, p2, after),

op(#DO), follow_iter_stmt(#DO/BODY, p1, p2, after),

op(#FOR), follow_iter_stmt(#FOR/BODY, p1, p2, after),

or(op(#LABEL),op(#CASE),op(#DEFAULT)),

kid(#LABELSTMT/STMT, follow_stmt(p1, p2, after)),

follow_simple_stmt(p1, p2, after));

follow_simple_stmt(p1, p2, after)

<- with(after, not(*)), p1, with(after, first_stmt(p2));

follow_iter_stmt(nbody,p1,p2,after)

<- or(follow_simple_stmt(p1, p2, after),

and(this, kid(nbody, follow_stmt(p1, p2, this))));

follow_block_stmt(p1, p2, after)

<- and(kid(minus(next,1), first),

if(kid(next, second),

with(first, follow_stmt(p1, p2, second)),

with(first, follow_stmt(p1, p2, after))));

first_stmt(p)

<- if(op(#BLOCK),

kid(0,first_stmt(p)),

stmt);

// CASEFALL()

// emits all locations of switch-case fallthroughs in this AST tree

casefall()

<- follow_stmt(and(not(op(or(#BREAK,#CONTINUE,#GOTO,#RETURN))),first),

op(#CASE)),

with(first,sfa(emit("Fall through to next case.")));

Figure 4: Actual astlog code for follow stmt and how one uses it to �nd case statement fallthroughs. The cond

operator is an if-then-elseif- construct, that is, cond(p1; e1; p2; e2; : : : ; e) is equivalent to if(p1; e1; if(p2; e2; : : : e)).
sfa(emit(string)) always succeeds and, as a side-e�ect, emits the source location of the current ast node in

grep-output form.

flatten(test, lst)

<- flatten(test, lst, []);

flatten(test, head, tail)

<- if(test,

first(head, hrest),

unify(head, hrest)),

flattenkids(test, 0, hrest, tail);

flattenkids(test, n, head, tail)

<- if(kid(n, flatten(test, head, mid)),

and(with(n, minus(nplus1,1)),

flattenkids(test, nplus1,

mid, tail)),

unify(head, tail));

first([o|rest],rest) <- o;

unify(x,x);

Figure 5: De�nition of flatten

3 Higher order features

We have already included some of the non-1st-order

features of Prolog, notably \cut" (in the form of if())

and the corresponding notion of negation, not().

There are others that turn out to be essential as well.

3.1 Lambdas and Applications

One may observe that, in somenode(test), because this

is an existential query, it does not matter that we are

matching the same term test to every node of the tree.

If variables in test get bound as a result of matching

a given node, those bindings will be undone prior to

advancing to the next node.

If one instead wants to write a conjunctive predicate

over all tree nodes, say

flatten(test; list)

which holds if list is a list of all descendant nodes

satisfying test, | we give a de�nition in Figure 5 |

this will not work correctly if test contains any vari-

ables that are bound during the course of matching any

node; said variables will stay bound for the duration

of the flatten evaluation.

Even in an existential query, there is the possibility

that the test being passed in will itself need to take a

parameter. For example, one might imagine de�ning

a version of sametree that also requires an additional

user-speci�ed test to hold at each corresponding pair

of nodes. If test is a mere compound term, it can be

matched against one of the nodes, but not both.

Thus we introduce \application" terms and

operator-valued terms (\lambdas"). For an applica-

flatten2(test, lst)

<- flatten2(test, lst, []);

flatten2(test, head, tail)

<- if((test)(value),

unify(head, [value|hrest]),

unify(head, hrest)),

flatten2kids(test, 0, hrest, tail);

flatten2kids(test, n, head, tail)

<- if(kid(n, flatten2(test, head, mid)),

and(with(n, minus(nplus1,1)),

flatten2kids(test, nplus1,

mid, tail)),

unify(head, tail));

unify(x,x);

Figure 6: Parameterized version, flatten2

tion (fterm)(term; : : :) to match the current object,

the term fterm must be (or be a variable bound to) a

predicate-operator-valued term, which will either be

� a reference, 'foo/3 to a named predicate oper-

ator, in which case the application evaluates ex-

actly as the corresponding compound term would,

or

� an anonymous predicate operator

FN{importvars : : :}(anon-clauses : : :), in which

case the application evaluates almost exactly as

if there were a named predicate-operator de-

�ned by the given clauses and this were a com-

pound term on that operator. The di�erence is

that any variables of those clauses that are also

on the {importvars: : :} list are identi�ed with

the correspondingly-named variables in the clause

where the FN term occurs lexically.

An FN term with imports can be thought of as a kind

of closure.

The parameterized version of flatten, namely

flatten2(test; list)

which holds i� list is a list of all x corresponding to

descendants that (test)(x) matches, is de�ned in Fig-

ure 6.

The parameterized version of sametree is invoked

as

sametree(node; equiv)

which holds i� node is a reference to an ast node with

the same tree structure as the current node and, for

every descendant n of node, the corresponding node in

the current tree satis�es equiv(n); this predicate is de-

�ned in Figure 7. This de�nition demonstrates the use

sametree(node,equiv)

<- unify(same,

FN{same,equiv}

((node)

<- op(nodeop),

with(node,op(nodeop)),

(equiv)(node),

not(and(with(node,kid(n,nkid)),

kid(n,not((same)(nkid))))))),

(same)(node);

Figure 7: Parameterized version of sametree

of import lists, both to de�ne a recursive anonymous

predicate, and to make equiv available at once to all

evaluations of that predicate. Given that de�nition,

the following

sametree(node;

FN((n) <- if(aconst(c);

with(n; aconst(c));

and());))

would then test whether the current tree has the same

structure as underneath node and such that all corre-

sponding constants are the same.

3.2 Queries as Objects

Sometimes one wishes to build a collection or some

other kind of aggregate of all objects found by a query.

Unfortunately, when backtracking to get to the next

hit, information about the previous hit will generally

be lost. One solution is to rewrite the query into a

conjunctive form, as we did in the previous section

converting writing flatten as a conjunctive version

of somenode (see Figure 5). We can already see that

even in simple cases this process can be non-trivial and

is not readily generalized.

It may also be the case for some conjunctive queries

that they require memory proportional to the size of

the data structure being searched, instead of merely

memory proportional to the depth of the data struc-

ture. Judicious use of if() | astlog's moral equiv-

alent of the cut operator | can avoid this, but this is

sometimes cumbersome to get right.

As it happens, Prolog provides a number of set-

predicates for accumulating query results. For exam-

ple,

bagof(x; term; list)

binds list to a list of the bindings of x corresponding

to each instance where term holds true. Unfortunately,

this is usually implemented in terms of assert and

retract, meaning we would have to abandon the idea

� query(fterm; query-pred)

The embedded query state object created from fterm

satis�es query-pred.

� qnext(pred; thisquery-pred; nextquery-pred)

If the current embedded query state is a failure,

pred is true, otherwise the current object satis�es

thisquery-pred and, after the embedded query is ad-

vanced to the next hit or to failure, the resulting query

state satis�es nextquery-pred.

� qget(object-pred; : : :)

Each object-pred matches the object bound to the

corresponding variable in the head of the embedded

query corresponding to the current query state ob-

ject. An error will be raised if the embedded query

has failed or if any head variable is not bound to an

object.

Figure 8: Embedded Query State Primitives

of keeping our script small and �xed. Even just adding

this as a new primitive is dubious if we have to add,

say, another new primitive to merely count query hits,

and yet more new primitives for each accumulation

method anyone dreams up.

The key observation is that the execution model of

astlog allows for the possibility of treating some sub-

set of its own internal structures as \external" objects

which can then serve as the current object of various

kinds of queries. To be sure, some care needs to be ex-

ercised, since the internal structures of astlog are not

static the way the program asts are. We can however,

take a query whose hits we wish to accumulate, and

encapsulate its state after a given hit as an astlog

object. Such an embedded query in a given state can

now be the current object for the evaluation of some

other predicate term. We thus only need to provide

suitable primitive predicates applicable to query-state

objects that may be used in such a term. Figure 8 lists

these primitives.

Using this mechanism, it is then possible to de�ne

a wide variety of accumulators of query results. Given

an ast node, and a query to see if there exists a de-

scendant satisfying test(x)

() <- somenode(test(x));

the corresponding query to count the number of de-

scendants satisfying test(x) would be

(n) <- query(FN(() <- somenode(test(x)););

qcount(n));

where qcount/1 is de�ned as in Figure 9. Evaluat-

ing the query() term starts an embedded query corre-

sponding to the �rst operand and builds a query state

object representing the resulting �rst state (�rst hit

qcount(n) <- qcount(0, n);

qcount(sofar, return)

<- qnext(unify(sofar, return),

with(sofar, minus(sofarp1,1)),

qcount(sofarp1, return));

qlist(lst)

<- qnext(unify(lst, []),

qget(first(lst,rest)),

qlist(rest));

// utilities

first([o|rest],rest) <- o;

unify(x,x);

Figure 9: Query Accumulators qcount and qlist

or failure). This object then becomes the current ob-

ject to which we try to match qcount(n). It is the

qnext() term therein that does the actual work. If the

query-state is a success state, we increment the count

of hits thus far (sofar), advance the embedded query,

and recursively try to match a qcount term to the new

state. If the query-state is a failure, we unify the count

of hits thus far with the return variable.

To build a list of bindings for x corresponding to the

query hits, we can do

(list) <- query(FN((x) <- somenode(test(x)););

qlist(list));

which is essentially the same as before except that now

qlist(list) uses qget to examine the query state.

Since the embedded query has only one head vari-

able x, the qget term must likewise have at most one

operand.

Some care is required when using embedded queries

to phrase them so that the head variables will always

be bound to objects. qget() will in fact raise an er-

ror if a head variable is not bound to an object. This

requirement is crucial since, with a non-object term,

there is no guarantee that said term will remain in-

tact when the embedded query backtracks to the next

state. Better to keep terms constructed by an embed-

ded query from polluting the outer world.

The mechanism is also somewhat impure in that

evaluating a qnext on a given query state object es-

sentially destroys that object. Subsequent attempts to

match additional terms against that query state will

raise an error since the state of a query is lost once we

advance it.

4 Implementation

astlog has been implemented as an interpreter in

roughly 11,000 lines of C++ for the core astlog in-

terpreter and supporting utilities. Another 1100 lines

de�ne the roughly 60 primitives and supporting struc-

tures to invoke the various functions of the ast library.

Coverage of the library API is in not entirely complete,

but it is su�cient to perform various interesting tasks:

� Finding all instances of a simple assignment ex-

pression (=) occurring in any boolean context, for

example,

if ((major == SORTM)

|| (major == MEMORYM)

|| ((major == BUFFERM)

&& (minor = B_NOIO)))

� Finding all instances of an equality-test (==) or

dereference expression occurring in any void con-

text (i. e., where results are discarded); the con-

verse to the previous problem.

� Finding all case statement fall-throughs, i. e.,

where the preceding statement is not a break.

� Finding various patterns of irreducible control-

ow in functions.

� Obtaining all static call-graph edges.

� Computing the McCabe cyclomatic complexity

[McC76] of a function. Our code to do so looks

like

mccabe(n) <- query(

FN(()<- somenode(

op(or(#IF,#FOR,#DO,

#WHILE,#CASE,

#?,#||,#&&)));)

qcount(minus(n,1))

);

which might be compared with the 17-line version

in Aria [DR96]. Admittedly, fairness would prob-

ably entail including the de�nitions of somenode

and qcount as well.

� Finding gaps (unused space due to alignment

rules) in structure de�nitions; this is a matter of

traversing C type structures rather than asts.

A typical running time (on a 200MHz Pentium P6 with

64meg of RAM) for a one-pass search that evaluates

a simple predicate on every ast node in Microsoft

SQLserver (roughly 450,000 lines, 4300 functions) is

roughly 10 minutes, of which 7.5 minutes are taken up

by the ast library building the actual trees. For Mi-

crosoft Word (roughly 2,000,000 lines) the correspond-

ing times are 45-60 minutes of which about 30 minutes

is taken up by the tree builder.

Though this dreadfully slow in comparison with

grep, these times are arguably acceptable in compar-

ison with the times taken by the actual compiler |

what one might expect for a tool that requires the use

of compiler's data structures. One is, of course, free

to write arbitrarily non-linear programs in astlog, so

there are no guarantees. In any case we would doubt-

less see a certain amount of speedup if we actually were

to attempt some kind of compilation of the astlog

code.

5 Conclusions and Future Work

We have described a language for doing syntax-level

analysis for C/C++ programs, though the core lan-

guage is, in fact, adaptable to many other kinds of

structures. As with previous such tools, the utility

to users who are thus no longer required to write

their own parse/semantic-analysis phase is apparent.

The contribution here is a pattern language su�ciently

powerful to provide traversal possibilites beyond what

is naturally available in prior awk-like frameworks

while avoiding some of the ine�ciencies of importing

the entire program structure into a logical inference

engine. The Pan work [BGV90] stressed the need to

partition code and data; this we have done in a rather

straightforward way. The surprise is that the Prolog-

with-an-ambient-current-object model turns out to be

so well suited to analyzing treelike structures.

To be sure, there are various rough edges:

1. As already noted, embedded queries are slightly

unsafe; there may exist a more robust set of primi-

tives to use. Some form of type inference to detect

unsafe uses of qnext may also be worth consider-

ing. More generally, there is the issue of typing

of astlog expressions to reduce the incidence of

unbound variables or objects of the wrong type

appearing as operands where object-references of

a particular type are required.

2. Occasionally, we run up against the generally

cumbersome nature of arithmetic in Prolog, which

is arguably worse in astlog. The \inside-out

functional" nature of astlog may be good for

ast patterns, but it can make arithmetic opera-

tions like

with(n; divide(minus(x; 1); 2))

downright unreadable. Algebraic syntax could

help, e. g.,

with(n; (x� 1)=2)

but even so, one must stare at this pretty hard to

realize that n is being multiplied by 2 and then

incremented by 1.

One possibility is to complicate the language by

introducing actual \forward" functional operator

de�nitions. For example, with such forward op-

erators for addition and multiplication, one could

then write

with(2 � n+ 1; x)

where the appearance of the + (plus) term in

a slot normally requiring an object reference in-

vokes the forward return-value-to-context de�-

nition of the operator + to sum its operands

rather than the usual \backward" return-value-

to-operand de�nition (see Figure 2) in which one

operand is treated as a predicate.

3. Though there is a surprising amount of mileage to

be had via instantiating terms with unbound vari-

ables in them, there are those occasions when a

genuinely mutable data structure is required. For-

tunately, given the strong partition between the

script/database and the objects, having mutable

objects exist and primitives that side-e�ect them

when they match would not disrupt astlog's ex-

ecution model.

4. Currently, new primitives need to be manually

written. Given the current collection of macros

available, this is not actually an arduous task.

Still, while language-independence was not one

of our priorities, given that the core language is

rather language-independent anyway, one would

hope for a more automatic means of adapting

astlog to work with other language parsers, per-

haps by adapting GENII [Dev92] or some similar

tool to generate code for the basic primitive pred-

icate operators for a fresh language.

6 Acknowledgements

astlog would not have been possible without the ex-

istence of an ast library for C/C++ implemented by

the members of Program Analysis group at Microsoft

Research, particularly Linda O'Gara, David Gay, Erik

Ruf and Bjarne Steensgaarde. I would also like to

thank Bruce Duba, Michael Ernst, Chris Ramming,

and the conference reviewers for much useful commen-

tary and discussion.

References

[AKW86] A. V. Aho, B. W. Kernighan, and P. J.

Weinberger. The AWK Programming Lan-

guage. Addison Wesley, Reading, MA,

1986.

[BCD
+
88] P. Borras, D. Clement, Th. Despeyroux,

J. Incerpi, G. Kahn, B. Lang, and V. Pas-

cual. Centaur: The system. In Proceed-

ings of the SIGSOFT/SIGPLAN Software

Engineering Symposium on Practical Soft-

ware Development Environments, Boston,

MA, 1988.

[BGV90] Robert A. Ballance, Susan L. Graham,

and Michael L. Van De Vanter. The

pan language-based editing system for inte-

grated development environments. In Pro-

ceedings of the 4th ACM SIGSOFT Sym-

posium on Software Development Environ-

ments, pages 77{93, Irvine, CA, 1990.

[CMR92] Mariano Consens, Alberto Mendelzon, and

Arthur Ryman. Visualizing and querying

software structures. In Proceedings of the

Fourteenth International ACM Conference

on Software Engineering, pages 138{156,

1992.

[Dev92] Premkumar T. Devanbu. Genoa - a

customizable, language-and-front-end in-

dependent code analyzer. In Proceedings of

the Fourteenth International ACM Confer-

ence on Software Engineering, pages 307{

319. ACM Press, 1992.

[DR96] Premkumar T. Devanbu and David S.

Rosenblum. Generating testing and anal-

ysis tools with aria. ACM Transactions

on Software Engineering and Methodology,

5(1):42{62, January 1996.

[GA96] William G. Griswold and Darren C. Atkin-

son. Fast, exible syntactic pattern match-

ing and processing. In Proceedings of the

IEEE Workshop on Program Comprehen-

sion. ACM Press, 1996.

[LR95] David A. Ladd and J. Christopher Ram-

ming. A*: A language for implementing

language processors. IEEE Transactions

on Software Engineering, 21(11):894{901,

November 1995.

[McC76] T. McCabe. A complexity measure.

IEEE Transactions on Software Engineer-

ing, 2(4):308{320, December 1976.

[SS86] Leon Sterling and Ehud Shapiro. The Art

of Prolog: Advanced Programming Tech-

niques. MIT Press series in logic program-

ming. The MIT Press, Cambridge, MA,

1986.

Appendix

For those who would prefer to see a slightly more for-

mal description, we include a brief outline of an oper-

ational semantics for astlog in Figure 10, one that

bears some resemblance to the actual implementation.

For any given term that is not an object reference,

one may imagine there being numerous instances of

that term in existence at any given time. We di�eren-

tiate the various instances by assigning each a unique

frame identi�er (f) which is only signi�cant for its

identity. A variable v occurring within a given term t

may, for a particular instance hf; [[t]]i of that term,

be bound to some object o or other term instance

hf 0; [[t0]]i, this being indicated by having a binding,

i.e., one of hf; [[v]]i � o or hf; [[v]]i � hf 0; [[t0]]i present
in the current binding stack, which in turn is nothing

more than a list of bindings. The semantic function

vlookup(B; hf; [[t]]i) returns

� hf; [[t]]i itself if t is not a variable.

� ? if the variable t is not bound in B.

� o if hf; [[t]]i � o is in B

� vlookup(B; hf 0; [[t0]]i) if hf; [[t]]i � hf 0; [[t0]]i is in B.

At any given time, the full state of our abstract ma-

chine is described by a failure of the form B ` C :: F
which consists of

� the current binding stack B,

� the current continuation C = (o; f; g; C 0
), which

in turn consists of a current object o, a current

frame identi�er f , a current goal, usually a term,

but this can also be one of the auxiliary goals

\apply(: : :)" or \cut(: : :)," and �nally another

continuation C 0
to which we advance if the goal

succeeds

� the next failure F , to which we advance if the

current goal fails.

Note that unlike the case where the goal succeeds, fail-

ure may involve undoing one or more bindings; thus,

a failure (F) contains its own binding stack (a subset

of B) whereas the continuations (C, C 0
) do not.

The bottom half of Figure 10 (partially) de�nes a

transition relation between states of the abstract ma-

chine. Given an initial current object o and a query

[[query]] with n head variables, we take the initial state

to be

F0 = [] ` (o; f0; apply(f0; [[query]]; [[v1; : : : ; vn]]); yes) :: no

If there is a sequence of transitions

F0 �!
� B1 ` yes :: F1

then we have a hit and the various query head bindings

are available as vlookup(B1; hf0; [[vi]]i) for i = 1 : : : n.
Likewise, if

Fk �!
� Bk ` yes :: Fk+1

then we have a (k + 1)
th

hit.

The semantic function

mgu(B; f; [[t1; : : : ; tn]]; f
0; [[t01; : : : ; t

0

n
]])

returns an augmented binding stack that includes B
together with those additional bindings that make up

the most general uni�er of the respective term in-

stances hf; [[t1]]i with hf 0; [[t01]]i, etc: : : . If there is no

most general uni�er, mgu() returns ufail.

In the actual implementation, because the script is

�xed, we may precompute at load time mgus of all

pairs of same-operator-and-arity compound terms oc-

curring in the script, making clause invocation no more

expensive than a function call in many cases. We also

omit the \occurs check" [SS86] for the run-time por-

tion of uni�cation (i.e., where we're transitively fol-

lowing variable bindings), with the usual increase in

speed and in�nite-loop risk. Thus far, uni�cation has

played a somewhat smaller role in astlog scripts than

expected, so there's some question whether we need to

be doing even this much.

As noted above objects only unify with equal ob-

jects. The idea of allowing an object to unify with

a compound predicate term that matches it has been

considered, but rejected due to the signi�cant compli-

cations it would introduce. Also, once one has subgoals

being attempted during the course of uni�cation, the

user's control over evaluation order is drastically re-

duced, something to be avoided if one is interested in

having users being able to write e�cient scripts.

CompTerms = OpTerms+ LambdaTerms+AppTerms [[op(t1; : : :)]]; [[FN(clauses)]]; [[(fterm)(t1; : : :)]]

NonObjTerms = Vars+ CompTerms [[var]]

Terms = NonObjTerms+Objects [[o]]

Goals = Terms [[t]]

+FrameIds� LambdaTerms � Terms� apply(f; [[fterm]]; [[t1; : : :]])

+Failures� Terms cut(F; [[t]])

Objects o

FrameIds f

Bindings = (FrameIds�Vars) hf; [[v]]i � o

� (Objects+ (FrameIds �NonObjTerms))) hf; [[v]]i � hf 0; [[t]]i

BindingStacks = Bindings� B

Conts = (Objects� FrameIds�Goals� Conts) + fyesg (o; f; [[t]]; C)

Failures = ((BindingStacks+ fufailg)� Conts� Failures) B ` C :: F

+fnog

vlookup : BindingStacks � FrameIds �NonObjTerms! f?g+Objects+ (FrameIds�NonObjTerms)

ookup : OpIds�N ! f?g+ LambdaTerms

frames : BindingStacks ! P(FrameIds)

mgu : BindingStacks � FrameIds �Terms� � FrameIds� Terms� ! BindingStacks+ fufailg

B ` (o; f; [[o]]; C) :: F �! B ` C :: F

o 6= o0

B ` (o; f; [[o0]]; C) :: F �! F

vlookup(B; hf; [[var]]i) = hf 0; [[term]]i

B ` (o; f; [[var]]; C) :: F �! B ` (o; f 0; [[term]]; C) :: F

vlookup(B; hf; [[var]]i) =?

B ` (o; f; [[var]]; C) :: F �! [@B; hf; [[var]]i � o] ` C :: F

vlookup(B; hf; [[t1]]i) = o0

B ` (o; f; [[with(t1; t2)]]; C) :: F �! B ` (o0; f; [[t2]]; C) :: F

ookup([[op]]; n) = fterm; fterm 6=?

B ` (o; f; [[op(a1; : : : ; an)]]; C) :: F �! B ` (o; f; apply(f; [[fterm]]; [[a1; : : : ; an]]); C) :: F

vlookup(B; hf; [[fterm]]i) = hf 0; [[fterm0]]i

B ` (o; f; [[(fterm)(a1; : : : ; an)]]; C) :: F �! B ` (o; f; apply(f 0; [[fterm0]]; [[a1; : : : ; an]]); C) :: F

B ` (o; f; apply(f 0; [[FNfi1; : : :g()]]; [[a1; : : : ; an]]); C) :: F �! F

f 00 62 frames(B); B0 = mgu([@B; hf 00; [[i1]]i � hf 0; [[i1]]i; : : :]; f; [[a1; : : : ; an]]; f
00; [[t1; : : : ; tn]])

B ` (o; f; apply(f 0; [[FNfi1; : : :g((t1; : : : ; tn)body1 : : : ; clause2 : : :)]]; [[a1; : : : ; an]]); C) :: F

�! B0 ` (o; f 00; [[and(body
1
: : :)]]; C)

:: (B ` (o; f; apply(f 0; [[FNfi1; : : :g(clause2 : : :)]]; [[a1; : : : ; an]]); C) :: F)

ufail ` (o; f; [[t]]; C) :: F �! F

B ` (o; f; [[and(t1; t2)]]; C) :: F�! B ` (o; f; [[t1]]; (o; f; [[t2]]; C)) :: F

B ` (o; f; [[or(t1; t2)]]; C) :: F�! B ` (o; f; [[t1]]; C) :: (B ` (o; f; [[t2]]; C) :: F)

B ` (o; f; [[if(t1; t2; t3)]]; C) :: F�! B ` (o; f; [[t1]]; (o; f; cut(F; [[t2]]); C)) :: (B ` (o; f; [[t3]]; C) :: F)

B ` (o; f; cut(F 0; [[t]]); C) :: F�! B ` (o; f; [[t]]; C) :: F 0

Figure 10: Outline of astlog Operational Semantics

