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Abstract

Programmers have traditionally been passive users
of compilers, rather than active exploiters of their
transformational abilities. This paper presents
Magik, a system that allows programmers to easily
and modularly incorporate application-speci�c ex-
tensions into the compilation process.
The Magik system gives programmers two signif-
icant capabilities. First, it provides mechanisms
that implementors can use to incorporate applica-
tion semantics into compilation, thereby enabling
both optimizations and semantic checking impossi-
ble by other means. Second, since extensions are in-
voked during the translation from source to machine
code, code transformations (such as software fault
isolation [14]) can be performed with full access to
the symbol and data 
ow information available to
the compiler proper, allowing them both to exploit
source semantics and to have their transformations
(automatically) optimized as any other code.

1 Introduction

This paper presents Magik, a system that can be
used to incorporate both application semantics and
control into compilation. Magik is motivated by
two sets of insights. First, programmer-de�ned data
structures and functions de�ne a semantically rich
(albeit syntactically poor) language, built on top of
the language the programmer uses to de�ne them.
Unfortunately, these meta languages have not had
optimizers: optimization occurs at the lower-level of
the programming language, but not at the high-level
de�ned by their interface. Our belief is that since
high-level operations are heavy-weight (e.g., they
deal with �le I/O, window manipulations, trans-
actions, and thread creation), optimizations which
understand their semantics o�er the hope of signi�-
cant speed improvements, potentially exceeding the
impact of all other compiler optimizations. Second,
programming has historically been passive: with the

exception of restricted local code transformations
provided by macro systems, programmers are lim-
ited to writing code, while the power to transform
the code has been reserved for compilers. Our belief
is that giving programmers safe, ready access to the
compilation process will signi�cantly improve the
scope of programmer capabilities.

The Magik system has been built to test these be-
liefs. Magik provides a simple, modular mecha-
nism for programmers to dynamically incorporate
extensions into the Magik compiler. User exten-
sions, written in ANSI C, are dynamically linked
into Magik during compilation. Extensions are
given access to Magik's intermediate representa-
tion (IR) through a set of interfaces that allow them
to easily create, delete, and augment IR at compile
time. Both this IR and Magik are built on top
of the lcc compiler [3], which is used to compile the
source language (ANSI C). The controlMagik gives
to programmers enables a broad class of optimiza-
tion and code transformations. This paper presents
ten such extensions and sketches of many more.

This paper concentrates on two abilities provided
by Magik. First, it provides a way for implemen-
tors to include domain-speci�c semantics into com-
pilation. Using this ability, implementors can build
both interface optimizers (for speed) and interface
checkers (for safety). Interface optimizers exploit
application-speci�c knowledge in order to obtain
performance improvements. Such optimizers are ap-
plicable to a wide range of interfaces: \bignums",
message passing and I/O libraries, math libraries,
matrix transformations for graphics, even simple
queue operations. From a compiler perspective this
ability is useful in any situation where providing a
compiler \builtin" would allow more aggressive op-
timization. From an implementor perspective they
are useful in situations where an interface imple-
mentor could look at a call or sequence of calls to
his implementation and craft specialized call(s) that
exploited local uses. For example, a �le system im-
plementor can write a optimizer that exploits knowl-



edge of �le system operations to perform optimiza-
tions such as hiding disk latency by both inserting
disk block prefetching commands, and transforming
synchronous �le I/O operations into asynchronous
ones. Interface checkers use application-speci�c
knowledge to enforce stricter semantic checks. For
example, by requiring that system call error codes
be checked (or inserting such checks) or by ensuring
that assertion conditions do not have side e�ects.

The second main ability Magik provides is an
easy, modular way to do general code transforma-
tions with full access to source information. Us-
ing this ability, programmers can instrument code,
augment it (e.g., by introducing software fault isola-
tion code [14] or garbage collection reference coun-
ters) or enforce invariants about it (e.g., that no
pointer casts are allowed). Unlike object code mod-
i�ers such as ATOM [11], Magik clients are tightly
integrated with the source compiler. Performing
transformations during the translation from high-
level source language to machine code has two im-
portant characteristics. First, it provides access to
the full semantics of the high-level language, in-
formation that source transformers can exploit (or
require) during code transformation. Second, the
IR produced from these user transformations is a
�rst class citizen, optimized no di�erently than the
IR produced by the compiler itself. As a result,
the compiler optimizes these transformations as it
would any other code.

This paper is organized as follows: Section 2 dis-
cusses related work. Section 3 provides an overview
of the system. Section 4 provides two examples
of incorporating user-level semantics into optimiza-
tion, while Section 5 presents two transformations
that exploit the information available at source level
to augment the code. Section 6 presents further ex-
amples of how to use extensible compilation, Sec-
tion 7 discusses issues in the current system and
directions for future work and Section 8 concludes.

2 Related Work

Examples of including application-level information
into compilation are compiler-directed prefetching
and management of I/O [9] and ParaSoft's In-
sure++ [8], which can check for Unix system call
errors (similar to the Magik checker shown in Fig-
ure 2). Using a Magik-based approach, systems
such as these could be built without compiler mod-
i�cations.
We compare Magik to macro systems, semantic-
based optimizers, extensible compilers, and object

code modi�ers.

Macro systems are the most venerable instance of
user-level code transformers. An advantage of such
systems (Lisp is a good example) over Magik is
their tight integration with the source language |
extensions are typically written in the same lan-
guage and style as the rest of the application. The
main advantage Magik provides is power. Macro
systems such as Weise and Crew's recent work [16]
are restricted to fairly localized code transforma-
tions, while Magik extensions can perform global
transformations across many interface calls, using
symbol table and 
ow graph information provided
by the compiler.

Mark Vandevoorde and John Guttag [12, 13] de-
scribe a system that provides programmers with a
safe way to impart some classes of semantic infor-
mation to the optimizer. User-level speci�cations
for a restricted functional language are consumed
by a theorem prover that optimizes based on the
speci�c situation in which function calls are used.
While their system is more automatic than Magik,
it is less powerful. For instance, Magik gives pro-
grammers the ability to perform optimizations that
appear di�cult to express as speci�cations. The
cost of this power is that Magik more di�cult to
use. Further practical experience is needed to de-
termine if Magik's added power is worth this cost.

Magik follows in the footsteps of the Atom object
code modi�cation system [11] (foreshadowed by the
object code modi�ers of Wall [15] and Srivastava
and Wall [10]), which provides users with the abil-
ity to modify object code in a clean, simple manner.
Atom was one of the �rst tools to give programmers
ready access to the transformational abilities en-
cased in compilers. Magik complements this work,
and trades the practical generality of dealing with
object code for improved information and code e�-
ciency gained by working within a high-level source
compiler. Since Magik has access to all the infor-
mation available to the source compiler (e.g., symbol
table, 
ow graph information, high-level semantics)
it can derive facts lost at the object code level. For
instance, it can easily insert reference counts around
all accesses to a particular pointer type; an object
code modi�er, working solely at the level of loads
and stores, cannot. Furthermore, since Magik ex-
tensions are integrated with the optimization done
by the compiler, they can be implemented more ef-
�ciently: IR added by an extension is optimized no
di�erently than IR produced from source. In con-
trast, object code have to both work without much
source-level information and cannot bootstrap exist-
ing compiler optimizers [15]. An important practi-



cal di�erence betweenMagik and object code mod-
i�ers is that Magik is signi�cantly easier to imple-
ment. The system described in this paper took the
author less than a month to implement and it runs
on all targets that the base compiler supports (x86,
Mips, Sparc). In contrast, duplicating the function-
ality of ATOM for even a single architecture would
require signi�cantly more work (especially on an ar-
chitecture such as the x86).

There are many compilers designed to support easy
addition of optimizations (e.g., SUIF [1]). These
system could have been used to implement Magik;
lcc was chosen because of the author's familiarity
with it. To the best of our knowledge, none of these
compilers have been used explicitly for extending
the optimizer with user-level semantics or transfor-
mations.

Magik can be viewed as an \Open System" in the
spirit of Kiczale's work [7].

Of course, programmers have long performed inter-
face optimizations by hand. The advantages of au-
tomated optimization are well known.

3 System Overview

Magik provides a framework to extend compilation.
User extensions are implemented as dynamically-
linked functions. User extensions come in two
classes: code extensions and data structure exten-

sions. Code extensions are invoked at every function
de�nition and are able to enumerate, add, delete,
and modify Magik's IR as it makes the transition
from source language to machine code. Data struc-
ture extensions are invoked at every data structure
de�nition and are able to add, delete and modify
structure elements. Since compiler internals are in

ux, implementation portability is provided by iso-
lating extensions from internal IR details via a set of
standardized interfaces; multiple interfaces are pro-
vided, specialized to the main domains Magik is
used in.

A given compilation may use many di�erent exten-
sions. To make the system usable, it is crucial that
extension composition is modular. The two main
requirements of modularity are that extensions be
able to inspect the code produced by others and that
extensions can be obliviously composed. Magik

meets these requirements by providing three di�er-
ent extension types (transformers, optimizers, and
inspectors) that correspond to the three main func-
tional uses of extensions. Transformers are used to
perform code transformations that do not depend
on integration with global optimization (e.g., par-

tially evaluating a C printf call). Optimizers are used
to perform iterative optimization and are repeatedly
invoked during global optimization until no IR mod-
i�cations occur. (Optimizers di�er from both trans-
formers and inspectors in that they may be invoked
multiple times.) Inspectors are similar in function-
ality to transformers except their placement in the
extension pipeline ensures that they see all IR that
will be compiled to code.

The main implementation limitation of the Magik

system is that since lcc provides no global optimiza-
tion framework optimizers are given only weak data

ow information. We are investigating methods of
removing this limitation (e.g., by using the SUIF
compiler system [1]).

An operational overview of the extension process is
as follows:

1. Programmers implement extensions using the
Magik libraries; these extensions are compiled
to object code. The location of this code is
either speci�ed to Magik using command-line

ags or by embedding the location in source
�les. For instance, header �les can specify an
extension to optimize the interfaces they de�ne.

2. Magik compiles high-level source (ANSI C) to
its internal IR in the traditional manner. As
Magik encounters extension location directives
(either as compiler 
ags or embedded in source)
it uses the dld dynamic linker [5] to dynami-
cally link the named extensions into the com-
piler proper.

3. At every function Magik encounters it invokes
all code extensions, beginning with transformer
extensions. At this point the extensions are free
to augment, modify and delete parts of the IR.
As part of the global optimization loop,Magik

calls each optimization extension. These ex-
tensions have access to any data 
ow informa-
tion computed by the compiler (e.g., use and
def sets, values of procedure parameters, etc.)
To ensure that code produced by any exten-
sion is visible to all others (a requirement for
modular composition of di�erent extensions)
Magik loops through the extensions until no
more modi�cations occur to the IR. A nice re-
sult of this organization is that the code pro-
duced by an extension is optimized as aggres-
sively as the code produced from application
source. After all optimization extensions have
run, and no modi�cations occur, Magik runs
inspector extensions in their speci�ed order.



Type C name

V void
C signed char
UC unsigned char
S signed short
US unsigned short
I int
U unsigned
L long
UL unsigned long
F float
D double
P void *

Table 1: Magik types (superset of lcc's types).

4. At every structure de�nition Magik invokes
all structure extensions. These extensions can
add, modify and delete structure entries. Typi-
cally these extensions are also paired with code
extensions that augment data structure �eld
uses and de�nitions.

5. Magik emits code.

Magik's lowest-level IR interface, based closely on
that the the underlying compiler (lcc) is terse, sim-
ple and portable. Structurally, the IR is a tree lan-
guage. Leaves are variables, labels, or constants;
internal nodes represent operations performed on
them (e.g., addition, indirection, jumps, function
calls). When operands are created they are associ-
ated with a type selected from Magik's base types
(shown in Table 1). Thereafter, types are implicit:
operations infer their own types based on the type of
their operands. Any conversions required by ANSI
C are performed by Magik (e.g., as required by
ANSI C a character variable will be converted to an
integer before addition with an integer).
User-created IR (type: I IR) is of a di�erent type
than native IR (type: X IR). This distinction is help-
ful because user-constructed IR typically requires
preprocessing before it can be sensibly incorporated
into lcc's internal representation. By exploiting
static type-checking,Magik can prevent users from
blithely intermixing the di�erent representations.
The interfaces are presented in the following tables:
routines to allocate, lookup and manipulate symbols
in Table 4, routines to construct IR in Table 5, and
routines to navigate the IR in Table 2. Higher-level
interfaces are discussed in Section 4 and Section 5.
We expect Magik to evolve with further experi-
ence. To aid iterative design, the current imple-
mentation has emphasized simplicity at all levels.
Magik is built on top of the lcc retargetable ANSI

C compiler [3], and uses its IR language as its fun-
damental interface [4] (higher-level interfaces are
crafted on top of this). The regularity and small
size of lcc's IR has been a major asset. Impor-
tantly, since mapping other IR's to the Magik IR
and back should be straightforward, it can be real-
istically used as a basis for de�ning a standardized,
compiler-independent, extension interface similar in
availability to ANSI C's standardized libraries.
While the implementation exploits lcc's infrastruc-
ture, there is no fundamental tie to lcc. As experi-
ence with the system and its uses grows, reimple-
mentations will occur in more aggressive compilers
(or, alternatively, Magik will be used to enhance
the optimization framework of lcc).
One of the common uses of Magik is to incorpo-
rate new functions as \built-ins" into the compiler.
Since there can be tens or (at aggressive sites) hun-
dreds of builtins, it is critical that the extension pro-
cess itself is e�cient. To achieve the required e�-
ciency, Magik dynamically links extensions rather
than isolating them in sub-processes that commu-
nicate via shared memory. In most cases this pro-
cess has no signi�cant impact on compilation speed.
For implementations that wish to remove all over-
head (at some cost in reduced 
exibility) Magik

provides an interface that can be used to statically
link extensions into the compiler proper (similar to
the process of adding device drivers to most operat-
ing systems).
The following two sections discuss the interfaces
Magik provides for incorporating application se-
mantics (e.g., interface optimization and checking)
and for general code transformation.

4 Incorporating Application Seman-

tics

As discussed previously, user-level data structures
and functions de�ne a high-level language, the se-
mantics of which is unavailable to traditional com-
pilers. Magik provides mechanisms that allow
applications to construct extensions that can ex-
ploit these languages' semantics for improved se-
mantic checking, optimization, and general trans-
formations. The two main constructs of interest are
functions and data structures. In the case of func-
tions, clients are mainly interested in two pieces of
data-
ow information: the location of calls in re-
lation to each other, and the de�nitions and uses
of each call's operands and results. Clients also
require semantic information about each call site's
operands: their type, whether they are constants,



and if so, what their values are. In the case of data
structures clients are primarily interested in de�ni-
tions and uses of structures and their �elds.

To make IR manipulations easier, Magik exploits
the limited information needed in this area to pro-
vide a default interface that is simpler than the
general Magik IR. It includes basic block struc-
tures, function calls, details about function argu-
ments and results (e.g., whether they are constants,
their type, possible values, etc.) and information
about structure accesses. A library of routines are
provided that allow clients to add, modify, delete
and augment function calls and code easily. Addi-
tional routines are provided to search for particular
functions and lists of functions in the IR (easing IR
navigation), traverse argument lists, and routines
that compute the set of variables de�ned and used
by a given call site. Table 6 presentsMagik's inter-
face for �nding, manipulating, and constructing call
sites. Table 7 presentsMagik's interface for �nding
IR tree patterns, and both structure and structure
�eld uses.

Clients that need access to the full power of
Magik's IR can, of course, use it; the layering
provided by default is intended as syntactic sugar
rather than a barrier.

The following subsections present Magik's seman-
tic interface and four example clients. The �rst
client exploits Magik to perform the general trans-
formation of adding a compiler \builtin" output
function that is implicitly aware of its operand
types (eliminating the need for printf-style format
strings). The second client adds more rigorous se-
mantic checking of Unix system calls by inserting
checks around call sites that ignore a system call's
return value. The third client ensures that signal
handlers call only reentrant functions. Finally, the
four extension optimizes RPC call sites by using
partial evaluation to generate specialized argument
marshaling code.

4.1 Example: adding type-aware func-
tions

ANSI C su�ers from the lack of a graceful mecha-
nism to handle poly-typed functions. Programmers
are typically reduced to specifying argument types
using a manually-constructed type string. This
methodology is clumsy and error prone. One of the
more painful e�ects of this lack is that C is one of the
few languages in use that does not have type-aware
I/O routines.

Figure 1 presents a Magik extension that adds
a type-aware output routine, output. It works by

rewriting all calls to the poly-typed function it de-
�nes (output) to call printf using a type string (type-
string) it constructs from the type of output's argu-
ments. An operational view is as follows:

1. The extension iterates over all calls to output
using theMagik functions FirstCall and NextCall.

2. For each callsite, it builds up a printf-style type
string by iterating over output's argument list
(using theMagik functions FirstArg and NextArg)
and appending the type of each argument to
typestring.

3. After typestring has been constructed, the exten-
sion uses RewriteCall to modify the call site to
call printf instead of output and inserts typestring
as the �rst argument.

A sample usage:

void example(int i, int j) f
output(\i = ", i, \j = ", j);

g

While some languages (such as C++) support this
capability for simple scalers, our extension can be
easily modi�ed to print the �elds in aggregate types,
freeing programmers from having to tediously write
data structure-speci�c output routines (this func-
tionality was elided for brevity). Extensible code
synthesis is powerful. Example uses include the
automatic generation of routines to translate data
structures between \in-core" and on-disk represen-
tations and the construction of linked-list, hash-
tables, and associative arrays specialized to partic-
ular data structure types. A similar technique is
used in Subsection 4.4 to construct an e�cient ar-
gument marshaling routine for a remote procedure
call system.

4.2 Example: safe system calls

C and Unix are notorious for using integer error
codes to indicate exceptional conditions. C and
Unix programmers are notorious for not checking
these codes. This problem is a signi�cant one, es-
pecially with the prevalence of network comput-
ing (where �le I/O operations have to be retried
with some frequency). Figure 2 presents an an ex-
tension that inserts error condition checks around
unchecked Unix system calls and prints out errors
that occur.

The extension works as follows:



/� Add a type�aware output function. �/
int RewriteOutput(X IR c) f
# de�ne MAXARGS 64

X IR a;

/� Foreach callsite, rewrite the output call. �/
for(c = FirstCall(c, \output");

c != NULL;
c = NextCall(c, \output")) f

/� String to hold derived typestring. �/
char typestring[MAXARGS�2+1] = f0g;

/� Foreach argument, create a typestring. �/
for(a = FirstArg(c); a != NULL;

a = NextArg(a)) f
switch(OpType(a)) f
case I: strcat(typestring, \%d "); break;
case P:
/� Print strings di�erently

than pointers. �/
if(RawPtrType(NodeType(a)) == C)
strcat(typestring, \%s ");

else

strcat(typestring, \0x%p ");
break;

/� ... �/
default: panic(\Bogus type");
g

g
/� Add newline �/
strcat(typestring, \nn");
/� Change call to output to call to printf. �/
RewriteCall(c, \printf");
/� Add typestring as �rst argument. �/
PushArg(c, Cnststr(typestring));

g
return MAGIK OK;

g

Figure 1: Routine to add a type-aware output rou-
tine to C

/� Add checks to unchecked system calls. �/
int RewriteUnix(X IR c) f
/� list of all calls we insert checks for �/
char �unixcalls[] = f\read",\write",\seek",

/� ... �/ 0g;
I IR res, err, stmt;
char �n;

/� foreach callsite, rewrite the output call �/
for(res = NULL, c = FirstCallV(c, unixcalls);

c != NULL; c = NextCallV(c, unixcalls)) f

n = CallName(c);

/� If result used, assume it is checked. �/
if(Uses(c))
continue;

else

warn(\unchecked system call <%s>nn",n);

/� Create temp to hold returned value �/
if(!res)
res = Temp(inttype, MAGIK REG);

/� Create IR to assign the return value

to res. �/
stmt = AddStmt(c,

Asgn(res, ImportExprRef(c)));

/� Create a call to error routine; expects

syscall's name and return code. �/
err = Call(\error", voidtype, Cnststr(n),

res, NULL);
/� Insert check for syscall failure. �/
AddStmt(stmt,

IfStmt(Lt(res, Cnsti(0)), err));
g
return MAGIK OK;

g

Figure 2: Extension that places error checks around
unchecked system calls.



1. It iterates over all calls to the functions listed
in the array unixcalls using the Magik functions
FirstCallV and NextCallV.

2. For each call site it checks if the result of the call
is used (using the Magik routine Uses). Un-
fortunately, a use does not guarantee that the
call's result is checked | for simplicity, we elide
more aggressive checking.

3. For call sites that do not use the result of the
system call, the extension creates IR to check
the system call's return value and, if it is an
error, call an error procedure (error) to print it
out. It then inserts this IR into the original IR
using AddStmt.

4.3 Example: safe signal handlers

Unix signal handlers represent primitive threads of
controls. Unfortunately, they are used by many pro-
grammers who are unfamiliar with the dangers of
threaded programs. A common mistake made is to
call non-reentrant library functions from these han-
dlers. If the application was suspended in the mid-
dle of a call to the same function (or to a function
that manipulates state it depends on) the applica-
tion program will, non-deterministically, exhibit in-
correct behavior.
To help prevent this class of problems we have
de�ned an extension that prevents calls to non-
reentrant functions in a signal handler (the exten-
sion's code is elided for brevity). The extension
works as follows:

� To trigger checking all signal handlers adhere to
the naming convention of pre�xing their name
with \sig " (e.g., sig protection fault).

� The extension scans for all functions beginning
with this pre�x and, for each callsite, checks
that the call is either to one of a list of known
reentrant functions or to a function that is pre-
�xed with sig . Any call that does not satisfy
these requirements is 
agged.

� To ensure that only checked handlers are in-
stalled as signal handlers it also looks for han-
dler installation calls and checks that they only
install functions beginning with the sig pre�x.

4.4 Example: RPC specialization

Remote procedure call (RPC) is a widely used ab-
straction in distributed programming. A signi�-
cant overhead of a general-purpose RPC call is the

cost of copying the call's arguments into a message
bu�er (\argument marshaling"). Figure 3 presents
a Magik extension that uses partial evaluation to
remove the main contributor to this overhead, the
interpretation of argument types, by crafting mar-
shaling code specialized to a particular callsite.

The extensions infrastructure is similar to that used
to implement output: it scans for calls to rpc and ex-
amines the its argument which, syntactically, is a
call to a remote function. It decomposes this call
into its constituent pieces and then builds marshal-
ing code to copy each argument in the RPC call
into a memory vector. It then rewrites the call to
rpc to take a pointer to a local copy of the remote
procedure along with a pointer to the constructed
message bu�er and its size. A sample usage is as
follows:

int k,j,i;
double d;
/� ... �/

/� call remote procedure remote foo �/
rpc(remote foo(j, i, k, d));

Of course, this usage can be made prettier by com-
municating the names of remote procedures to the
extension, thereby eliminating the need for the rpc
annotation. For simplicity we do not perform this
syntactic cleanup (we also ignore result passing).

5 Code transformations

Code transformations involve rewriting or augment-
ing general code (i.e., unlike the extensions de-
scribed in the previous section, their domain is not
limited to a speci�c interface). Example code trans-
formations are software fault isolation, the transla-
tion of pointers from one representation to another,
or the insertion of checks to ensure a pointer use is
not nil.

InMagik, code transformations are typically imple-
mented by searching for speci�c IR trees and (pos-
sibly) replacing or augmenting them. To make this
style of usage easy,Magik provides an interface spe-
cialized to this domain. IR navigation can be im-
plemented usingMagik-provided pattern matching
routines that iterate over IR, returning all locations
that extension-speci�ed IR trees occur at. Rewrit-
ing support includes procedures that insert, delete
and augment IR subtrees. These routines isolate the
programmer from implementation-speci�c details of



/� Find RPC calls and build marshalling code. �/
int MarshalGen(X IR r) f
/� foreach callsite, rewrite output call �/
for(r = FirstCall(r, \rpc");

r != NULL; r = NextCall(r, \rpc")) f
I IR index, marshalv;
int o�set, sz;
X IR a, c;

/� Allocate marshaling array on stack. �/
marshalv = Array(doubletype, Nargs(c));
o�set = 0;
/� Remote call is rpc's �rst argument. �/
c = FirstArg(r);

/� Store arguments in marshalling vec. �/
for(a = FirstArg(c); a != NULL;

a = NextArg(a)) f
/� ensure correct alignment. �/
o�set = roundup(o�set, NodeAlign(a));
sz = NodeSize(a);

/� Form expression "�(type �)(marshal +
o�set)" where type is typeof(a). �/

index = Index(Cast(Copy(marshalv),
Ptr(NodeType(a))),

Cnsti(o�set/sz));

/� marshalv[o�set] = a �/
PushStmt(c,

Asgn(index, ImportExprCopy(a)));
/� Add size of argument. �/
o�set += NodeSize(a);

g
/� Replace rpc call with message send; send

takes a pointer to a local copy of the

remote function and the marshal vector

and size as arguments. �/
c = ReplaceExpr(c,

Call(\send", inttype,
CallName(c), Copy(marshalv),

Cnsti(o�set), NULL));
g
return MAGIK OK;

g

Figure 3: Extension that creates specialized mar-
shaling code based on remote procedure call argu-
ment types.

/� Used by qsort to compare element sizes. �/
static int pack cmp(void �p, void �q) f
return FieldSize(�(Field �)p) �

FieldSize(�(Field �)q);
g

/� Look for structures with "pack " pre�x and

minimize their storage size by sorting their

elements by size. �/
void Packer(Symbol p) f
unsigned n;
Field �
;

if(strncmp(StructName(p), \pack ", 5) != 0)
return;

/� Get �elds �/

 = ImportFields(p, &n);
/� Sort them. �/
qsort(
, n, sizeof 
[0], pack cmp);
/� Write them out. �/
ExportFields(p, 
, n);

g

Figure 4: Routine to minimize structure size by
sorting elements by alignment requirements.

IR modi�cation (e.g., the need to update all point-
ers to a node that has been used as a CSE).

5.1 Example: structure packing

Dense structure layout can be used to improve lo-
cality. Figure 4 presents a data structure exten-
sion that rearranges structure �elds to reduce struc-
ture size. Using the same capabilities extensions
can perform many useful structure transformations:
�elds can be automatically arranged to be endian-
neutral and on machines that lack sub-word opera-
tions, shorts and chars can be promoted to ints.

6 Extensible compilation: patterns

of use

This section delineates some broad classes of exten-
sible compiler uses. Both simple and ambitious ex-
amples are included to give a 
avor of the range of
operations that can be performed. Many of the ex-
amples provide programmers with capabilities not
previously available.



User semantic optimization As described in
Section 4, the languages de�ned by interface's func-
tions and data structures have not had optimizers
that understood their semantics. Since the opera-
tions de�ned by these languages are heavy-weight,
providing a mechanism to incorporate this informa-
tion o�ers the potential of speed improvements ex-
ceeding the impact of all other compiler optimiza-
tions.
An example of this style of use is an extension that
understands remote procedure call (RPC). When it
encounters a series of RPCs, it can aggregate them
into a single message (improving throughput) and
by looking for de�nitions of their operands and uses
of their results, replace synchronous RPC with asyn-
chronous, and push the call higher in the program
text, and the check for completeness right before
any use (improving latency). Similar optimizations
can be done for �le I/O.

Another example is an extension that optimizes
calls to a graphics library. Consider a sequence of
calls that manipulate a matrix. Using a library-
speci�c extension, it is possible to optimize across
these calls, reusing intermediate results they com-
pute, eliminating intermediate copies, and perform-
ing cache optimizations across them.

Finally, a \big num" package can optimize across
calls to its operations.

Operationally, this approach can provide a perfor-
mance gain for any situation where a system's im-
plementor could look at a section of code and im-
plement a specialized operation to capture the same
functionality. The challenge with the extensions is
to codify this knowledge.

Extension of compiler builtins Incorporating
knowledge of functions into compilers in the form
of \builtins" is pro�table both in terms of syntactic
sugar and in performance. Unfortunately, the inclu-
sion of builtins requires the intervention (and inter-
est) of compiler writers rather than system imple-
mentors. Consequently, it has been put to limited
use despite its utility. Using Magik, implementors
can easily add builtin procedures.

There are many simple routines (sorting, search-
ing, tree and list manipulations) that are constantly
reimplemented in order to work on di�erent types.
Using Magik these routines can be de�ned once,
by an extension, and then used by all application
writers. To illustrate this capability we have imple-
mented a simple extension that de�nes a max proce-
dure that works on any scaler argument type.
To show how Magik can be used to de�ne builtin
procedures for improved performance we have also

written an extension that recognizes the ANSI C
memcpy (\memory copy") function. The extension
exploits information Magik provides to specialize
to the local characteristics of each callsite. For ex-
ample, in the general case, memcpy must treat its
operands as unaligned. However, using the seman-
tic information Magik provides, the extension can
determine when a call site's pointer operands are
aligned and specialize accordingly. Additionally, it
unrolls and inlines the memory copying loop when
the number of bytes to copy is a constant, Static spe-
cialization removes runtime selection overhead, and
shrinks the function's memcpy footprint (due to the
fact that the gaps introduced by non-taken cases is
eliminated). These optimizations are pro�table in
the context of operating system device driver and
networking code, which can extensively access �xed-
sized quantities of partially unaligned memory.

Partial evaluation A more general form of
builtin specialization is full partial evaluation. Us-
ing an extensible compiler, both automated systems
and programmers construct partial evaluators for
important routines. For example, Section 4 de-
scribed an extension that generated specialized code
for RPC marshaling.

Structure awareness The ability to automat-
ically traverse, rearrange, rede�ne, and augment
data structure members enables interesting opera-
tions. Data structure traversal allows the de�ni-
tion of structure independent routines for sorting,
searching, marshaling, and printing. Control of data
structure layout can improve performance by allow-
ing extensions to group member �elds that are used
close together into the same cache line, improving
cache behavior. It can also enhance usability by en-
abling extensions to abstract away such details as
endianness by automatically rearranging structures
to be endian neutral. Data structure rede�nition
can improve speed on machines that do not pro-
vide sub-word memory instructions by allowing an
extension to replace sub-word sized structure ele-
ments with word-sized ones. Data structure aug-
mentation allows functionality enhancements such
as automatic addition of bookkeeping �elds needed
by reference counting garbage collectors.

Added safety Magik o�ers improved software
quality in addition to higher performance. Using
it, implementors can construct checkers more strin-
gent than provided by the compiler proper as well
as inserting code to check for errors at runtime. For
example, to ensure stronger pointer safety, Magik



/� Look for function calls or assignments �/
static int HasSideE�ect(X IR c) f
if(!c)
return 0;

else if(Op(c) == ASGN jj Op(c) == CALL)
return 1;

else

return HasSideE�ect(Left(c))
jj HasSideE�ect(Right(c));

g

/� Check that assertions do not contain

side�e�ecting optations. �/
int AssertCk(X IR c) f
for(c = FirstCall(c, \assert");

c != NULL;
c = NextCall(c, \assert")) f

/� The assertion expression is the call's

�rst argument. �/
if(HasSideE�ect(FirstArg(c)))
warning(\assert has a side�e�ectnn");

g
return MAGIK OK;

g

Figure 5: Routine to guarantee that assertions are
free of side-e�ects.

can be used to construct a code inspector that stati-
cally checks the IR generated at compile time to dis-
allow all casts, implicit conversions, and adds run-
time checks to guard against over and under
ow of
numbers, nil and bogus pointers, and out-of-bound
array accesses. Figure 5 presents an extension that
guards against side-e�ects in assertion macros.

The ability to insert integrity checks without requir-
ing source modi�cation is a powerful prophylactic
measure to guard against errors, and can serve to
elevate C (somewhat) to the realm of modern lan-
guages.

Passing compiler information to applica-

tions Compilers compute much useful informa-
tion. Magik provides an infrastructure that can be
used to pass this information to applications. Two
example extensions we have built in this spirit are
an extension that, given a pointer to a type, returns
the alignment of that type (this is useful for mem-
ory allocators) and an extension that takes a single
argument and indicates whether it is a constant ex-

pression (useful in making inline decisions).

Code transformations The ability to augment
code is powerful. Using Magik's interfaces, appli-
cations can implement a vast set of code transfor-
mations such as the insertion of reference counting,
software address translation (as described in Sec-
tion 5), or providing protection via software fault
isolation [14].

An interesting optimization is to encode the ex-
pected result of interface calls in an extension.
These \annotations" allow the extension to rear-
range code so that the conditional bodies of un-
expected cases are moved o� of the commonly ex-
ecuted path, thereby improving both instruction
prefetching queue and instruction cache utilization.

Exploiting type information The ability to ac-
cess symbol table information enables operations
not typically supported in Algol languages. For ex-
ample, programmers can use Magik to pass types
as arguments to functions such as malloc so it can
track the pointer type it is allocating and be accu-
rate (rather than conservative) in the alignment it
provides.

Investigation Ready access to a semantically-
rich intermediate language can be used to answer
many questions about source-level code. For exam-
ple, it can be used to verify hypothesis about soft-
ware engineering by correlating bug reports to how
many times an abstraction layer is broken (perhaps
by tracking structure accesses) or by correlating ease
of modi�cation to the number of intermodule depen-
dencies a source �le has. Checks can be inserted to
check for the aliasing of pointers to determine what
optimizations would be pro�table. It can also be
used to support graphical performance monitoring
in the spirit of Je�ery and Griswold [6] by automat-
ically inserting display calls around interface uses.

Other Uses There are many other uses for exten-
sible compilation. For example, many uses of Atom
can also be done using Magik(the tradeo� is less
generality for more information and optimization).
It provides an easy way to incorporate annotations
into the optimization phase by looking for annota-
tions in the form of function invocations. It can
be used to restrict allowable operations in the in-
put language in order to make it more amenable to
optimization. Or it can be used augment the base
language with abilities such as exception handling.



With a su�ciently rich intermediate language
Magik's extension framework can be used to make
its compiler into a truly open system, where a vari-
ety of implementors can augment its core optimiza-
tion abilities with new optimizations. In this man-
ner, compiler optimizations would become an order
of magnitude easier to disseminate.

7 Discussion

Magik attempts to literally make \library design
language design." It does this by attacking the three
crucial di�erences between writing a function-level
interface and de�ning an input language and com-
piler. The �rst di�erence is obvious: languages have
syntactic sugar, libraries do not. By enabling in-
terface designers to include context- and semantic-
sensitive code transformers, sugar can be judiciously
added to function interfaces (e.g., as done in the
output and rpc examples in Section 4). The second
di�erence is more subtle: languages allow semantic
checks that can be di�cult for a library to replicate
in terms of its implementation language. By giv-
ing extensions access to both the symbol table and
function-level IR this barrier can be eliminated. Fi-
nally, languages can be optimized. Encoding their
semantics in a compiler allows a ready implemen-
tation of both local (e.g., peephole optimization)
and global (e.g., CSE) optimizations. Current com-
pilers are blind to interface semantics, precluding
analogous optimizations. Magik provides mecha-
nisms that can be used to build interface optimizers
that optimize interface primitives as aggressively as
source language constructs.

7.1 Interface issues

An interesting research question is determining
the design rules for building interfaces that are
amenable to language-like optimization techniques.
Two principles seem relatively safe. First, high-level
optimization is aided by the use of declarative, high-
level interfaces that can then be \strength-reduced"
to the characteristics of local usage. Second, opti-
mization across interface calls is eased if the result
of one interface call is immediately used by another:
function call nesting is an ideal way of eliminating
data-
ow ambiguities. Thoroughly codifying prac-
tical precepts will be challenging.
Careful (but, unfortunately, iterative) design of the
Magik system has allowed us build it so that it is
integrated with the infrastructure lcc uses to con-
struct its internal IR. An important result of this

integration is that we have been able to use the
frontend routines lcc provides for constructing ab-
stract syntax trees. Using this code has two signif-
icant bene�ts. First, it allows users to only spec-
ify types when de�ning constants and symbols: the
remaining IR-construction routines can derive re-
quired types from context (e.g., Add can determine
it is an integer addition by examining its operands).
Eliminating the need to explicitly encode types has
dramatically simpli�ed Magik's code construction
interface. Second, lcc's routines are designed to per-
form implicit conversions as required by the rules
for ANSI C. As a result, they type-check their ar-
guments (providing users with safety) and perform
coercions as necessary (providing users with conve-
nience).

There are a few challenges to using the current IR
system. The �rst is dealing with IR tree layouts
across compiler versions. Layout of IR trees is a
fairly volatile implementation feature. Currently,
Magik decrees an IR interface and layout. The
cost of this solution is that future implementations
may require extra mapping code to compile their
IR to the standardized Magik IR and back. An al-
ternative solution is to specify code using a higher-
level representation. The main technical challenge
of using IR to specify patterns is that functionally
identical language expressions may be compiled to
structurally di�erent trees. Fortunately, the lcc IR
is spare enough that this problem is not di�cult:
the number of possibilities tends overwhelmingly to
one and, in rare cases, two. In fact, the use of a
low-level IR can have a signi�cant bene�t over both
source-level and machine-code matching in this re-
spect since both, in practice, can contain signi�cant
numbers of synonyms (e.g., consider the possible
ways to get values to and from memory on the x86,
or the di�erent but equivalent methods to reference
an array element in C). However, while the IR repre-
sentation has been su�cient for all examples we've
wanted to implement, there are times when a less
strenuous mechanism of code speci�cation is prefer-
able. We are currently investigating alternatives.

7.2 System limitations

There are a number of limitations with the current
system; most were deliberately chosen in order to
allow it to be built quickly so that real programmers
could use it in the near future, thereby allowing the
wheel of iterative design to begin turning with the
least amount of delay. Four main limitations are
discussed.

First, constructing large pieces of code is tedious.



This would naturally be remedied with language
support. A promising avenue is to use the `C
language [2] (designed to construct code dynami-
cally) as a sugary method of dynamically construct-
ing Magik IR. `C solves most of the semantic is-
sues dealing with variable binding, and code con-
struction, leaving us with the fairly straightforward
task of modifying it to dynamically emit Magik IR
rather than executable code.
Second, the current code speci�cation Magik in-
terface | the low-level IR of lcc | while simple, is
perhaps not the most natural for mainstream pro-
grammers. There are tradeo�s in this representa-
tion: a low-level IR can be more precise, however,
it can also be more complex than necessary. We are
investigating the representation of code templates
used for matching via language support: here to a
modi�cation of the `C language seems promising.
Third, the system is manual, even for tasks that
could be done automatically (e.g., in the spirit of
Vandevoorde and Guttag [13, 12]). As we determine
which of these tasks are important and common,
automation will be added.
Finally, lcc, while simple and easy to modify, is a
poor optimizer. We are examining ways to improve
its code quality.

7.3 A simple language extension

Exploitation of application semantics is helped if
semantics can be clearly and unambiguously indi-
cated. For example, translating shared memory ac-
cesses is eased if every such access can be explicitly
labeled as \shared." The clean, clear conveyance
of semantic information to extensions is a general
problem. Fortunately, it has a simple solution: the
addition of a new syntax operation to ANSI C (anno-
tation) that is used to create new, scoped type quali-
�ers. These quali�ers would be syntactically parsed
and internally stored in the symbol table but oth-
erwise ignored by the compiler proper | their se-
mantics provided solely by extensions. An example
usage:

/� add ''shared'' as a new type quali�er �/
annotation shared;
/� Allocate an integer with new type quali�er. �/
shared int x;

8 Conclusion

This paper has addressed two problems program-
mers have historically faced. First, the languages

they de�ne via interfaces have not been treated as
�rst-class languages. As a result, these languages
have had no language-speci�c semantic checkers,
transformers, or optimizers. Second, their programs
are passively consumed with little support for active
transformation (such as rewriting of structure �elds
and the addition of pro�ling code).

The Magik system is a �rst step towards solv-
ing these problems. Magik provides a modular
interface implementors can use to extend compila-
tion. The main interaction is through a set of in-
terfaces that give extensions access to the IR pro-
duced from source. Magik thus provides a method
that system implementors use both to incorporate
domain-speci�c semantics into compilation (thereby
enjoying the obvious advantages of automated op-
timization and checking) and to perform general
transformations on the IR produced from source
(thereby having both access to high-level semantic
information and the resulting transformation code
optimized as aggressively as code produced from
source).

This paper has presented many example clients of
the Magik system. Many of these extensions pro-
vide capabilities that programmers did not previ-
ously have. Future research will involve both ex-
tending these capabilities and exploring their con-
sequences.
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Operation Description

X IR LeftChild(X IR n) Returns n's left child or nil on error.

X IR RightChild(X IR n) Returns n's right child or nil on error.

int OpType(X IR n) Returns opcode of n.
int Type(X IR n) Returns type of n.
int Align(X IR n) Returns alignment of n.
int Size(X IR n) Returns size of n.

Table 2: Base IR Interface.

Class Examples Prototype

Arithmetic binary operations. ADD SUB MUL DIV XOR AND OR I IR op(I IR a, I IR b)
Arithmetic unary operations. NEG COM I IR op(I IR a)
Conversions (\convert to type"). CVTI CVTD CVTUS I IR op(I IR a)
Memory operations. ADDR INDIR I IR op(I IR a)

Table 3: Partial IR-construction Interface. Functions determine the type of opcode to use based on operand
type. Conversion conventions are those of ANSI C.

Operation Description

I IR Local(Type ty) Creates a local variable of type t and returns its

symbol.

I IR LocalArray(Type ty, int n) Creates a local array of type t and size n and returns

its symbol.

I IR Global(Type ty) Creates a global variable of type t and returns its

symbol.

I IR GlobalArray(Type t, int n) Creates a global array of type t and size n and returns

its symbol.

I IR Cast(I IR var, Type t) Creates a copy of symbol var changing its type to t.
I IR Lookup(char *name) Lookup symbol for variable name.

Table 4: Symbol construction and manipulation routines (routines to construct new aggregate types are
elided).

Operation Description

X IR Copy(X IR n) Create a copy of node n. This function is typically

used when adding a new subtree between a node and

its child.

I IR ImportExprRef(X IR expr) Import a reference to expr. This reference can then be

used as an argument to functions that require a I IR
type.

I IR ImportExprCopy(X IR expr) Import a copy of expr. This copy can then be used as

an argument to functions that require a I IR type.

X IR AddStmt(X IR a, I IR stmt) Add stmt after node a. Returns stmt.
X IR PushStmt(X IR a, I IR stmt) Add stmt before node a. Returns stmt.
X IR DeleteStmt(X IR stmt) Remove stmt, returns its successor.
X IR DeleteExpr(X IR expr, I IR replacement) Delete node expr; replaces the tree with replacement.

If replacement is nil, Magik will coalesce the tree expr
was part of until it is well-formed.

X IR AddExpr(X IR a, I IR b) Insert b on top of a.
I IR If(I IR bool, I IR stmt) If bool is true, execute stmt.
I IR IfElse(I IR bool, I IR stmt1, I IR stmt2) If bool is true, execute stmt1 otherwise execute stmt2.
I IR While(I IR bool, I IR stmt) While bool is true, execute stmt.

Table 5: Partial High-level IR construction Interface



Operation Description

X IR FirstCall(char *name) Returns pointer to �rst call of name or nil if none is

found.

X IR FirstCallV(char **namelist) Returns pointer to �rst call of any function in namelist
or nil if none is found.

X IR NextCall(X IR c, char *name) Returns pointer to next call of name or nil if none is

found.

X IR NextCallV(X IR c, char **namelist) Returns pointer to next call of any function in namelist
or nil if none is found.

X IR RewriteCall(X IR call, char *newname) Replace name of call to be newname.
X IR FirstArg(X IR call) Return �rst argument (if any) of call.
X IR NextArg(X IR arg) Get next argument (if any) after arg.
X IR Arg(X IR call, int n) Returns the nth argument of call; returns nil on error.

void PushArg(X IR call, I IR arg) Adds arg as the �rst argument to call.
void AppendArg(X IR call, I IR arg) Adds arg as the last argument to call.
int NArgs(X IR call) Return number of arguments to call.
X IR ReplaceArg(X IR call, int argno, I IR arg) Replace argument argno in call with arg.

Table 6: Partial Function Navigation and Modi�cation Interface

Operation Description

X IR Search(X IR n, I IR pattern) Search for the tree pattern starting at location n. If n is

nil, the search starts at the beginning of the function.

Unspeci�ed subtrees in pattern can be created using

the function I IR Any(Type ty).
X IR FindStruct(X IR n, char *StructName) Search for use of StructName starting at n.
X IR FindField(X IR n, char *StructName, char *FieldName) Search for use of �eld FieldName of type StructName

starting at n.
Fields *ImportFields(Symbol p, unsigned *n) Returns a pointer to an array of pointers to data struc-

ture p's �elds. Elements in this vector can be re-

ordered, deleted, and added.

Fields *ExportFields(Symbol p, Fields *fieldlist, unsigned *n) Export �elds (de�ned by fieldlist) as the layout for data
structure p.

Field AddField(Symbol p, Field f1, Field f2) Add �eld f2 after �eld f1 in structure p.
Field PushField(Symbol p, Field f1, Field f2) Add �eld f2 before �eld f1 in structure p.
Field OverrideField(Symbol p, Field f, Type ty) Change �eld structure p's �eld f type to ty.
Field FirstField(Symbol p) Returns the �rst �eld in data structure p.
Field NextField(Symbol p, Field f) Returns the next �eld in data structure p.

Table 7: Partial Structure Navigation and Modi�cation Interface


