
The following paper was originally published in the
Proceedings of the Conference on Domain-Specific Languages

Santa Barbara, California, October 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

A Slicing-Based Approach for Locating Type Errors

T. B. Dinesh
CWI

Frank Tip
IBM T.J. Watson Research Center

A Slicing-Based Approach for Locating Type Errors

T. B. Dinesh Frank Tip

CWI IBM T.J. Watson Research Center

P.O. Box 94079 P.O. Box 704

1090 GB Amsterdam Yorktown Heights, NY 10598

The Netherlands USA

dinesh@cwi.nl tip@watson.ibm.com

Abstract

The e�ectiveness of a type checking tool strongly de-

pends on the accuracy of the positional information

that is associated with type errors. We present an

approach where the location associated with an er-

ror message e is de�ned as a slice Pe of the program

P being type checked. We show that this approach

yields highly accurate positional information: Pe is

a program that contains precisely those program con-

structs in P that caused error e. Semantically, we

have the interesting property that type checking Pe
is guaranteed to produce the same error e. Our ap-

proach is completely language-independent, and has

been implemented for a signi�cant subset of Pas-

cal.

1 Introduction

Type checkers are tools for determining the con-
structs in a program that do not conform to a lan-
guage's type system. Type checkers are usually
incorporated in interactive programming environ-
ments where they provide programmers with rapid
feedback on the nature and locations of type errors.
The e�ectiveness of a type checker crucially depends
on two factors:

� The \informativeness" of the type errors re-
ported by the tool.

� The quality of the positional information pro-
vided for type errors.

We believe that the second factor is especially im-
portant. For example, consider an assignment state-
ment x = y where x and y are of two incompatible
types. What is the source of the error? Speci�cally,
one might ask whether the assignment construct it-
self is \causing" the error, or if the declarations of

x and y, where the incompatible types are intro-
duced, constitute the real \source" of the error. As
another example, consider a situation where a la-
bel is de�ned twice inside some procedure. Ideally,
the location of this error would comprise both oc-
currences of the label.

We pursue a semantically well-founded approach
to answer the question of what the location of a
type error should be. In this approach, the be-
havior of a type checker is algebraically speci�ed
by way of a set of conditional equations [2], which
are interpreted as a conditional term rewriting sys-
tem (CTRS) [25]. These rewriting rules express the
type checking process by transforming a program's
abstract syntax tree (AST) into a list of error mes-
sages. We use dynamic dependence tracking [18, 28]
to determine a slice of the original program as the
positional information associated with an error mes-
sage. This approach has the following advantages:

� The tracking of positional information is com-
pletely language-independent and automated;
no information needs to be maintained at the
speci�cation level.

� Unlike previous approaches [12, 31], no con-
straints are imposed on the style in which the
type checker speci�cation is written. Error lo-
cations are always available, regardless of the
speci�cation style being used.

� The approach is semantically well-founded. If
type checking a program P yields an error mes-
sage e, then the location Pe associated e is a
projection of P that, when type checked, will
produce the same error message e. For details
about semantic properties of slices, the reader
is referred to [18, 28].

Figure 1: The CLaX environment. The top window is a program editor with two buttons attached to it for

invoking a type checker and an interpreter, respectively. The bottom window shows a list of four type errors reported

by the type checker. After selecting an error message in the bottom window, the Slice button can be pressed to

obtain the associated slice.

Although positional information is always available
for any error message, the accuracy1 of these loca-
tions depends on the degree to which the speci�ed
type checker's behavior is deterministic. This issue
will be explored in Section 4.
We have implemented a prototype type check-
ing system using the ASF+SDF Meta-environment
[24, 31], a programming environment generator that
implements algebraic speci�cations by way of term
rewriting. Dependence tracking was previously im-
plemented in the ASF+SDF system's term rewrit-
ing engine for the purpose of supporting dynamic
slicing in generated debugging environments [29].
Figure 1 shows a snapshot of a type checking envi-
ronment for the language CLaX, a Pascal-like lan-
guage. The most interesting features of CLaX are:
nested scopes, overloaded operators, arrays, goto
statements, and procedures with reference and value
parameters. The top window of Figure 1 is a pro-
gram editor, which has two buttons labeled `Type-
Check' and `Execute' attached to it, for invoking
the type checker and the interpreter, respectively.

1 Accuracy indicates the quality of the slice obtained.
Generally, \small" slices, which contain few program con-

structs, are desirable because they convey the most insightful
information.

The bottom window shows a list of four error mes-
sages reported by the type checker for this program.

1. The �rst error, undefined-label i, indicates
that the program contains a reference to a label
i, but there is no statement with label i in the
same scope.

2. The second error message, multiple-

declaration-in-same-scope n, points out
that an identi�er n is declared more than once
in the same scope.

3. The third error, expected-label-found

INTEGER, indicates that the program contains
an identi�er that has been declared as an inte-
ger, but which is used as a label.

4. The fourth error, in-call expected-arg VAR

INTEGER found-arg REAL, points out a type
error in a procedure call. In particular, that a
procedure is called with a argument type REAL
when it was expecting an argument of type IN-
TEGER.

Note that these error messages do not provide any
information as to where the type violations occurred
in the program text.

(a) (b)

(c) (d)

Figure 2: Slices reported by the CLaX environment for each of the type errors of Figure 1.

However, positional information may be obtained
by selecting an error message and clicking on the
`Slice' button. In Figure 2(a){(d), the slices ob-
tained for each of the four error messages of Figure 1
are shown2. Each slice is a view of the program's
source indicating the program parts that contribute
to the selected error. Placeholders, indicated by
`<?>' in the �gure, indicate program components
that do not contribute to the error under considera-
tion. The semantics of \not contributing towards a
certain error message" may be characterized infor-
mally as follows: If a placeholder in the slice with
respect to an error e is replaced with a program
component of the same kind3, type checking the re-
sulting program is guaranteed to produce the same
error e.

1. Figure 2(a) shows the slice for the undefined-
label error. Clearly, the GOTO i statement
is the source of the error, because there is no
statement with label i.

2. Figure 2(b) shows the slice obtained for the
multiple-declaration-in-same-scope

error. The problem here is that n is a para-
meter as well as a local variable of procedure
square. Note that both declarations of n occur
in the slice.

3. Figure 2(c) shows the slice obtained for the
expected-label-found INTEGER error. Note
that, in addition to the GOTO i statement and
the declaration of i as an INTEGER, all de-
clarations in the inner scope appear in the
slice. Informally, this is the case because re-
placing any of these declarations by declara-
tions for variable i may a�ect the outcome of
the type checking process, in the sense that the
expected-label-found INTEGER error would
no longer occur.

4. Figure 2(d) shows the slice
obtained for the in-call expected-arg VAR

INTEGER found-arg REAL error. Observe that
the slice precisely indicates the program com-
ponents responsible for this problem: (i) the
call site square(x) that gave rise to the prob-
lem, (ii) the type, INTEGER, of square's formal

2An alternativeway for displaying slices would be to high-
light the corresponding text areas in the program editor of

Figure 1.
3Although all placeholders are displayed as `<?>', place-

holders are typed. In order to preserve syntactic validity of
the program, an expression placeholdermay only be replaced

by another expression, an unlabeled-statement placeholder
may only be replaced by another unlabeled-statement, etc.

parameter (note that the name of this para-
meter is irrelevant), and (iii) the declaration of
variable x as a REAL.

The reader may observe at this point that, in ad-
dition to the program constructs responsible for a
type error, a slice generally also contains certain
structural information such as BEGIN and END key-
words and declaration and statement list separators
that are not directly related to an error. The oc-
currence of this structural information is due to the
way slices are computed. If desired, displaying this
information could easily be suppressed to a large ex-
tent. For example, removal of all BEGIN, END, and
DECLARE keywords and list separators from the com-
puted slices would reduce the amount of \noise"
considerably. In certain cases, slices may contain
IF or WHILE statements whose condition and body
are omitted from the slice (see, e.g., Figure 2(d)).
Such constructs can also be removed from the slice
without a�ecting the semantic content. We consider
slice postprocessing to be primarily a user-interface
issue, which is outside the scope of this paper.

The remainder of the paper is organized as follows.
Section 2 presents our approach for specifying type
checkers. In Section 3, the use of term rewriting for
executing speci�cations is discussed. In addition,
dependence tracking, the mechanism for computing
slices is presented. Section 4 is concerned with the
e�ect of determinism in the speci�cation on slice
accuracy. In Section 5, related work is discussed. In
particular, the slice notion introduced in the present
paper is compared with the traditional notion of a
program slice. Conclusions and possible directions
for future work are stated in Section 6.

2 Speci�cation of Static Semantics

and Type Checking

A static semantics speci�cation only determines the
validity of a program and is not concerned with
pragmatic issues such as the source location where
a violation of the static semantics occurred, or even
what program construct caused the violation. A
type checker speci�cation typically uses the static
semantics speci�cation as a guideline, and speci-
�es the presentation and source location of type
errors in invalid programs. Adding such reporting
information to a static semantics speci�cation is a
cumbersome and error-prone task, because keeping
track of positional information can be nontrivial, es-
pecially if multiple program fragments together con-
stitute a type error.

[Eq1] tc(begin Decls Stats end) = dist(Stats, tenv(Decls))

[Eq2] dist(Stat1;Stat2, Tenv) = dist(Stat1, Tenv); dist(Stat2, Tenv)

[Eq3] dist(Id := Exp, Tenv) = dist(Id, Tenv) := dist(Exp, Tenv)

[Eq4] dist(Exp1 + Exp2, Tenv) = dist(Exp1, Tenv) + dist(Exp2, Tenv)

[Eq5] dist(Id, Tenv) = type-of(Id, Tenv)

[Eq6] type-of(Id, tenv(T�

1
; Id : Type; T�

2
)) = Type

[Eq7] natural + natural = natural

[Eq8] natural := natural = \correct"

Figure 3: Static semantics speci�cation for determining the validity of assignments.

In [14], we introduced an abstract interpretation
style for writing static semantics speci�cations. In
a nutshell, this style advocates the following:

� reducing program constructs to their type,

� evaluating type expressions at an abstract level,
and

� only specifying the type-correct cases.

Operationally, the static semantics speci�cation de-
scribes a transformation of a program to a set of
type-expressions for program constructs that are
type-incorrect.
Figure 3 shows a tiny static semantics speci�cation
for determining the validity of assignment state-
ments in straight-line
ow programs. The reader
should be aware that this speci�cation only serves
to illustrate the general style of specifying a static
semantics and is incomplete; for example, it does
not verify if variables are declared more than once.
Equation [Eq1] de�nes a top-level function tc for
checking a program. Informally, [Eq1] states that
checking a program involves (i) creating an initial
type-environment that contains variable-type pairs,
and (ii) distributing the type-environment over the
program's statements, using an auxiliary function
dist. For the simple example we study here, the
type-environment consists of the declaration section
of the program, to which the constructor function
tenv is applied. Equation [Eq2] expresses the dis-
tribution of type-environments over lists of state-
ments, and [Eq3] and [Eq4] the distribution over as-
signment operators and `+' operators, respectively.
[Eq5] states how an identi�er is reduced to its type,
using an auxiliary function type-of, which is de-
�ned in [Eq6]. Note that the variables T �

1
and T �

2

in [Eq6] match any sublist of (zero or more) dec-
larations in a declaration section. Equation [Eq7]

expresses the abstract evaluation of additions, and
[Eq8] states that the assignment of a natural expres-
sion to a natural variable is valid.

As an example, consider checking the following pro-
gram block:

tc(begin x : natural; y : string;

x := x + x; x := y + x end)

Application of [Eq1] results in:

dist(x := x + x; x := y + x,

tenv(x : natural; y : string))

Application of [Eq2] yields:

dist(x := x + x,

tenv(x : natural; y : string));

dist(x := y + x,

tenv(x : natural; y : string))

At this point, [Eq3] can be applied to both compo-
nents, producing:

dist(x, tenv(x : natural; y : string))

:= dist(x + x,

tenv(x : natural; y : string));

dist(x, tenv(x : natural; y : string))

:= dist(y + x,

tenv(x : natural; y : string))

The left-hand sides of both assignments can be re-
duced to their types using [Eq5] and [Eq6], resulting
in:

natural :=

dist(x + x,

tenv(x : natural; y : string));

natural :=

dist(y + x,

tenv(x : natural; y : string))

Using [Eq4] and [Eq5], the right-hand sides of the
assignments can be simpli�ed:

natural := natural + natural;

natural := string + natural

[Er1] msgs(Stat1;Stat2) = msgs(Stat1);msgs(Stat2)

[Er2] msgs(\correct") = \No errors"

[Er3] Msg�; \No errors"; Msg�0 = Msg�; Msg�0

[Er4] msgs(T1 := T2) = msgs(T2)

when simpletype(T2) 6= true

[Er5] msgs(T1 := T2) = \Incompatible types in assignment."
when simpletype(T2) = true

[Er6] msgs(T1 + T2) = \Operands of + should have the same type."

[Er7] simpletype(natural) = true

[Er8] simpletype(string) = true

Figure 4: Postprocessing to obtain human-readable messages.

Using equation [Eq7], the �rst assignment can be
simpli�ed:

natural := natural;

natural := string + natural

Finally, application of [Eq8] yields the �nal result:

\correct";
natural := string + natural

The fact that this term contains a subterm that
cannot be reduced to \correct" indicates that the
program is not type-correct. Note that the non-
\correct" subterm already gives a rough indication
of the nature of the type violation.

Figure 4 shows a set of equations that de�ne a func-
tion msgs that transforms the cryptic messages pro-
duced by the speci�cation of Figure 3 into human-
readable form. The equations of Figure 4 assume
that the term to which they are applied is fully nor-
malized w.r.t. type checking equations of Figure 3.

Equation [Er1] distributes function msgs over all
statements in a block. [Er2] transforms the constant
correct, which was derived froma type-correct pro-
gram construct, into a message \No errors". Since
we are not interested in generating messages for
correct statements, equation [Er3] eliminates \No
errors" from lists of messages. Equations [Er4]

and [Er5] perform the post-processing of expressions
that are derived from incorrect assignment state-
ments. Note that these equations are conditional :
they are only applicable if a certain condition holds.
(Here, the condition veri�es if the right-hand side
of the expression is a simple type, using auxil-
iary equations [Er7] and [Er8].) [Er4] postprocesses
assignment statements whose right-hand side con-
sists of an irreducible expression; whereas [Er5]

postprocesses assignments whose left-hand side and
right-hand side are incompatible. Equation [Er6]

postprocesses `+' expressions with incompatible ar-
guments. The reader should observe that the speci-
�cation of Figure 4 only serves to illustrate the gen-
eral technique and that it is incomplete; For exam-
ple, it does not handle nested expressions.
As an example, we will postprocess the
term \correct"; natural := string + natural

by applying the equations of Figure 4 to the term:

msgs(\correct";
natural := string + natural)

Applying [Er1] produces:

msgs(\correct");
msgs(natural := string + natural)

Using equation [Er2], we obtain:

\No errors";
msgs(natural := string + natural)

By applying [Er3], the \No errors" message is
eliminated:

msgs(natural := string + natural)

Since the right-hand side of the assignment is not of
a simple type (we cannot derive the constant true
from the term simpletype(string + natural),
conditional equation [Er4] can be applied, produc-
ing:

msgs(string + natural)

Application of [Er6] yields the human readable error
message:

\Operands of + should have the same type."

The CLaX type checker speci�cation that has been
used to generate the snapshots of Figures 1 and 2
follows the same basic principles that have been pre-
sented in this section. Language features such as

(A2) (A1)

T1T0 T2

creation

residuation

0

intmul

intmul

intsub intsub

intmul

intmul

intsub

0

3

1

2

3

0

1 2

3

Figure 5: Example of creation and residuation relations.

gotos, nested scopes, and arrays introduce some ad-
ditional complexity, but we experienced no funda-
mental problems. An annotated listing of the CLaX
speci�cation will appear in a technical report in the
near future [15]. A previous version of the CLaX
speci�cation may be found in [14].

3 Term Rewriting and Dependence

Tracking

In the previous section, speci�cations were \execut-
ed" by repeatedly applying equations to terms|a
mechanism that is usually referred to as term rewrit-

ing. Both theoretical properties of term rewriting
systems [25] such as termination behavior, and e�-
cient implementations of rewriting systems [22, 23]
have been studied extensively.

Term rewriting [25] can be viewed as a cyclic process
where each cycle begins by determining a subterm
t and a rule l = r such that t and l match. This
is the case if a substitution � can be found that
maps every variableX in l to a term �(X) such that
t � �(l) (� distributes over function symbols). For
rewrite rules without conditions, the cycle is com-
pleted by replacing t by the instantiated right-hand
side �(r). A term for which no rule is applicable
to any of its subterms is called a normal form; the
process of rewriting a term to its normal form (if it
exists) is referred to as normalizing. A conditional
rewrite rule [3] (such as [Er4] and [Er5] in Figure 3)
is only applicable if all its conditions succeed; this
is determined by instantiating and normalizing the
left-hand side and the right-hand side of each con-
dition. Positive (equality) conditions (of the form

t1 = t2) succeed i� the resulting normal forms are
syntactically equal, negative (inequality) conditions
(t1 6= t2) succeed if they are syntactically di�erent.
Thus far, we have described the process of specifying
a type checker, and the execution of such speci�ca-
tions by way of term rewriting. In order to obtain
positional information, we use a technique called de-
pendence tracking that was developed by Field and
Tip [18, 28]. For a given sequence of rewriting steps
T0 ! � � � ! Tn, dependence tracking computes a
slice of the original term, T0, for each function sym-
bol or subcontext (a notion that will be presented
below) of the result term, Tn.
We will use the following simple speci�cation of in-
teger arithmetic (taken from [29]) as an example to
illustrate dependence tracking:

[A1] intmul(0;X) = 0

[A2] intmul(intmul(X, Y);Z) =

intmul(X; intmul(Y, Z))

By applying these equations, the term intsub(3,
intmul(intmul(0, 1), 2)) may be rewritten as
follows (subterms a�ected by rule applications are
underlined):

T0 = intsub(3; intmul(intmul(0, 1), 2))

�! [A2]

T1 = intsub(3; intmul(0, intmul(1, 2)))

�! [A1]

T2 = intsub(3; 0)

By carefully studying this example, one can observe
the following:

� The outer context intsub(3, �) of T0 (`�' de-
notes a missing subterm) is not a�ected at all,
and therefore reappears in T1 and T2.

D0

�

�0

C

C

T

T 0

C0

C0

D0

Figure 6: Depiction of the de�nition of a term slice.

� The occurrence of variables X, Y, and Z in both
the left-hand side and the right-hand side of
[A2] causes the respective subterms 0, 1, and 2

of the underlined subterm of T0 to reappear in
T1.

� Variable X only occurs in the left-hand side of
[A1]. Consequently, the subterm intmul(1, 2)
(of T1) that is matched againstX does not reap-
pear in T2. In fact, we can make the stronger
observation that the subterm matched against
X is irrelevant for producing the constant 0 in
T2: the \creation" of this subterm 0 only re-
quires the presence of the context intmul(0, �)
in T1.

The above observations are the cornerstones of the
dynamic dependence relation of [18, 28]. Notions
of creation and residuation are de�ned for single
rewrite-steps. The former involves function sym-
bols produced by rewrite rules whereas the latter
corresponds to situations where symbols are copied,
erased, or not a�ected by rewrite rules4. Figure 5
shows all residuation and creation relations for the
example reduction discussed above.
Roughly speaking, the dynamic dependence relation
for a sequence of rewriting steps � consists of the
transitive closure of creation and residuation rela-
tions for the individual steps in �. In [18, 28], the
dynamic dependence relation is de�ned as a relation
on contexts, i.e., connected sets of function symbols
in a term. The fact that C is a subcontext of a term
T is denoted C v T . For any sequence of rewrite

4The notions of creation and residuation become more
complicated in the presence of so-called left-nonlinear rules

and collapse rules. This is discussed at greater length in
[18, 28].

steps � : T ! � � � ! T 0, a term slice with respect to
some C0 v T 0 is de�ned as the subcontext C v T

that is found by tracing back the dynamic depen-
dence relations from C0. The term slice C satis-
�es the property that C can be rewritten to a term
D0 w C0 via a sequence of rewrite steps �0, where �0

contains a subset of the rule applications in �. This
property is illustrated in Figure 6.

Returning to the example, we can determine the
term slice with respect to the entire term T2 by
tracing back all creation and residuation relations
to T0. The reader may verify that the term slice
with respect to intsub(3, 0) consists of the context
intsub(3, intmul(intmul(0, �), �)).

The bottom window of the CLaX environment of
Figure 1 is a textual representation of a term that
represents a list of errors. The slices shown in Fig-
ure 2(a){(d) are computed by tracing back the de-
pendence relations from each of the four \error" sub-
terms.

4 The E�ect of Determinism on Slice

Accuracy

We have argued that our approach for obtaining po-
sitional information does not rely on a speci�c spec-
i�cation style. Nevertheless, experimentation with
the CLaX type checker has revealed that the ac-

curacy of the computed slices inversely depends on
the degree to which the speci�cation is determinis-
tic. As a general principle, more determinism in a
speci�cation leads to less accurate slices. To under-
stand why this is the case, consider the nature of
dynamic dependence relations. Suppose that type

checking a program P involves a sequence of rewrite
steps r that ultimately lead to an error e. The slice
Pe associated with e has the property that it can be
rewritten to a term containing e, using a subset r0

of the rewrite-steps in r. If the rewrite steps in r

encode a deterministic process such as the explicit
traversal of a list of statements, this deterministic
behavior will also be exhibited by r0, to the extent
that it contributed to the creation of e.
As an example, consider rewriting the term:

type-of(tenv(x : integer; y: string;

z : integer), y)

according to the speci�cation of Figure 3. By ap-
plying equation [Eq6], this term rewrites to the con-
stant string. By tracing back the dynamic depen-
dence relations, we �nd that the context

type-of(tenv(�; y: string; �), y)

was needed to create this result. Now suppose that
instead of equation [Eq6], we use the following two
equations for reducing the same term:

[Eq6a] type-of(Id, tenv(Id:Type; D�)) =

Type

[Eq6b] type-of(Id, tenv(Id0:Type; D�)) =

type-of(Id, tenv(D�))

when Id0 != Id

The resulting term would be the same as before: the
constant string, which is obtained by �rst apply-
ing equation [Eq6b] followed by applying equation
[Eq6a]. However, the subcontext needed for creating
this result would now consist of:

type-of(tenv(x : �; y: string; �), y)

The variable x in the �rst element of the type en-
vironment is now included in the slice because the
order in which the type environment is traversed is
made explicit in the speci�cation. Informally stated,
the resulting term string is now dependent on the
fact that the �rst element of the type environment
is not an entry for variable y.
The use of list functions and list matching in speci�-
cations (i.e., allowing function symbols with a vari-
able number of arguments and variables that match
sublists) has the e�ect of reducing determinism, and
therefore improving slice accuracy. We believe that
more powerful mechanisms for expressing nondeter-
minism such as higher-order functions [21] can in
principle improve slice accuracy even further.
Experimentation with the CLaX type checker spec-
i�cation of [14] revealed a small number of cases
where slices were unnecessarily inaccurate due to

overly deterministic behavior. Virtually all of these
cases consisted of explicit traversals of lists, with the
purpose of �nding a speci�c list element, or verify-
ing whether or not a list contained a certain element
more than once. In each of these cases, the use of
list functions allowed us to specify the same function
nondeterministically with little e�ort. In a forth-
coming technical report [15], we will present a brief
overview of a few of the more interesting changes we
made to the CLaX speci�cation in order to make it
less deterministic.

5 Related Work

The work presented in this paper is closely related
to earlier work by the same authors. The CLaX
type checker [14] was developed in the context of
the Compare (compiler generation for parallel ma-
chines) project, which was part of the European
Union's ESPRIT-II program. We originally used
origin tracking [11] to associate source locations
with type errors. Origin tracking is similar in spirit
to dependence tracking in the sense that it estab-
lishes relationships between subterms of terms that
occur in a rewriting process. The key di�erence be-
tween the two techniques is that origin tracking es-
tablishes relationships between equal subterms (ei-
ther syntactically equal, or equal in the algebraic
sense), whereas dependence tracking determines for
each subterm the context needed to create it. The
use of origin tracking for obtaining positional in-
formation was further investigated in [12, 13]. Al-
though the results were encouraging (in terms of
accuracy of positional information), origin track-
ing was found to impose restrictions on the style
in which the type checker speci�cation was written.
Since origin tracking only establishes relationships
between equal terms, the error messages generated
by the type checker must contain fragments that
literally occur in the program source; otherwise,
positional information is unavailable. In [12, 13],
this problem was circumvented by tokenization, i.e.,
using an applicative syntax structure and rewrit-
ing the speci�cation in such a way that error mes-
sages always contain literal fragments of program
source, which guarantees the non-emptyness of ori-
gins. Modi�cation of the type checker speci�cation
resulted in adequate positional information for type
errors. By contrast, our approach does not require
any modi�cations to speci�cations at all. In the
previous section, we have described techniques for
improving the quality of positional information by
avoiding determinism in speci�cations, but it should

be emphasized that such improvements are com-
pletely optional.

The dependence tracking relation we use for obtain-
ing positional information was developed by Field
and Tip [18, 28] for the purpose of computing pro-
gram slices. A program slice [33, 34, 30] is usually
de�ned as the set of statements in a program P that
may a�ect the values computed at the slicing cri-

terion, a designated point of interest in P . Two
kinds of program slices are usually distinguished.
Static program slices are computed using compile-
time dependence information, i.e., without making
assumptions about a program's inputs. In contrast,
dynamic program slices are computed for a speci�c
execution of a program. An overview of program
slicing techniques can be found in [30].

By applying dependence tracking to di�erent rewrit-
ing systems, various types of slices can be obtained.
In [17] programs are translated to an intermediate
graph representation named Pim [16, 1]. An equa-
tional logic de�nes the optimization/simpli�cation
and (symbolic) execution of Pim-graphs. Both the
translation to Pim and the equational logic for sim-
pli�cation of Pim-graphs are implemented as rewrit-
ing systems, and dependence tracking is used to ob-
tain program slices for selected program values. By
selecting di�erent Pim-subsystems, di�erent kinds
of slices can be computed, allowing for various
cost/accuracy tradeo�s to be made. In [29], dy-
namic program slices are obtained by applying de-
pendence tracking to a previously written speci�ca-
tion for a CLaX-interpreter.

The slice notion presented in the current paper dif-
fers from the traditional program slice concept in
the following way. In program slicing, the objec-
tive is to �nd a projection of a program that pre-
serves part of its execution behavior. By contrast,
the slice notion we have used here is a projection
of the program for which part of another program
property|type checker behavior|is preserved. It
would be interesting to investigate whether there
are other abstract program properties for which a
sensible slice notion exists.

Another approach to providing positional informa-
tion for type errors is pursued by van Deursen
[10, 9]. Van Deursen investigates a restricted class
of algebraic speci�cations called Primitive Recur-
sive Schemes (PRSs). In a PRS, there is an ex-
plicit distinction between constructor functions that
represent language constructs, and other functions
that process these constructs. Van Deursen extends
the origin tracking notion of [11] by taking this ad-
ditional structure into account, which enables the
computation of more precise origins.

Heering [21] has experimented with higher-order al-
gebraic speci�cations to specify static semantics.
We believe that the approach of this paper would
work very well with higher-order speci�cations,
since these allow one to avoid deterministic behav-
ior, which adversely a�ects slice accuracy. How-
ever, this would require extension of the dependence
tracking notion of [18, 28] to higher-order rewriting
systems.
Fraer [20] uses a variation on origin tracking [6, 5, 7]
to trace the origins of assertions in a program veri-
�cation system. In cases where an assertion cannot
be proved, origin tracking enables one to determine
the assertions and program components that con-
tributed to the failure of the veri�cation condition.
Flanagan et al. [19] have developed MrSpidey, an
interactive debugger for Scheme, which performs a
static analysis of the program to determine oper-
ations that may lead to run-time errors. In this
analysis, a set of abstract values is determined for
each program construct, which represents the set
of run-times values that may be generated at that
point. These abstract values are obtained by de-
riving a set of constraints from the program in
a syntax-directed fashion, which approximate the
data
ow in the program. In addition, a value
ow
graph is constructed, which models the
ow of val-
ues between program points. MrSpidey has an in-
teractive user-interface that allows one to visually
inspect values as well as
ow-relationships.

6 Conclusions

We have presented a slicing-based approach for de-
termining locations of type errors. Our work as-
sumes a framework in which type checkers are spec-
i�ed algebraically, and executed by way of term
rewriting [25]. In this model, a type check func-
tion rewrites a program's abstract syntax tree to a
list of type errors. Dynamic dependence tracking
[18, 28] is used to associate a slice [33, 30] of the
program with each error message. Unlike previous
approaches for automatic determination of error lo-
cations [14, 12, 13, 10, 9, 6, 5, 7], ours does not
rely on a speci�c speci�cation style, nor does it re-
quire additional speci�cation-level information for
tracking locations. The computed slices have an in-
teresting semantic property: The slice Pe associated
with error message e is a projection of the original
program P that, when type checked, is guaranteed
to produce the same type error e.
We have implemented this work in the context of the
ASF+SDF Meta-environment [24, 31] for a substan-

tial subset of Pascal. Experimentation with CLaX
revealed that the computed slices provide highly in-
sightful information regarding the nature of type vi-
olations. We have observed that the amount of de-
terminism in a speci�cation is an important factor
that determines the accuracy of the computed slices,
and we consider this to be a topic that requires fur-
ther study. As another direction for future work, we
intend to study the applicability of slicing-based er-
ror location in the related area of type inference [8],
in particular for object-oriented languages [27] and
for ML [26]. Providing accurate positional informa-
tion for type inference errors in ML is a di�cult
problem. Several proposals that rely on adapting or
extending the underlying type system or inference
algorithm have been presented (see, e.g., [4, 32]). In
contrast, we are interested in an approach that re-
quires no changes to type inference algorithm or the
type system. The basic idea is to apply dependence
tracking to a rewriting-based implementation of an
ML type inferencer. Although a slice can be com-
puted for each reported type inference error, it is
unclear how accurate such slices will be in practice.

References

[1] Bergstra, J., Dinesh, T., Field, J., and
Heering, J. A complete transformational
toolkit for compilers. In Proc. European Sym-

posium on Programming (Link�oping, Sweden,
April 1996), vol. 1058 of Lecture Notes in

Computer Science, Springer-Verlag. Full ver-
sion: Technical Report CS-R9646, Centrum
voor Wiskunde en Informatica (CWI), Amster-
dam; To appear in TOPLAS, 1997.

[2] Bergstra, J., Heering, J., and Klint,

P., Eds. Algebraic Speci�cation. ACM Press
Frontier Series. The ACM Press in co-operation
with Addison-Wesley, 1989.

[3] Bergstra, J., and Klop, J. Conditional
rewrite rules: con
uence and termination.
Journal of Computer and System Sciences 32,
3 (1986), 323{362.

[4] Bernstein, K. L., and Stark, E. W. De-
bugging type errors (full version). Tech. rep.,
State University of New York at Stony Brook,
Computer Science Department, 1995.

[5] Bertot, Y. Occurrences in debugger spec-
i�cations. In Proceedings of the ACM SIG-

PLAN'91 Conference on Programming Lan-

guage Design and Implementation (1991),
pp. 327{337. SIGPLAN Notices 26(6).

[6] Bertot, Y. Une Automatisation du Calcul des
R�esidus en S�emantique Naturelle. PhD thesis,
INRIA, Sophia-Antipolis, 1991. In French.

[7] Bertot, Y. Origin functions in lambda-
calculus and term rewriting systems. In Pro-

ceedings of the 17th Colloquium on Trees in

Algebra and Programming (CAAP '92) (1992),
J.-C. Raoult, Ed., vol. 581 of LNCS, Springer-
Verlag.

[8] Cl�ement, D., Despeyroux, J., Despey-

roux, T., and Kahn, G. A simple applicative
language: Mini-ml. In Proc. 1986 ACM Sym-

posium on Lisp and Functional Programming

(1986), pp. 13{27.

[9] Deursen, A. v. Executable Language

De�nitions|Case Studies and Origin Tracking

Techniques. PhD thesis, University of Amster-
dam, 1994.

[10] Deursen, A. v. Origin tracking in primitive
recursive schemes. Report CS-R9401, Centrum
voor Wiskunde en Informatica (CWI), 1994.

[11] Deursen, A. v., Klint, P., and Tip, F. Ori-
gin tracking. Journal of Symbolic Computation
15 (1993), 523{545.

[12] Dinesh, T. B. Type checking revisited: Mod-
ular error handling. In Semantics of Speci�ca-

tion Languages (1994), D. J. Andrews, J. F.
Groote, and C. A. Middelburg, Eds., Work-
shops in Computing, Springer-Verlag, pp. 216{
231. Utrecht 1993.

[13] Dinesh, T. B. Typechecking with modular er-
ror handling. In Language Prototyping: An Al-

gebraic Speci�cation Approach, A. v. Deursen,
J. Heering, and P. Klint, Eds. World Scienti�c
Publishing Co., 1996, pp. 85{104.

[14] Dinesh, T. B., and Tip, F. Animators and
error reporters for generated programming en-
vironments. Report CS-R9253, Centrum voor
Wiskunde en Informatica (CWI), 1992.

[15] Dinesh, T. B., and Tip, F. A slicing-based
approach for locating type errors. Tech. rep.,
CWI/IBM, 1997. Forthcoming.

[16] Field, J. A simple rewriting semantics for
realistic imperative programs and its applica-
tion to program analysis. In Proceedings of the

ACM SIGPLAN Workshop on Partial Evalua-

tion and Semantics-Based Program Manipula-

tion (1992), pp. 98{107. Published as Yale Uni-
versity Technical Report YALEU/DCS/RR{
909.

[17] Field, J., Ramalingam, G., and Tip, F.

Parametric program slicing. In Conference

Record of the Twenty-Second ACM Symposium

on Principles of Programming Languages (San
Francisco, CA, 1995), pp. 379{392.

[18] Field, J., and Tip, F. Dynamic dependence
in term rewriting systems and its application to
program slicing. In Proceedings of the Sixth In-

ternational Symposium on Programming Lan-

guage Implementation and Logic Programming

(1994), M. Hermenegildo and J. Penjam, Eds.,
vol. 844, Springer-Verlag, pp. 415{431.

[19] Flanagan, C., Flatt, M., Krishnamuthi,

S., Weirich, S., and Felleisen, M. Catch-
ing bugs in the web of program invariants.
In Proceedings of the 1996 ACM SIGPLAN

Conference on Programming Language De-

sign and Implementation (PLDI) (Philadel-
phia, PA, 1996), pp. 23{32.

[20] Fraer, R. Tracing the origins of veri�cation
conditions. In Proceedings of AMAST'96 (Mu-
nich, Germany, July 1996), vol. 1101, Springer-
Verlag LNCS.

[21] Heering, J. Second-order term rewriting
speci�cation of static semantics. In Language

Prototyping: An Algebraic Speci�cation Ap-

proach, A. v. Deursen, J. Heering, and P. Klint,
Eds. World Scienti�c Publishing Co., 1996,
pp. 295{306.

[22] Kamperman, J. Compilation of Term Rewrit-

ing Systems. PhD thesis, University of Amster-
dam, 1996.

[23] Kamperman, J., and Walters, H. Minimal
term rewriting systems. In Recent trends in

data type speci�cation : 11th workshop on spec-

i�cation of abstract data types joint with the

8th COMPASS workshop: Oslo, Norway, 19-

23.09.1995 : selected papers (1996), vol. 1130 of
Lecture Notes in Computer Science, Springer-
Verlag, pp. 274{290.

[24] Klint, P. A meta-environment for generat-
ing programming environments. ACM Trans-

actions on Software Engineering and Method-

ology 2, 2 (1993), 176{201.

[25] Klop, J. Term rewriting systems. In Handbook
of Logic in Computer Science, Volume 2. Back-

ground: Computational Structures, S. Abram-
sky, D. Gabbay, and T. Maibaum, Eds. Oxford
University Press, 1992, pp. 1{116.

[26] Milner, R., Tofte, M., and Harper, R.

The De�nition of Standard ML. The MIT
Press, Cambridge, MA, 1990.

[27] Palsberg, J., and Schwartzbach, M.

Object-Oriented Type Systems. John Wiley &
Sons, 1993.

[28] Tip, F. Generation of Program Analysis Tools.
PhD thesis, University of Amsterdam, 1995.

[29] Tip, F. Generic techniques for source-
level debugging and dynamic program slic-
ing. In Proceedings of the Sixth Interna-

tional Joint Conference on Theory and Practice

of Software Development (Aarhus, Denmark,
May 1995), P. D. Mosses, M. Nielsen, and
M. I. Schwartzbach, Eds., vol. 915 of LNCS,
Springer-Verlag, pp. 516{530.

[30] Tip, F. A survey of program slicing techniques.
Journal of Programming Languages 3, 3 (1995),
121{189.

[31] van Deursen, A., Heering, J., and Klint,
P., Eds. Language Prototyping|An Algebraic

Speci�cation Approach, vol. 5 ofAMAST Series

in Computing. World Scienti�c, 1996.

[32] Wand, M. Finding the source of type errors.
In Conference Record of the Thirteenth ACM

Symposium on Principles of Programming Lan-

guages (St. Petersburg, FL, 1986), pp. 38{43.

[33] Weiser, M. Program slices: formal, psycho-

logical, and practical investigations of an auto-

matic program abstraction method. PhD thesis,
University of Michigan, Ann Arbor, 1979.

[34] Weiser, M. Program slicing. IEEE Trans-

actions on Software Engineering 10, 4 (1984),
352{357.

