
The following paper was originally published in the
Proceedings of the Conference on Domain-Specific Languages

Santa Barbara, California, October 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

A Special-Purpose Language for Picture-Drawing

Samuel N. Kamin and David Hyatt
University of Illinois, Urbana-Champaign

A Special-Purpose Language for Picture-Drawing

Samuel N. Kamin� David Hyatty

Computer Science Department

University of Illinois at Urbana-Champaign

Urbana, Illinois 61801

fs-kamin,d-hyattg@uiuc.edu

Abstract

Special purpose languages are typically characterized

by a type of primitive data and domain-speci�c oper-

ations on this data. One approach to special purpose

language design is to embed the data and operations

of the language within an existing functional lan-

guage. The data can be de�ned using the type con-

structions provided by the functional language, and

the special purpose language then inherits all of the

features of the more general language. In this paper

we outline a domain-speci�c language, FPIC, for

the representation of two-dimensional pictures. The

primitive data and operations are de�ned in ML. We

outline the operations provided by the language, il-

lustrate the power of the language with examples,

and discuss the design process.

1 Introduction

FPIC is a special-purpose language for drawing sim-

ple pictures. It was built by de�ning types and

functions in the functional language Standard ML

[6]. This method of construction is easy and results

in a language with many useful features. In addi-

tion to being concise for small examples, FPIC is

powerful enough to allow the programming of large

programs and program libraries, an area in which

many special-purpose languages are weak.

Functional programming has been characterized

in many ways. Our view is that it repre-

sents an approach to language design. This ap-

proach holds that some mathematical constructs|

products, functions, disjoint unions, and others|

are fundamental in computing and should be well

�Partially supported by NSF Grant CCR 96{19655.
yCurrent address: Netscape Communications Corp.,

Mountain View, CA, hyatt@netscape.com.

supported in programming languages. This support

means allowing the creation of \�rst-class" values

of each type, that is, values not subject to arbitrary

restrictions based on the type. It also means pro-

viding operations appropriate to those types in a

concise, non-bureaucratic form.

In our view, this approach to language design is per-

fectly suited to the design of special-purpose lan-

guages. These languages are usually characterized

by a type of primitive data speci�c to a problem

domain, and operations on those data. These data

can be incorporated into a language having the type

constructions just mentioned. In fact, they can be

incorporated into an existing functional language;

the type constructions will apply to the new data,

and the entire language will then become a special-

purpose language, with its many other features in-

cluded \for free."

The principal weakness of many special-purpose

languages is that, beyond a concise and natural

syntax, and e�cient implementation, for the val-

ues and operations speci�c to the domain, over-

arching language structure is weak. This weak-

ness would be very signi�cantly mitigated if special-

purpose languages were routinely designed|or at

least prototyped|in the way we have outlined.

This paper is a case study of the design of FPIC ac-

cording to this philosophy. We describe the process

by which we decided what the primitive data were

and how they should behave, then describe the lan-

guage itself with numerous examples. Our emphasis

throughout is on the advantages obtained by having

the functional language superstructure of Standard

ML as part of FPIC.

2 Simple FPIC Examples

PIC [4] is a language for drawing simple pictures,

such as trees and block diagrams. It has primi-

tives for drawing boxes, circles, and other shapes,

with or without labels, and for drawing lines and

arrows between them. It also has a facility for nam-

ing points on pictures, to be used, for example, as

the endpoints of lines and arrows. These constructs

are provided in a concise syntax, with a simple lan-

guage structure (including loops) added on.

FPIC was inspired by PIC. Our goal was to demon-

strate that we could bene�t by following the lan-

guage design philosophy outlined in the introduc-

tion. That is, by using essentially the same primi-

tive data types and operations as in PIC, but em-

bedding them in a functional language, we could

obtain a far more powerful language than PIC and

do so at a far lower cost than if we had built the

language from scratch.

In this section, we present a few examples to show

the principal primitive operations of FPIC, making

only minimal use of the programming features of

Standard ML. Section 5 gives many more examples,

emphasizing the utility of the features of ML in com-

bination with the FPIC primitives.

The most basic primitives are those for drawing sim-

ple shapes and placing them next to one another:1

Hello!

box 1.0 2.0 hseq circle 1.5 vseq

label "\\Huge Hello!" (oval 2.0 1.0);

hseq and vseq represent the operations of plac-

ing pictures next to one another, either horizontally

or vertically. (Note that backslashes inside quotes

must be doubled.)

Pictures can be moved and otherwise transformed in

various ways. In this example, we use ML's name

de�nition facility in the �rst line. dtriangle is a

\default triangle;" similarly for doval (and dcircle

and dbox later in the paper).

1Appendix A gives a concise overview of ML syntax. Ap-

pendix B lists all the FPIC primitives used in the examples in

this paper, indicating the types of their arguments, whether

or not they are in�x, and what they return.

val nose = dtriangle;

circle 2.5

seq (nose at (2.0,2.0))

seq (nose rotate ~90.0 scale 0.7 at (1.2,2.7))

seq (nose rotate 90.0 scale 0.7 at (3.1,2.7))

seq doval scaleXY (0.5,0.3) at (1.7,0.7);

The seq operation simply places pictures on top of

one another, without moving them either right or

down. The expression pic at point draws the picture

pic with its reference point (the lower-left corner) at

point.

An important feature of PIC, which we have

adopted in FPIC, is the ability to name points in

a picture and subsequently refer to them. The com-

pass points|s for south, ne for northeast, and so

on, plus c for center|are automatically de�ned for

every picture. This allows us to eliminate some of

the guesswork in the previous example:

val face = circle 2.5;

val facecenter = face pt "c";

val lefteye = nose rotate ~90.0 scale 0.7;

val righteye = nose rotate 90.0 scale 0.7;

val mouth = doval scaleXY (0.5,0.3);

face seq (nose centeredAt facecenter)

seq (lefteye centeredAt (facecenter -- (1.0,~0.7)))

seq (righteye centeredAt (facecenter ++ (1.0,0.7)))

seq (mouth centeredAt (facecenter -- (0.0,1.5)));

Named points can be added to a picture. A third

way to produce the same \pumpkin face" is to draw

the face and name the locations of the facial fea-

tures:

val face =

let val f = circle 2.5

val facecenter = f pt "c"

in namePts f

[("nosepos", facecenter),

("lefteyepos", facecenter -- (0.9,~0.8)),

("righteyepos", facecenter ++ (0.9,0.8)),

("mouthpos", facecenter -- (0.0,1.5))]

end;

face seq (nose centeredAt (face pt "nosepos"))

seq (lefteye centeredAt (face pt "lefteyepos"))

seq (righteye centeredAt (face pt "righteyepos"))

seq (mouth centeredAt (face pt "mouthpos"));

Pictures can be named as well as points. This is

useful when a number of points on a picture may

be of interest. For example, cell is a \cons cell"

consisting of two boxes vertically stacked; for future

reference, the individual boxes are named car and

cdr, respectively:

val cell = namePic dbox "car"

vseq namePic dbox "cdr";

In addition to optionally being named, subpictures

are automatically numbered. p nthpic i is the ith

subpicture in p.

Finally, another important feature of PIC and FPIC

is the ability to draw lines and arrows. In this pic-

ture, two cells are drawn with a curved arrow from

the cdr of the �rst to the car of the second:

let val cells = (namePic cell "left") hseq

(hspace 1.0) hseq

(namePic cell "right")

val source = cells pic "left" pic "cdr" pt "c"

val target = cells pic "right" pic "car" pt "w"

in cells seq (bezier source

(source ++ (1.0,0.0))

(target -- (1.0,0.0))

target

withArrowStyle "->")

end;

3 How to design a special-purpose

language

Much as we try not to, we often design a new lan-

guage by thinking in terms of the syntax we would

like it to have. For special-purpose languages, this

generally means concentrating on the syntax of the

domain-speci�c data and operations.

In our view, thinking about the desired concrete

syntax of the new language is not at all a bad place

to begin the design process, as long as that step is

understood in its proper relation to the overall lan-

guage design. In designing FPIC, we had an existing

language, PIC, to start from. We used the syntax

of PIC to help answer what we consider the most

crucial question in the design process: what does

each piece of syntax mean? In ordinary program-

ming terms, syntactic phrases have some intuitive

operational meaning; \circle 2.0" means \draw a

circle with radius 2.0." A lesson from denotational

semantics is that phrases can be given precise mean-

ings as values of well-de�ned sets. It is this notion of

\meaning" that we found useful in designing FPIC.

We wish to give the reader some idea of the thought

process we went through.

We will call the set in which the meaning of \circle

2.0" resides Picture. The question is, what exactly

is in this set? What is a picture? The most obvious

answer is that it is some concrete representation of

a picture, for example, an array of pixels or a list

of drawing commands. The precise representation

does not matter to us, so we will just give the rep-

resentation the generic name BitMap. So, our �rst

idea is to say

Picture = BitMap

However, a closer look at PIC tells us that this can't

be quite right. In PIC, one can write, for example,

box; box

meaning to draw one box next to another. (We

would write this as dbox hseq dbox.) If each box

is a Picture, and a Picture is just a bitmap, then

these two boxes would represent the same bitmap,

which would mean precisely the same pixels drawn

at the same location!

We should instead say that a Picture is the capability

to draw a bitmap, given a location at which to draw

it; in other words, it is a function from locations to

drawing commands:

Picture = Location ! BitMap

This is close, but we have also to deal with the pic-

ture that we write (from now on, we use FPIC syn-

tax to avoid confusion):

dbox scale 5.0

Again, the bitmap cannot be determined from the

value of dbox, even after knowing its location. We

might try

Picture = Location ! ScaleFactor ! BitMap

which is basically correct, but we also need to deal

with color, line width, and a host of other ways in

which the simple bitmap might be altered.

From this point of view, the value of dbox is just

the barest indication of what will actually show up

on the printed page. We represent this by de�ning

Picture = GraphicsContext ! BitMap

where GraphicsContext contains information about

any linear transformations that may have been ap-

plied to the picture, as well as color, �ll style, line

width, and so on.2

We're not quite done. We know that we can re-

fer to the points on a picture, for example dbox pt

"nw". Evidently, dbox means something more than

a bitmap. It means, in addition, a set of named

points, which we call an Environment. This brings

us to the de�nition we actually use in FPIC:

Picture = (GraphicsContext ! BitMap) �

Environment

This de�nition|and it is by no means the only

one possible|is the most important in the design

of FPIC. Just as the domains in the denotational

semantics of a language are chosen to match the

properties of that language, so here the de�nition

of Picture determines, more than any other single

thing, the properties of FPIC. Indeed, once this def-

inition is made|along with the precise de�nitions

of GraphicsContext and Environment|the rest of

the language largely falls out.

When embedding a language in a functional lan-

guage like Standard ML, this type de�nition can

also guide the implementation. Indeed, we have

used exactly the type above, written in ML as

type Picture =

(GraphicsContext->BitMap) * Environment;

as the type of pictures. Many of the basic oper-

ations on pictures, and their implementations, are

suggested directly by this type de�nition.

2PostScript [1] has a similar notion of \graphics context."

4 The FPIC User's Manual

Since FPIC includes Standard ML, the manual is

either very long or very short, depending upon how

you look at it. In any case, FPIC consists of about

160 functions, amounting to about 1200 lines of ML

code. In Appendix B, we list all the FPIC primitives

that are used in the examples in this paper.

5 FPIC Examples

The examples of this section show how the features

of Standard ML, when combined with the primitives

of FPIC, create a powerful language for constructing

pictures.

In a functional language, some fancy drawings are

relatively easy to do. For example, here is the \Sier-

pinski gasket" of order 3:

fun sierpinski 0 = dtriangle

| sierpinski n =

let val s = sierpinski (n-1) scaleWithPoint

((0.5,0.5),(0.0,0.0))

in s hseq s seq (s at ((width s)/2.0, height s))

end;

sierpinski 3;

(pic scaleWithPoint (s, point) scales picture pic

by a factor s while keeping point �xed.)

However, of more interest in practice is the abil-

ity to create reusable pieces of pictures to ease the

programming burden. Here is where functional pro-

gramming shines.

5.1 De�ning lines

In FPIC, a line is simply a function from two points

to a picture. Any drawing can be parameterized by

a line to create a variety of e�ects.

Here is a simple function to draw trees. Its argu-

ments are a picture representing the root of the tree

and a list of pictures representing its children.

fun drawtree root subtrees =

let val bottom = hseqtopsplist 1.0 subtrees

val top = placePt root "s"

(bottom pt "n" ++ (0.0,1.0))

val rootsouth = top pt "s"

in group (top seq bottom seq

(seqlist

(map (fn p => line rootsouth (p pt "n"))

(pics bottom))))

end;

It draws a tree with its nodes connected by lines:

let val t = drawtree dcircle [dbox, dbox]

in drawtree dbox [t, t] end;

We can de�ne a function drawTreeWithArrow that

would draw arrows instead of lines, simply by re-

placing \line" by \arrow." However, we can do

better in ML, making the line-drawing function a

parameter. drawTree becomes

fun drawtree root subtrees linefun =

: : : exactly the same, until the end : : :

(seqlist

(map (fn p => linefun rootsouth (p pt "n"))

(pics bottom))))

end;

Then the tree above would be written as

let val t = drawtree dcircle [dbox, dbox] line

in drawtree dbox [t, t] line end;

and we could also write

let val t = drawtree dcircle [dbox, dbox] arrow

in drawtree dbox [t, t] arrow end;

Moreover, we can de�ne our own line-drawing func-

tions. We have seen earlier, in the cons-cell example,

how to draw a curvy line. We use the same idea, ex-

cept that here we want our curvy line to begin with

a vertical leg rather than a horizontal one. Again,

keep in mind that a line-drawing function is just a

function from two points to a picture, nothing more

or less:

fun curvedvline pt1 pt2 =

bezier pt1 (pt1--(0.0,1.0))

(pt2++(0.0,1.0)) pt2;

let val t =

drawtree dcircle [dbox, dbox] curvedvline

in drawtree dbox [t, t] curvedvline end;

Two more examples are a line-drawing function that

uses a \Manhattan geometry":

fun manline pt1 pt2 =

let val ymid = (snd pt1 + snd pt2)/2.0

in seqlist

[line pt1 (fst pt1, ymid),

line (fst pt1, ymid) (fst pt2, ymid),

line (fst pt2, ymid) pt2]

end;

let val t = drawtree dcircle [dbox, dbox] manline

in drawtree dbox [t, t] manline end;

and a function that draws short lines of whatever

kind:

fun shortline linefun pt1 pt2 =

let val diff = pt2 -- pt1;

val pt1' = pt1 ++ diff**(0.25,0.25);

val pt2' = pt2 -- diff**(0.25,0.25)

in linefun pt1' pt2'

end;

let val t = drawtree dcircle [dbox, dbox]

(shortline arrow)

in drawtree dbox [t, t] (shortline arrow) end;

let val t = drawtree dcircle [dbox, dbox]

(shortline manline)

in drawtree dbox [t, t] (shortline manline) end;

5.2 De�ning sequencing operators

The functions that put pictures together into larger

pictures are of key importance. In FPIC, these

are generally binary operations with in�x syntax.

The basic sequencing operation is seq, which sim-

ply draws two pictures without prejudice; hseq and

vseq, among others, combine seq with some trans-

lation of the second picture.

Again, the ability to de�ne new sequencing opera-

tions is of the greatest interest. A sequencing op-

eration is a function from a pair of pictures to a

picture. The constructed picture should include the

two pictures.

A simple example is cseq, which aligns the centers

of two pictures:

infix 6 cseq;

fun (p1 cseq p2) = (p1, center p1) align

(p2, center p2);

doval cseq (doval rotate 45.0)

cseq (doval rotate 90.0)

cseq (doval rotate 135.0);

Given a sequence operation seq, we often use the

related operation seqlist, which applies to lists of

pictures. Speci�cally:

seqlist [p1; p2; : : : ; pn] � p1 seq p2 seq : : : seq pn

The function mkseqlist creates the list version of a

sequencing operation from the ordinary binary ver-

sion.

val cseqlist = mkseqlist (op cseq);

val bullseye = cseqlist (map

(fn rad => circle rad withFillColor

(1.0/rad, 1.0/rad, 1.0/rad))

[5.0, 4.0, 3.0, 2.0, 1.0]);

The function mkseqfun is provided to facilitate the

creation of new sequencing functions. Given two

functions f and g from pictures to points, it cre-

ates the sequencing operation that, given two pic-

tures p and q, draws the two so that fp and gq

coincide. For example, in the tree-drawing function

presented earlier, we used the sequencing operation

hseqtopsplist, the list version of the sequencing

operation hseqtopsp. The latter sequences two pic-

tures horizontally with their tops aligned, adding

some space between them. It is not built-in, but is

de�ned as follows:

fun hseqtopsp gap =

mkseqfun (fn p => northeast (p right 1.0))

northwest;

The cons-cell example suggests another kind of se-

quencing: sequencing with an arrow. cellseq has

as its arguments two cons cells|that is, two pic-

tures that are presumed to have subpictures called

cdr and car, respectively|and draws them a bit

separated, with a curvy arrow. To allow more than

one cell to be sequenced in this way, the combination

of cells is de�ned to have car and cdr subpictures

itself.

infix 7 cellseq;

fun cell1 cellseq cell2 =

let val c = (group cell1)

hseq (hspace 1.0)

hseq (group cell2)

val cells = c seq curvedharrow

(c nthpic 1 pic "cdr" pt "c")

(c nthpic 3 pic "car" pt "w")

in addNamedPics cells

[("car", cells nthpic 1 pic "car"),

("cdr", cells nthpic 3 pic "cdr")]

end;

For this example, we have de�ned labelledCell,

which draws a cons cell with a label in its car:

A

fun labelledCell L =

cell seq (L centeredAt (cell pic "car" pt "c"));

labelledCell (text "A")

cellseq

labelledCell (dcircle scaleTo (0.5, 0.5))

cellseq

labelledCell (cell scale 0.3);

6 Latex integration

FPIC pictures are included in LATEX documents by

using the fpic command:

\fpic{picture-name}{

... FPIC speci�cation ...

}

The speci�ed picture becomes an ordinary box in

LATEX, so that it can be included anywhere within

the document like any other piece of text. For exam-

ple, this
box

and this
oval

are placed

in-line. Notice that LATEX knows their sizes and

creates the right amount of horizontal and vertical

space for them.

The other side of this coin is the inclusion of TEX

text within FPIC pictures. The text function turns

a string|interpreted as LATEX input|into an FPIC

picture. Any LATEX input can be used here, and once

the text function is applied it becomes subject to

the same transformations as any other piece of text:

a b

c d
a

b

c
d

let val A = text

"$\\begin{array}{cc} a & b \\\\ c & d \\end{array}$"

in hseqsplist 0.5 [A scale 1.5, A rotate 45.0]

end;

The only di�culty here is that FPIC does not know

how large the text will turn out to be. We adopt

a solution to this problem similar, in essence, to

that used by Chailloux and Suarez in mlPicTeX [2].

When FPIC is �rst run, it produces LATEX code that

causes LATEX to write the size of the text to its inter-

mediate (aux) �le; on subsequent runs, FPIC reads

this information from that �le. As is common with

LATEX utilities, this requires that LATEX be run twice

when a new picture with text is added, or when the

text of an existing picture is changed, to be sure

that FPIC knows the size of the text.

With this feature, we can de�ne a picture-framing

function that will correctly frame text:

fun frame p = box (width p + 0.2) (height p + 0.2)

cseq p;

a

a b

c d R
1 0

f

frame (text "\\huge a")

hseq frame (text ("\\begin{tabular}{cc} a & b"

^ "\\\\ c & d \\end{tabular}")

hseq frame (text "$\\int_{0}^{1} f$" rotate 90.0);

Note that the argument to text can be any string,

not just a string literal. The size of the text will still

be calculated correctly:

10 100 10000 100000000

hseqlist

(map (fn i => frame (text (Int.toString (pow 10 i))))

[1, 2, 4, 8]);

7 Packages

The real point, of course, is that FPIC can do more.

That is, it is not merely a special purpose language

for one type of picture, but is in�nitely extensible

to a variety of picture-drawing domains.

Our last example is a collection of functions to

draw pie charts. This package contains the func-

tion pieChart, which takes a list of pairs, each con-

sisting of a percentage and a slice-drawing function,

and draws the slices. A slice-drawing function is

a function from an angle (in degrees) to a picture;

that picture will normally be a wedge of a circle cen-

tered at (0; 0) and starting at the given angle. The

package contains a variety of functions for creating

slice-drawing functions. They are shown in Figure 1.

The function slice takes a collection of arguments

and returns a slice-drawing function. The argu-

ments are: an external label to be drawn outside

the slice; the percentage of the pie that this slice

fun pieChart radius pieList =

let fun pieBuilder n [(a,pfun)] = pfun radius n

| pieBuilder n ((a,pfun)::slices) =

let val newangle = n+((a/100.0) * 360.0)

in (pfun radius n) seq (pieBuilder newangle slices)

end

in pieBuilder 0.0 pieList

end;

fun slice lab percent color =

let fun makeslice radius startAngle =

let val endAngle = startAngle + ((percent/100.0) * 360.0)

val pieSlice = (wedge radius startAngle endAngle)

val filledPie = pieSlice withFillColor color

val midAngle = (startAngle + endAngle)/2.0

val labelDist = radius/4.0

val xPt = (radius+labelDist)*(dcos midAngle)

val yPt = (radius+labelDist)*(dsin midAngle)

val extLabel = (text lab) centeredAt (xPt, yPt)

in filledPie seq extLabel

end

in (percent, makeslice)

end;

fun explodeSlice (percent, picfun) =

(percent, fn rad => (fn startAngle =>

let val angleDelta = ((percent/100.0) * 360.0)/2.0

val centerAngle = startAngle + angleDelta

val centerUnitVec = (dcos centerAngle, dsin centerAngle)

in (picfun rad startAngle)

offsetBy (scaleVec 1.0 centerUnitVec)

end));

fun triangleSlice lab percent color =

let fun makeslice radius startAngle =

let val endAngle = startAngle + ((percent/100.0) * 360.0)

val unitVec1 = (dcos startAngle, dsin startAngle)

val unitVec2 = (dcos endAngle, dsin endAngle)

val pieSlice = (triangle (0.0,0.0)

(scaleVec radius unitVec1)

(scaleVec radius unitVec2))

val filledPie = pieSlice withFillColor color

val midAngle = (startAngle + endAngle)/2.0

val unitVec3 = (dcos midAngle, dsin midAngle)

val bisect = midpoint (scaleVec radius unitVec1)

(scaleVec radius unitVec2)

val labelLoc = bisect ++ (scaleVec (radius/4.0) unitVec3)

val extLabel = (text lab) centeredAt labelLoc

in filledPie seq extLabel

end

in (percent, makeslice)

end;

Figure 1: Functions in the pie chart package

should occupy; and a color with which to �ll the

slice.

Here is an example:

A's

B's

C's

D's

F's

pieChart 2.0

[(slice "A's" 20.0 cyan),

(slice "B's" 25.0 green),

(slice "C's" 30.0 blue),

(slice "D's" 10.0 red),

(slice "F's" 15.0 yellow)];

The de�nition of a slice-drawing function leaves a

good deal of exibility. The function explodeSlice

takes a slice and moves it a certain distance away

from the center of the pie:

A's

B's

C's

D's

F's

pieChart 2.0

[(slice "A's" 20.0 cyan),

explodeSlice (slice "B's" 25.0 green),

(slice "C's" 30.0 blue),

explodeSlice (slice "D's" 10.0 red),

(slice "F's" 15.0 yellow)];

We can also change the shape of a slice. The func-

tion triangleSlice draws triangular slices.

A's

B's

C's

D's

F's

pieChart 2.0

[(triangleSlice "A's" 20.0 cyan),

(triangleSlice "B's" 25.0 green),

(triangleSlice "C's" 30.0 blue),

(triangleSlice "D's" 10.0 red),

(triangleSlice "F's" 15.0 yellow)];

explodeSliceworks for any slice-drawing function:

A's

B's

C's

D's

F's

pieChart 2.0

[(triangleSlice "A's" 20.0 cyan),

explodeSlice (triangleSlice "B's" 25.0 green),

(triangleSlice "C's" 30.0 blue),

explodeSlice (triangleSlice "D's" 10.0 red),

(triangleSlice "F's" 15.0 yellow)];

8 What a picture is (slight return)

The process whereby we arrived at the de�nition

of Picture was not as smooth as we described it in

section 3. Let us continue the analysis we began

there, and now consider the PIC (not FPIC) picture

box at last box.ne

This places a new box at the northeast corner of the

most recently drawn box. The phrase \last box"

suggests that a picture may depend upon the entire

set of previously-drawn pictures. Assuming these

are all collected into an environment, our de�nition

of a picture would become

Picture = Environment ! ((GraphicsContext !

BitMap) � Environment)

(Our current de�nition does not allow the de�nition

of last box, precisely because pictures do not see

an incoming environment. The result is that we

must assign a picture to an ML variable before we

can access one of its named points.)

This is the \obvious" de�nition of Picture, and it

was the �rst one we used. We worked with it for

quite a while before deciding it was untenable. We

still believe it is the correct de�nition, in principle,

but it makes a clean integration into Standard ML

impossible.

There are two problems with de�ning pictures in

this way. The �rst is that it requires the rede�nition

of much of Standard ML. Consider a picture of the

form (here we revert to FPIC-style syntax, though

lastbox is not an FPIC primitive)

dbox at (lastbox pt "ne")

dbox is a picture, so it has the type given above.

lastbox is a function from environments to pic-

tures. Thus, pt must have type

(Environment ! Picture) ! Name ! Point

so that the expression lastbox pt "ne" has type

Environment ! Point. Thus, at has type

Picture � (Environment ! Point) ! Picture

So far, so good. But now consider

dbox at (1.0,2.0)

According to the type of at, which we just agreed

upon, the expression (1.0,2.0) must be of type

Environment ! Point, not Point! We might de�ne

a function

fun constantPoint p = (fn env => p);

and then we could write the expression above as

dbox at (constantPoint (1.0,2.0))

This is annoying enough, but now consider

dbox scale ((width lastbox) + 0.5)

width lastbox is a function from environments to

real numbers, but then what is the type of \+"? It

cannot have type real�real!real, so it is not the

built-in multiplication of ML. Instead, it is a new

multiplication operator of type

(Environment ! real) � real! (Environment !

real).

Clearly, we are on a slippery slope: all the constants

and built-in operators need to be \lifted" to the type

Environment ! whatever.

To see the other problem with this de�nition of Pic-

ture, consider this example:

let val b = dbox

val c = dcircle at (b pt "ne")

in b seq dtriangle seq c

end

The obvious intention is that the circle should be

drawn at the northeast corner of the box. However,

this is not what will happen. The way we have de-

�ned Picture, a picture is drawn only after all the

previous pictures have been drawn. Thus, c is not

drawn after b, but instead after the dtriangle. At

that time, it will look in the environment, then cal-

culate where the northeast point of a box would be if

drawn at that time, and then draw the circle there.

In short, there is no actual connection between box

b and circle c.

Instead, something more like this would be needed:

let val b = namePic dbox "b"

val c = dcircle at (lastpic "b" pt "ne")

in b seq dtriangle seq c

end

At the time c is drawn, lastpic �nds the most

recent picture named b and draws the circle there.

Even this is not a direct connection between b and

c; if dtriangle were instead a picture containing a

picture named b, the circle would be drawn there.

In any case, we �nally abandoned this approach as

being too confusing.

So, our language design approach does not always

work as well as we would hope. We would like to

make two observations, however, before ending this

discussion. One is that the two problems we've de-

scribed are problems with integrating the new prim-

itives into the existing language. In particular, the

problems arise from the inescapable distinction be-

tween ML's ordinary variable environment and the

picture environments created by FPIC primitives.

Neither problem would exist, as far as we can see,

if FPIC were designed as a new language. (In fact,

the �rst problem is already partially solved in the

functional language Haskell [3], in that literals and

built-in operations can be \lifted" in the way that

we require).

Our second observation is that the technical prob-

lem described in this section should not be consid-

ered to imply that the language design is a failure.

We still consider that our original thesis has been

substantially borne out.

9 Related Work

We have acknowledged our debt to Kernighan's PIC

[4], and hopefully made clear how FPIC di�ers.

There are quite a few languages for specifying pic-

tures. We should particularly mention Timothy Van

Zandt's PSTricks [9], a collection of TeX macros, be-

cause FPIC is implemented using them (a BitMap

is actually just a sequence of PSTricks macro calls).

Another is Kristo�er Rose's xyPic [8] package.

The closest relatives of this work are Chailloux

and Suarez's mlPicTeX [2] and Simon Peyton Jones

and Sigbjorn Finne's \simple structured graphics

model" [7]. Both are embeddings of picture-drawing

primitives in a functional language (ML and Haskell,

respectively). In Peyton Jones and Finne's work,

the type Picture contains abstract syntax trees of

picture primitives; a program produces such a tree,

and then a renderer traverses this tree and produces

the picture.

We have emphasized in this paper the search for

an appropriate de�nition of Picture, and we con-

sider this an important step in the language design,

but this is a philosophical issue. (Peyton Jones and

Finne may also have considered this issue and then

implemented the language as they did; they do not

mention it. Chailloux and Suarez say nothing about

what the type Picture is in their system.)

The substantive di�erence between FPIC and these

other two systems is that FPIC has a naming fa-

cility for points and pictures that they lack. This

comes directly from PIC. We think this is a signif-

icant di�erence, both because the facility is in fact

used heavily in our examples (as it was in PIC) and

because it represents the most interesting challenge

in the language design.

10 Conclusions

We have outlined an approach to special-purpose

language design andn implementation using the

well-established technology of functional program-

ming languages. Our recommendation is to con-

sider carefully the type of primitive values peculiar

to the domain, and embed this type in an exist-

ing functional language, such as Standard ML or

Haskell. We illustrated this process with respect

to FPIC, a language for picture-drawing inspired

by the language PIC, and illustrated some of its

bene�ts. FPIC is not perfect, but we would argue

that the quality-to-cost-of-development ratio is very

high.

11 Acknowledgments

We would like to thank the anonymous referees for

their very helpful comments.

12 Availability

FPIC can be obtained from

http://www-sal.cs.uiuc.edu/~kamin/fpic

To run it, you will need to obtain Standard ML and

the PSTricks macros; the FPIC web page has links

to sources for both.

References

[1] Adobe Systems Inc. PostScript Language Ref-
erence Manual. Addison Wesley, second edi-

tion, 1990.

[2] Emmanuel Chailloux and Ascander Suarez.

mlPicTEX, a picture environment for LaTEX.

[3] P. Hudak, S. Peyton Jones, and P. Wadler

(eds.), Report on the Programming Language
Haskell (Version 1.2), ACM SIGPLAN Notices,

27(5), May 1992.

[4] B.W. Kernighan. PIC: A crude graphics lan-
guage for typesetting. Bell Laboratory, 1981.

[5] Donald E. Knuth. The TEXbook. Addison-

Wesley Co., Inc., Reading, MA, 1984

[6] Robin Milner, Mads Tofte, and Robert

Harpert, The De�nition of Standard ML, The
MIT Press, Cambridge, MA, 1990.

[7] Simon Peyton Jones and Sigbjorn Finne. Pic-
tures: A Simple Structured Graphics Model.

[8] Kristo�er H. Rose. XyPic User's Guide. 1995.

[9] Timothy Van Zandt. PSTricks: PostScript
macros for Generic TEX. 1993.

Appendix A

We briey review some aspects of ML syntax,

enough to allow the examples to be read by someone

not familiar with ML.

Here is the �rst example of FPIC in the paper:

box 1.0 2.0 hseq circle 1.5 vseq

label "\\Huge Hello!" (oval 2.0 1.0);

Function application in ML is indicated by juxta-

position. Here, box is a two-argument function

applied to arguments 1.0 and 2.0, circle is a

one-argument function, label and oval are two-

argument functions. hseq and vseq are in�x opera-

tors. As in many languages, backslash is an escape

character so it must be doubled within quotes.

Function application (juxtaposition) has a high

precedence, so that the above expression is equiv-

alent to

(box 1.0 2.0) hseq (circle 1.5) vseq

(label "\\Huge Hello!" (oval 2.0 1.0));

Note that that subexpression oval 2.0 1.0 must

be parenthesized, however, because otherwise the

last part of the expression would be parenthesized

as

(label "\\Huge Hello!" oval) 2.0 1.0;

This produces a type error, because the second ar-

gument to label must be a picture, and oval is not

a picture (rather, it is a function from two reals to

a picture).

Top level de�nitions of variables are signalled by the

word val, as in

val nose = dtriangle;

Functions are usually introduced by the keyword

fun, as in

fun drawtree root subtrees = ...

The let expression is used to introduce a temporary

name.

let val v = e1 in e2 end

binds the value of e1 to v and then evaluates e2,

returning its value.

Structures are of two kinds: tuples and lists. Tu-

ples are written with parentheses, as in (1.0, 1.5).

Lists are written with square brackets, as in

[dbox, dcircle, dbox].

We occasionally use the syntax fn var => expr to

de�ne functions anonymously, usually when apply-

ing map. Thus, map (fn var => expr) L applies the

function that takes var to expr to each element of

the list L.

ML allows for user-de�ned in�x operators, as in

infix 6 cseq;

The \6" gives the precedence of the operator (in the

range 0 to 9).

Lastly, two details about built-in operators: The

tilde character (~) is the unary negation operator.

Carat (^) is the string concatenation operator.

Appendix B

The following are the FPIC primitives used in this paper. This represents about one third of the total

number of FPIC primitives. We have also included those user-de�ned operations that are de�ned in one

part of the paper and used in a di�erent part.

For each operation, we give a generic call, with the arguments in italics. The form of the call shows whether

or not the operation is in�x. The names of the arguments indicate their types: pic for pictures, pt for points,

i for integers, r for reals, f for functions, and str for quoted strings.

pt1 ++ pt2 Addition of points

pt1 -- pt2 Subtraction of points

pt1 ** pt2 Multiplication of points

addNamedPics pic [(str1, pic1), : : :]

Add the list of named pictures to pic's environment

(pic1, pt1) align (pic2, pt2) Place pic1 and pic2, moving pic2 so that its point pt2 coincides

with pt1 on pic1

arrow pt1 pt2 Arrow from pt1 to pt2

pic at pt pic translated so that its reference (southwest) point is at pt

bezier pt1 pt2 pt3 pt4 Bezier curve from pt1 to pt4 with control points pt2 and pt3

box r1 r2 Box of width r1 and height r2

center pic The center of pic, calculated from its bounding box

pic centeredAt pt pic translated so that its center is at pt

circle r Circle of radius r

pic1 cseq pic2 pic1 on top of pic2, their centers aligned

curvedharrow pt1 pt2 Arrow from pt1 to pt2, starting and ending with horizontal

segments

dbox Box of default size (1.618034 � 1.0)

dcircle Circle of default radius (1.0)

dcos r Cosine of r (in degrees)

doval Oval inscribed in dbox

dsin r Sine of r (in degrees)

dtriangle An equilateral triangle

frame pic pic with a box drawn around it (user-de�ned)

group pic Same as pic, but considered as a single picture without subpic-

tures, for purposes of calculating the subpictures of a containing

picture. For example, dbox hseq dbox hseq dbox has three sub-

pictures, but group (dbox hseq dbox) hseq dbox has two (the

�rst of which also has two).

height pic The height of pic

pic1 hseq pic2 pic1 next to pic2

hseqlist [pic, : : :] A list of pictures sequenced horizontally

hseqsplist gap [pic, : : :] A list of pictures sequenced horizontally, with space between them

hseqtopsp gap pic1 pic2 pic1 and pic2 are drawn next to each other, their tops aligned, with

a gap between them (user-de�ned)

hseqtopsplist gap [pic, : : :] A list of pictures sequenced horizontally, their tops aligned, with

space between them (user-de�ned)

hspace r Empty space of lenght r

label str pic Place str in the middle of pic

line pt1 pt2 Line from pt1 to pt2

midpoint pt1 pt2 The mid-point of pt1 and pt2

mkseqlist f Given sequencing function f , return the function that applies f to

a list of pictures

namePic pic str Give pic the name str

namePts pic [(str1, pt1), : : :] Add the named points to pic's environment

north pic North point of pic, calculated from its bounding box

northeast pic similarly

northwest pic similarly

pic nthpic i The ith subpicture of pic

pic offsetBy pt pic translated by pt

oval r1 r2 Oval inscribed in box r1 r2

pic pic str The subpicture named str contained in pic

pics pic All the (top-level) subpictures of pic

place pic f pt Move pic so that the point f pic is at pt

placePt pic str pt Move pic so that the point named str is at pt

pic pt str The point named pt in pic

pic right r pic moved right by r

pic rotate r pic rotated counter-clockwise by r (in degrees)

pic scale r pic scaled by r in both dimensions

pic scaleTo pt pic scaled to �t within pt

scaleVec s pt pt multiplied component-wise by s

pic scaleWithPoint (pt1, pt2) pic scaled by pt1 (see scaleXY), but without moving its point pt2

pic scaleXY pt pic scaled by x in the x direction and y in the y direction, where

pt = (x; y)

pic1 seq pic2 pic1 superimposed on pic2

seqlist [pic, : : :] The pictures pic, : : :, superimposed on one another

text str A picture consisting of the text str

triangle pt1 pt2 pt3 Triangle connecting pt1, pt2, and pt3

pic1 vseq pic2 pic1 on top of pic2

wedge r1 r2 r3 Create a wedge of a circle with radius r1 extending counter-

clockwise from angle r2 to angle r3

width pic The width of pic

pic withArrowStyle str pic drawn with a given arrow style, if it is a line; the arrow styles

are as in PSTricks [9]

pic withFillColor (r1, r2, r3) pic drawn in the color given by RGB values (r1, r2, r3) (all in the

range 0-1)

