
The following paper was originally published in the
Proceedings of the Conference on Domain-Specific Languages

Santa Barbara, California, October 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

A Domain-Specific Language for Regular Sets of Strings and Trees

Nils Klarlund
AT&T Labs - Research

Michael I. Schwartzbach
University of Aarhus

A Domain-Speci�c Language for

Regular Sets of Strings and Trees

Nils Klarlund Michael I. Schwartzbach

AT&T Labs{Research BRICS, University of Aarhus

klarlund@research.att.com mis@brics.dk

Abstract

We propose a new high-level programming notation,

called FIDO, that we have designed to concisely ex-

press regular sets of strings or trees. In particular,

it can be viewed as a domain-speci�c language for

the expression of �nite-state automata on large al-

phabets (of sometimes astronomical size).

FIDO is based on a combination of mathematical

logic and programming language concepts. This

combination shares no similarities with usual logic

programming languages. FIDO compiles into �nite-

state string or tree automata, so there is no concept

of run-time. It has already been applied to a variety

of problems of considerable complexity and practical

interest.

In the present paper, we motivate the need for a

language like FIDO, and discuss our design and its

implementation.

We show how recursive data types, uni�cation, im-

plicit coercions, and subtyping can be merged with

a variation of predicate logic, called the Monadic
Second-order Logic (M2L) on trees. FIDO is trans-

lated �rst into pure M2L via suitable encodings, and

�nally into �nite-state automata through the MONA

tool.

1 Introduction

Finite-state problems are everywhere, embedded in
many layers of software systems, but are often dif-
�cult to extract and solve computationally. This

basic observation is the motivation for the work pre-
sented in this paper.

Recent research by us and our colleagues has ex-

ploited the Monadic Second-Order Logic (M2L) on

�nite strings and trees to solve interesting and chal-
lenging problems. In each case, the results are ob-
tained by identifying an inherent regularity in the
problem domain, thus reducing the problem to ques-
tions of regular string or tree languages. Successful
applications today include veri�cation of concurrent
systems [9, 8], hardware veri�cation [2], software en-
gineering [10], and pointer veri�cation [7]. Work in
progress involves a graphical user interface for reg-
ular expressions extended with M2L and document
logics for the WWW.

The rôle of M2L in this approach is to provide an ex-
traordinarily succinct notation for complicated reg-
ular sets. Our applications have demonstrated that
this notation in essence can be used to describe
properties, where �nite state automata, regular ex-
pressions, and grammars would be tend to be cum-
bersome, voluminous, or removed from the user's
intuition. This is hardly surprising, since M2L is
a variation on predicate logic and thus natural to
use. Also, it is known to be non-elementarily more
succinct than the other notations mentioned above.
Thus, some formulas in M2L describe regular sets
for which the size of a corresponding DFA compared
to the size of the formula is not bounded by any �-
nite stack of exponentials.

The
ip side of this impressive succinctness is that
M2L correspondingly has a non-elementary lower
bound on its decision procedure. Surprisingly, the
MONA implementation of M2L [5] can handle non-
trivial formulas, some as large as 500,000 charac-
ters. This is due in part to the application of BDD

techniques [4], specialized algorithms on �nite-state
automata [3], and careful tuning of the implemen-
tation [11]. Also, it turns out that the intermediate

automata generated, even those resulting from sub-
set constructions, are usually not big compared to
the automata representing the properties reasoned
about.

The successful applications of M2L and MONA re-
side in a common, productive niche: they require
the speci�cation of regular sets that are too compli-
cated to describe by other means, but not so com-
plicated as to be infeasible for our tools.

While the basic M2L formalism is simple and quite
intuitive, early experience quickly indicated that
this formalism in practice su�ers from its primitive
domain of discourse: bit-labeled strings and trees.
In fact, M2L speci�cations are uncomfortably sim-
ilar to assembly code programs in their focus on
explicit manipulations of bit patterns. For M2L in-
terpreted on trees, the situation is even worse, since
the theory of two or more successors is far less fa-

miliar and intuitive than the linear sublogic.

Similarly to the early experiences with machine lan-
guages, we found that M2L \programmers" spent
most of their time debugging cumbersome encod-
ings.

Our contributions

In this paper, we propose a domain-speci�c pro-
gramming formalism FIDO that combines mathe-
matical logic and recursive data types in what we
believe are new ways.

We suggest the following four kinds of values: �-
nite domains, recursive data values (labeled by �-
nite domains), positions in recursive data values,
and subsets of such positions. We show that many
common programming language concepts (like sub-
typing, coercions, and uni�cation) make sense when
the underlying semantics is based on assigning an
automaton (and not a store transformer) to expres-
sions.

This semantic property allows us to view the com-
pilation process as calculations on values that are

deterministic, �nite-state automata, just as an ex-
pression evaluator calculates on numbers to arrive
at a result. That is, automata are the primitive ob-

jects that are subjected to operations re
ecting the
semantics of the language.

This view is quite di�erent from the method behind

most state-machine formalisms used in veri�cation
(such as the Promela language [6]): a language re-
sembling a general purpose language expresses a sin-

gle �nite-state machine, whose state space and tran-
sition system is constructed piecemeal from calcula-
tions that explore the state space.

Our view, however, is similar to some uses of regu-
lar expressions for text matching, except that most
implemented algorithms avoid the construction of
deterministic automata.

FIDO is implemented and provides, along with sup-
porting tools, an optimizing compiler into M2L for-
mulas. It has been used for several real-life applica-
tions and is also the source of the biggest formulas
yet handled by MONA.

In this article, we motivate and explain FIDO. In
particular, we discuss the type system and compi-
lation techniques. We also give several examples
(some taken from articles already published, where
we have used FIDO without explaining its origin
or design). Some technical considerations concern-
ing the relationship between our data structures for
tree automaton representation [3] and the compila-
tion process will be explained elsewhere.

2 M2L and MONA

Basic M2L has a very simple syntax and seman-
tics. Formulas are interpreted on a binary tree (or
a string) labeled with bit patterns determining the
values of free variables. First-order terms (t) denote
positions in the tree and include �rst-order variables
(p) and successors (t:0 and t:1). Second-order terms
(T) denote sets of positions (i.e. monadic predi-
cates) and include second-order variables (P), the
empty set (;), unions (T1 [T2), and intersections
(T1 \ T2). The basic predicates are set member-
ship (t 2 T), equality (t1 = t2), ancestor relation
(t1 < t2), and set inclusion T1 � T2). The logic
permits the usual connectives (^, _, :) and �rst
and second-order quanti�ers (81, 91, 82, 92). By
convention, a leaf is a position p for which p = p:0
and p = p:1. The sublogic for strings uses only the
0-successor.

The MONA tool accepts such formulas in a suit-

able ASCII syntax and produces a minimum DFA
that accepts all trees satisfying the given formula.
Thus, satis�ability of a formula is equivalent to non-
emptyness of the derived automaton, and validity is
equivalent to totality. The values of free variables
in the formula are encoded in the alphabet of the
automaton. Thus, a formula with 32 free variables
yields an alphabet � of size 232. In the internal rep-
resentation of these automata, the transition func-
tion is shared, multi-terminal �-BDD. With these
BDD techniques, the MONA tool has processed for-

mulas with hundreds of thousands of characters in
a few minutes.

3 The Motivation

A small example will motivate the need for a high-
level notation. Assume that we wish to use MONA
to prove the following (not too hard) theorem: for
every string in (a+b)�c, any a is eventually followed
by c.

To state this theorem in M2L, we must �rst choose
an encoding of the labels a, b, and c. For this pur-
pose we introduce two free second-order variables
X0 and X1. The labels can be encoded according to
the following (arbitrary) schema: a position p has
label a if p =2 X0 ^ p =2 X1, that is, a corresponds to
the bit pattern 00. Similarly, we can assign to b the
bit pattern 01 and to c the pattern 10. The property
\a is eventually followed by c" becomes the formula:

 � 81 p : (p 62 X0 ^ p 62 X1))
(91q : p < q ^ (q 2 X0 ^ q 62 X1))

The regular expression (a+b)�c can in a similar way
be encoded as the formula:

� � 81 p : (:(p 2 X0 ^ p 2 X1)) ^
((p 2 X0 ^ p 62 X1), p = p:0)

and the theorem above is then formally stated as
the implication �) . The MONA tool will readily
verify that this formula is an M2L tautology, thus
proving our theorem.

A reason for M2L speci�cations being much more
voluminous than promised should now be apparent:

there is a signi�cant overhead in encodings. More-
over, there are no automatic checks of the consistent
use of bit patterns.

Support for such encodings is usually supplied by
a type system. For M2L on strings, regular sets
immediately suggest themselves as notions of types.
It is quite common for M2L formulas to be of the
implicational form �) , where � is a formula
restricting the strings to a coarse regular set and
 provides the more intricate restrictions. Thus, a

high-level version of the above formula could look
like:

string x: (a+b)�c;
8pos p:x.(p=a) 9pos q:x.(p<q^ q=c))

The keywords string and pos are intended to declare
free variables of these two kinds. This formula can
be read as: \for all positions p in the string x, if p
has label a, then there exists a position q, also in x,
such that p is before q and q has label c". The main
formula is almost the same as the MONA version,

but the proper use of labels is now supported by the
compiler and can be veri�ed by a type checker.

For M2L interpreted on trees, however, there is no
intuitive analogue to regular expressions. But from
programming languages we know an intuitive and
successful formalism for specifying coarse regular
sets of trees: recursive data types. Thus, we adopt a
well-known and trusted programming concept into

our high-level notation. Using this idea, we may
prove our theorem as follows:

type T = a,b(next: T) j c;
string x: T;

8pos p:x.(p=a) 9pos q:x.(p<q^ q=c))

Arbitrary recursive data types may of course be ex-
pressed directly as formulas, but the translation is
voluminous and best performed automatically. The
translation also solves the problem that the Mona
decision procedure works on formulas whose domain
of discourse is only binary trees, whereas values of
recursive data types are trees with a varying number
of branches. (The solution is rather technical, since
it involves bending the recursive data type value into
the shape of a binary branching tree.)

Note that not all regular tree sets can be captured
by recursive data types. Consider binary trees, in
which nodes are colored red, green, or blue. The
subset of trees in which at most one node is colored
blue is not a recursive data type; however, it is easily
captured by the following FIDO speci�cation:

type RGB = red,green,blue(left, right: RGB) j leaf;
tree x: RGB;

8pos p,q: x.(p=blue^ q=blue) p=q)

Certainly, more advanced and complicated notions

of data types could similarly be adopted [1]. How-
ever, the FIDO philosophy is to rely heavily on stan-

dard programming language concepts to describe

complex structures and operations. The ambition is
that these idioms should be merged seamlessly with
logical concepts that describe complex properties of
such structures.

In general, we allow �nite domains (from which the
name FIDO derives) to be the values of nodes. Fi-

nite domains are constructed conjunctively and dis-
junctively from enumerated and scalar types. Thus
the alphabets of tree automata reading such recur-
sive data types easily become very large.

4 The Design

While this paper is not intended as a proper lan-
guage report, we will explain the more interesting
or unusual concepts that the FIDO notation pro-
vides.

Domains and Data Types

Finite domains are constructed from simple scalar
lists, freely combined with a product operator (&)
and a union operator (j). When the union of two
�nite domains is formed, it is required that they are
disjoint. Thus, if we de�ne the domains:

type Turn = [1..2];

type PC = a,b,c,d;

type State = PC & PC & Turn;

then a value of the domain State may be written
as State:[a,b,2]. From the more complicated de�ni-
tions:

type A = a1,a2;

type B = b1,b2,b3;

type C = A j B;
type D = A & B & C;

type E = C & D;

we obtain values as: E:[a1,[a2,b3,[a2,b1]]]. In for-
mulas, �nite domain values may be uni�ed using a
syntax such as State:[pc?,a,r?], where ps and r are
uni�cation variables.

The recursive data types are quite ordinary, except
that the constructors are generalized from single
names to �nite domains.

The �nite domains could of course be encoded as
(non-recursive) data types. We have chosen to have
a separate concept for several reasons. First, the

distinction between trees and their labels seems in-
tuitive for many applications. Second, we can allow
more operations on �nite domains that on trees; for
example, the introduction of uni�cation or concate-
nation on trees would yield an undecidable formal-
ism. Third, in the translation into automata, �nite

domains are encoded in BDDs whereas trees are en-
coded in the state space; often, it is necessary for
the programmer to control this choice. An example
is:

type Comp = State(next: Comp) j done;

which is a linear data type of sequences of state
values terminated by a node labeled done. A non-
linear example is:

type Tree = red,black(val: Enum,

left,right: Tree) j
leaf;

type Enum = [1..10];

denoting some binary trees. The notation [1..10]

abbreviates the corresponding 10 scalars.

Variables

There are four kinds of variables in FIDO. We intro-
duce them by examples. A domain variable s that
ranges over states may be declared as

dom S: State;

Tree variables (recursive data type variables) x and
y may be declared as:

tree x,y: Tree;

Each variable de�nes its own space of positions.
Thus, a position in x cannot be used to denote a
node in y. To declare a position variable that may
denote positions in either x or y, we write:

pos p: x, y;

A value of this variable points to a node in either x
or y, but in any case, the node pointed to is either
red or black. Similarly, a set variable S containing
positions in the union of x's and y's position spaces
may be declared as:

set S: x, y;

Quanti�cation

All variables can be quanti�ed over. For example,
the formula \there is a computation that contains a

loop" may involve quanti�cation over both strings
(trees), �nite domains, and positions:

9string x: Comp. 9dom s: State.

9pos p,q: x.(p<q ^ p=s ^ q=s)

Types

A type may have one of four di�erent kinds: pos,
set, dom, and tree. The pos kind corresponds to
�rst-order terms, i.e. positions in trees; the set kind
similarly encompasses second-order terms; the dom

kind is new compared to M2L and describes values
of �nite domains; �nally, the tree kind is a further
extension that captures entire trees as values.

Within each kind, a type is further re�ned by a set
of tree names and a set of data type names. For
example, the type (pos,fx,yg,fR,S,Tg) denotes po-
sitions of nodes in either the tree x or y that are
roots of subtrees of one of the data types R, S, or
T. These re�ned types prove to be very convenient
in restricting free variables in the model and in ex-
pressing relativized quanti�cations. Furthermore,
this type structure proves crucial for optimizations
in the implementation.

The type rules impose restrictions on all operators
in the language. Generally, the rules boil down to
trivial statements about �nite sets. For example,
if the terms si have types (set,Xi,Di), then s1 \ s2
has type (set,X1 \ X2,D1 \ D2). Also, if the term
p has type (pos,X,D), then the term p.n has type
(pos,X,fT.n j T2 Dg), where T.n is the data type
reached from T along an n-successor.

Some formulas can be decided purely on the ba-
sis of the type system. For example, if p has type
(pos,Xp,Dp) and s has type (set,Xs,Ds), then the
formula p 2 S is false if Xp \ Xs = ; or Dp \ Ds =

;. Such static decisions are exploited by the FIDO
compiler.

Notational Conveniences

A formal notation has a tendency to become a quag-

mire of details. In the design of FIDO, we have
attacked this problem in three di�erent ways.

First, it is often convenient implicitly to coerce val-

ues between di�erent kinds. This we have expressed
through a simple subtype structure. Two types
(�1,X1,D1) and (�2,X2,D2) are related by the sub-

type order if X1 � X2, D1 � D2, and �1 is below �2
in the following �nite order:

�
�
�

@
@
@

tree

set

dom

pos

possetroot

read

The order relations have been decorated with coer-
cions functions: posset computes the set of positions
in a tree, root �nds the root positions of a tree, and
read computes the label of a position. This subtype
structure is exploited to automatically insert coer-
cions. Note that our subtype structure clearly is
semantically coherent, so that coercions are unique
[12]. If we added the coercion: singleton: pos !

set, then semantic coherence would fail.

Second, we allow implicit casts between �nite do-
mains. For example, in the de�nitions:

type Fruit = apple,orange;

type Root = carrot,potato;

type Vegetable = Fruit j Root;

we will allow values of the domains Fruit and Root

to be used directly as values of the domain Veg-

etable, even though they strictly speaking should be
expressed as e.g. cast(Fruit:apple,Vegetable).

Third, we allow sensible defaults whenever possible.
Thus, if a name can unambiguously be determined
to have a speci�c meaning, then all formal quali�ers
may be dismissed. For example, if the name orange
is only used as a scalar in the domain Fruit, then
the constant Fruit:orange may be written simply as
orange.

As a speci�c example of these techniques, consider
the previous theorem:

type T = a,b(next: T) j c;
tree x: T;

8pos p:x.(p=a) 9pos q:x.(p<q^ q=c))

We have already used a number of syntactic con-
veniences here. From the above speci�cation, the
compiler inserts the necessary coercions to recon-

struct the more explicit code:

type T = a,b(next: T) j c;
tree x: T;

8pos p:x,T.(read(p)=T:a)
9pos q:x,T.(p<q^ read(q)=T:c))

which is somewhat harder to read. In a real-life
12-page formula, more than 400 such pedantic cor-
rections are automatically performed.

Decompilers

Any compiler writer must also consider the need
for decompilers. In the case of FIDO and MONA,
speci�cations are translated into a more primitive
logic. This is �ne, if we only want to decide valid-
ity. However, MONA also has the ability to gen-
erate counter-examples for invalid formulas. But a
MONA counter-example will make little sense for a
FIDO programmer, since it will have a completely
di�erent structure and be riddled with bit patterns.
Consequently, the FIDO system provides a decom-
piler that lifts such counter-examples into the high-
level syntax.

Another use of MONA, illustrated in the following
section, is to generate speci�c automata. For this
application, FIDO provides a di�erent decompiler
that expresses an automaton as a particular kind
of attribute grammar at the level of recursive data
types.

5 Examples

We now provide a few examples illustrating the ben-
e�ts of the FIDO notation. We include applications
that aim to synthesize automata as well as some that
aim to verify properties. For each case we present a
toy example in some detail and sketch a large, pre-
viously published application of a similar nature.

Synthesis

The following example considers (a fragment of) the
HTML syntax. Not all syntactically correct HTML-
speci�cations should be allowed. For example, a
document should never contain an anchor within
another anchor (to not confuse the reader). Such
a constraint could be incorporated into the context-
free syntax, but it would essentially double the num-
ber of non-terminals. However, we can easily cap-
ture HTML parse trees as values of a recursive data

type. On these trees we can then express as a logical
formula the restriction that we wish to impose:

type HTML = word j
anchor(u: URL, a: HTML) j
bold(b: HTML) j
italic(i: HTML) j
paragraph j
rule j
list(l: LIST);

type LIST = empty j
entity(h: HTML, next: LIST);

type URL = url;

func Restrict(tree h: HTML): formula;

8pos p: h,HTML.(p=anchor)
:(9pos q: h,HTML.(p<q^ q=anchor)))

end;

tree H: HTML;

Restrict(H)

Furthermore, we can introduce any number of such
restrictions in a completely modular manner. From
this speci�cation, the FIDO system can produce an
attribute grammar working on parse trees, which
could then easily be incorporated into an HTML
development system. In this case, the attribute
grammar has three attribute values, corresponding
to zero, one, or too many nested anchors. Only trees
synthesizing the values zero or one are accepted.
The transitions, which are simply inherited from
the tree automaton that MONA computes, are as
follows:

HTML j word: [] 7! 0

HTML j anchor: [0,0] 7! 1

[0,1] 7! 2

[0,2] 7! 2

HTML j bold: [0] 7! 0

[1] 7! 1

[2] 7! 2

HTML j italic: [0] 7! 0

[1] 7! 1

[2] 7! 2

HTML j paragraph: [] 7! 0

HTML j rule: [] 7! 0

HTML j list: [0] 7! 0

[1] 7! 1

[2] 7! 2

LIST j empty: [] 7! 0

LIST j entity: [0,0] 7! 0

[0,1] 7! 1

[1,0] 7! 1

[1,1] 7! 1

[0,2] 7! 2

[2,0] 7! 2

[1,2] 7! 2

[2,1] 7! 2

[2,2] 7! 2

URL j url: [] 7! 0

The transition HTML j anchor: [0,0] 7! 1 means
that if the node is an anchor and each of its two
subtrees synthesizes the attribute value 0, then it
should synthesize the attribute value 1.

These simple ideas have been exploited in a collab-
oration with the Ericsson telecommunications com-
pany to formalize the constraints of design architec-
tures [10].

Veri�cation

Two speci�cations, of say distributed systems, can
be compared by means of the implication or bi-
implication connective. Consider a simple-minded
mutual exclusion protocol for two processes with a
shared memory:

Turn: Integer range 1..2 := 1;

task body Proc1 is

begin

loop

a: Non_Critical_Section_1

b: loop exit when Turn = 1; end loop;

c: Critical_Section_1;

d: Turn := 2

end loop;

end Proc1;

task body Proc2 is

begin

loop

a: Non_critical_Section_2;

b: loop exit when Turn = 2; end loop;

c: Critical_Section_2;

d: Turn := 1;

end loop

end Proc2

The FIDO speci�cation models all valid interleaved
computations and simply asks whether the safety
property holds:

type Turn = [1..2];

type PC = a,b,c,d;

type State = PC & PC & Turn;

type Computation = State(next: Computation) j done;
string �: Computation;

func Trans(dom s,t: State): formula;

let dom pc: PC; dom r: Turn.(

trans(s,t)

[a,pc?,r?] 7! [b,pc?,r?] j
[b,pc?,1] 7! [c,pc?,1] j
[b,pc?,2] 7! [b,pc?,2] j
[c,pc?,r?] 7! [d,pc?,r?] j
[d,pc?,r?] 7! [a,pc?,2] j
[pc?,a,r?] 7! [pc?,b,r?] j
[pc?,b,2] 7! [pc?,c,2] j
[pc?,b,1] 7! [pc?,b,1] j
[pc?,c,r?] 7! [pc?,d,r?] j
[pc?,d,r?] 7! [pc?,a,1]

end

)

end;

func Valid(string x: Computation): formula;

x=[a,a,1];

8pos p: x.(
if p.next6=done then

let dom s,t: State.

(p=s?; p.next=t?; Trans(s,t))

end

)

end;

func Mutex(string x: Computation): formula;

8pos p: x.(p6=[c,c,?])

end;

Valid(�)) Mutex(�)

The formula trans(s,t) . . . end denotes the binary
relation on State domain values that hold for the
pairs of values that can simultaneously match one
of the listed cases.

The corresponding raw MONA formula looks like:

((ex1 [UNI_alpha] p: (root (p,[p]) & (all1 [UNI_alpha] q: (
(p <= q + 0) => (((q notin G0) & (q <= q.0 - 1)) | (((((((

q in G0) & (q notin S0)) & (q notin S1)) & (q notin S2)) &
(q notin S3)) & (q notin S4)) & (q = q.0))))))) => (((ex1

[UNI_x] POS26: (root (POS26,[POS26]) & ((POS26 notin G0) &
(((((POS26 notin S0) & (POS26 notin S1)) & (POS26 notin S2))
& (POS26 notin S3)) & (POS 26 notin S4))))) & (all1 [UNI_x

] POS_p: ((all1 [UNI_x] POS31: ((((POS_p in G 0) | (POS31
!= POS_p.0)) & ((POS_p notin G0) | (POS31 != POS_p))) | (PO

S31 n otin G0))) => (ex1 [UNI_x] POS41: (((POS_p notin G0)
& ((((POS_p notin G0) & (POS41 = POS_p.0)) | ((POS_p in G0)
& (POS41 = POS_p))) & (POS41 notin G0))) & (ex0 s0_pc,s1_pc

: (ex0 s0_r: ((((((((((((((((POS_p in S0) <=> s0_pc) & ((
POS_p in S1) <=> s1_p c)) & (POS_p in S2)) & (POS_p in S3))

& ((POS_p in S4) <=> s0_r)) & ((((((POS41 in S0) <=> s0_pc)
& ((POS41 in S1) <=> s1_pc)) & (~(POS41 in S2))) & (~(POS

41 in S3))) & (~(POS41 in S4)))) | (((((((POS_p in S0) <=>
s0_pc) & ((POS_p in S1) <=> s1_pc)) & (~(POS_p in S2))) & (

POS_p in S3)) & ((POS_p in S4) <=> s0_r)) & ((((((POS41 in
S0) <=> s0_pc) & ((POS41 in S1) <=> s1_pc)) & (POS41 in S2)

) & (POS41 in S3)) & ((POS41 in S4) <=> s0_r)))) | (((((((P
OS_p in S0) <=> s0_pc) & ((POS_p in S1) <=> s1_pc)) & (POS_p

in S2)) & (~(POS_p in S3))) & (~(POS_p in S4))) & ((((((
POS41 in S0) <=> s0_pc) & (s1_t <=> s1_pc)) & (POS41 in S2)

) & (~(POS41 in S3))) & (~(POS41 in S4))))) | (((((((POS_p
in S0) <=> s0_pc) & (s1_s <=> s1_pc)) & (POS_p in S2)) & (
~(POS_p in S3))) & (POS_p in S4)) & ((((((POS41 in S0) <=>

s0_pc) & ((POS41 in S1) <=> s1_pc)) & (~(POS41 in S2))) & (
POS41 in S3)) & (POS41 in S4)))) | (((((((POS_p in S0) <=>

s0_pc) & ((POS_p in S1) <=> s1_pc)) & (~(POS_p in S2))) &
(~(POS_p in S3))) & ((POS_p in S4) <=> s0_r)) & ((((((POS41
in S0) <=> s0_pc) & (s1_t <=> s1_pc)) & (POS41 in S2)) &

(~(POS41 in S3))) & ((POS41 in S4) <=> s0_r)))) | ((((((POS
_p in S0) & (POS_p in S1)) & ((POS_p in S2) <=> s0_pc)) & (

(POS_p in S3) <=> s1_pc)) & ((POS_p in S4) <=> s0_r)) & (((
((~(POS41 in S0)) & (~s 1_t)) & ((POS41 in S2) <=> s0_pc))

& ((POS41 in S3) <=> s1_pc)) & (POS41 in S4)))) | ((((((~(
POS_p in S0)) & s1_s) & ((POS_p in S2) <=> s0_pc)) & ((POS_
p in S3) <=> s1_pc)) & ((POS_p in S4) <=> s0_r)) & (((((POS

41 in S0) & s 1_t) & ((POS41 in S2) <=> s0_pc)) & ((POS41 in
S3) <=> s1_pc)) & ((POS41 in S4) <=> s0_r)))) | (((((s0_s

& (~(POS_p in S1))) & ((POS_p in S2) <=> s0_pc)) & ((POS_p
in S3) <=> s1_pc)) & (POS_p in S4)) & (((((POS41 in S0) &
(~ (POS41 in S1))) & ((POS41 in S2) <=> s0_pc)) & ((POS41

in S3) <=> s1_pc)) & (POS41 in S4)))) | ((((((POS_p in S0)
& (~s1_s)) & ((POS_p in S2) <=> s0_pc)) & ((POS_p in S3)

=> s1_pc)) & (~(POS_p in S4))) & (((((~(POS41 in S0)) & (
POS41 in S1)) & ((POS41 in S2) <=> s0_pc)) & ((POS41 in S3)

=> s1_pc)) & (~(POS41 in S4))))) | ((((((~(POS_p in S0)) &
(~s1_s)) & ((POS_p in S2) <=> s0_pc)) & ((POS_p in S3) <=>
s1_pc)) & ((POS_p in S4) <=> s0_r)) & (((((POS41 in S0) &

(~(POS41 in S1))) & ((POS41 in S2) <=> s0_pc)) & ((POS41 in
S3) <=> s1_pc)) & ((POS41 in S4) <=> s0_r)))))) => (all1 [

UNI_x] POS_p: (((((POS_p in S0) | (POS_p notin S1)) | (POS_p
in S2)) | (POS_p notin S3)) | (POS_p in G0))))))))))

Since the simplistic mutual exclusion protocol is
clearly correct, this formula is a tautology. How-
ever, if we mistakenly tried to verify that Proc2

could never enter the critical region:

func Mutex(string x: Computation): formula;

8pos p: x.(p6=[?,c,?])

end;

then FIDO would generate the counterexample:

alpha = Computation:[a,a,1](

Computation:[b,a,1](

Computation:[b,b,1](

Computation:[c,b,1](

Computation:[d,b,1](

Computation:[a,b,2](

Computation:[a,c,2](

Computation:done)))))));

which exactly describes such a computation.

For more realistic examples, internal events can be
projected away by means of the existential quanti-
�er. In [8], a detailed account is given of an appli-
cation of the FIDO language to a veri�cation prob-
lem posed by Broy and Lamport in 1994. The dis-
tributed systems are described in an interval logic,

which is easily de�ned in FIDO. The evolution of a
system over a �nite segment of time is modeled as a
recursive, linear data type with a constructor that
de�ne the current event. Thus position variables
denote time instants. The thousands of events pos-
sible in the distributed systems that are compared

are described by the types:

type Value = initVal,1;

type Loc = l0,l1;

type Ident = id0,id1;

type ValTag = MemVals,error;

type LocTag = MemLocs,error;

type TVal = Value & ValTag;

type TLoc = Loc & LocTag;

type Flag = normal,exception;

type RetFlag = BadArg,MemFailure;

type RpcFlag = RPCFailure,BadCall j RetFlag;
type Visible = observable,internal;

type ProcVal = ReadProc,WriteProc;

type ProcTag = procVal,error;

type TProc = ProcVal & ProcTag;

type NumArgs = n1,n2;

type Args = TLoc & TVal;

type Opn = rd,wrt;

type Mem = Opn & Loc & Value & Flag & Ident;

type Read = TLoc & Ident & Visible;

type Write = TLoc & TVal & Ident & Visible;

type Ret = TVal & Flag & RetFlag & Ident & Visible;

type RmtCall = TProc & NumArgs & Args & Ident;

type RpcRet = TVal & Flag & RpcFlag & Ident;

type Event = Mem j Read j Write j Ret j RmtCall j
RpcRet j Tau;

type Comp = Event(next: Comp) j Empty;

The property to be veri�ed requires 12 pages of
FIDO speci�cation which translates into an M2L
formula of size 500,000 characters.

An entirely di�erent use of FIDO allows us to ver-
ify many properties of PASCAL programs that use
pointers [7]. By encoding a store as a string and us-
ing FIDO formulas to describe the e�ects of program

statements, we can automatically verify some desir-
able properties. An example is the following pro-
gram, which performs an in-situ reversal of a linked
list with colored elements:

program reverse;

type Color = (red,blue);

List = ^Item;

Item = record

case tag: Color of

red,blue: (next: List)

end;

var x,y,p: List;

begin

while x<>nil do

begin

p:=x^.next;

x^.next:=y;

y:=x;

x:=p

end

end.

With our system, we can automatically verify that
the resulting structure is still a linked list conform-
ing to the type List. We can also verify that no
pointer errors have occurred, such as dangling refer-
ences or unclaimed memory cells. However, we can-
not verify that the resulting list contains the same
colors in reversed order. Still, our partial veri�ca-
tion will clearly serve as a �nely masked �lter for
many common programming errors.

The PASCAL tool adds another level of compila-
tion, from (simple) PASCAL programs to FIDO
speci�cations to M2L formulas and �nally to �nite-
state automata accepting encodings of the initial
stores that are counterexamples. The above pro-
gram translates into 10 pages of FIDO speci�cation
which expands into a 60,000 character M2L formula.
The resulting automaton is of course tiny since there
are no counterexamples, but the largest intermedi-
ate result has 74 states and 297 BDD-nodes. A di-
rect translation into MONA would essentially add
all the complexities of the FIDO compiler to the
implementation of the PASCAL tool.

6 The Implementation

We have implemented parsing, symbol analysis, and
type checking in entirely standard ways. What is
non-standard is that every subterm is compiled into
a tree automaton through an intermediate represen-

tation as an M2L formula. Thus resource allocation
becomes a question of managing bit pattern encod-
ings of domain values, which are expressed in M2L
formulas. We have strived to achieve a parsimonious
strategy, since every bit squandered may potentially
double the MONA execution time.

As a concrete example, consider the type:

type Tree = red,black(val: Enum,

left,right: Tree) j
leaf;

type Enum = [1..10];

Its encoding in MONA requires seven bits in all.
Two type bits T0 and T1 are used to distinguish
between the types Tree and Enum and special null
nodes in a tree; a single group bit G0 is used to dis-
tinguish between the red-black and the leaf variants;
and four scalar bits S0, S1, S2, and S3 are used to

distinguish between the values of each �nal domain,
the largest of which is [0..10].

As an example, the formula:

macro TYPE_Tree(var1 p) =

(p in T0) & (p notin T1);

expresses that the type Tree is encoded by the bit
pattern 10.

The null nodes are required to encode an arbitrary
fan-out in a binary tree. For example, the tree:

��
��

��
��

��
��

��
��

��
��

��
��

�����

HHHHH

�
��
@
@@

is represented as:

��
��

��
��

��
��
�

��

��
��
�

��

��
��

��
��

��
��

��
��

�

��

��
��

�
��
@
@@

@
@@

��

�����

���
HHH

���

where the null nodes have double lines.

A well-formed value of the type Tree is described
by the MONA predicate TREE Tree. It imposes
the proper relationship between types and values of
nodes and their descendants. A technical problem

is that this predicate is most naturally described
through recursion which is not available in M2L.
This is solved by phrasing the requirements through
a universal quanti�cation that imposes su�cient, lo-
cal well-formedness properties:

macro TREE_Tree(var1 p) =

TYPE_Tree(p) &

(all1 q: (p<=q) =>

(NULL(q) | WF_Tree(q) | WF_Enum(q))

);

The NULL and WF predicates describe the relation-
ship between a single node and its immediate de-
scendants:

macro NULL(var1 p) =

(p notin T0) & (p notin T1) &

(p notin G0) &

(p notin S0) & (p notin S1) &

(p notin S2) & (p notin S3);

macro TYPE_Enum(var1 p) =

(p notin T0) & (p in T1);

macro GROUP_Tree_red_black(var1 p0) =

(p notin G0);

macro GROUP_Tree_leaf(var1 p) =

(p in G0);

macro GROUP_Tree(var1 p) =

GROUP_Tree_red_black(p) | GROUP_Tree_leaf(p);

macro SCALAR_Enum(var1 p) =

(p notin S3) |

((p notin S2) & ((p notin S1) | (p notin S0)));

macro SCALAR_Tree_red_black(var1 p) =

true;

macro SCALAR_Tree(var1 p) =

SCALAR_Tree_red_black(p);

macro SUCC_Enum(var1 p) =

(p=p.0) & (p=p.1);

macro SUCC_Tree_red_black(var1 p) =

(p<p.0) & (p<p.1) & (p.1<p.11) & (p.11=p.111) &

NULL(p.1) & NULL(p.11) &

TYPE_Tree(p.0) & TYPE_Tree(p.10) &

TYPE_Enum(p.110);

macro SUCC_Tree_leaf(var1 p) =

(p=p.0) & (p=p.1);

macro WF_Enum(var1 p) =

TYPE_Enum(p) & SCALAR_Enum(p) & SUCC_Enum(p);

macro WF_Tree(var1 p) =

TYPE_Tree(p) &

((GROUP_Tree_red_black(p) &

SCALAR_Tree_red_black(p) &

SUCC_Tree_red_black(p)

) |

(GROUP_Tree_leaf(p) &

(p notin S0) & SUCC_Tree_leaf(p)

)

);

Formulas are encoded in a simple inductive man-
ner. For illustration, consider the tiny formula p2s,
where the arguments are general terms. The term
p of kind pos generates a tuple < p; � > where
p is a �rst-order variable constrained by the for-
mula �. Similarly, the term s of kind set generates
a tuple < s; >, where s is now a second-order
variable. The term p2s then generates the formula
9p : 9s : � ^ ^ p 2 s. Note how existential quan-
ti�cation corresponds to discharging of registers. It
is a fairly straightforward task to provide similar
templates for all the FIDO constructs, thereby pro-
viding a compositional semantics and a recipe for a
systematic translation.

As a concrete example, consider the formula:

tree x: Tree;

x.left.right.left=red

which describes the regular set of trees in which a
speci�c node exists and is colored red. It is encoded
as the following MONA formula:

macro DOT_right(var1 p,var1 q) =

(TYPE_Tree(p) &

GROUP_Tree_red_black(p) & (q=p.0)

) |

(TYPE_Tree(p) &

GROUP_Tree_leaf(p) & (q=p)

);

macro DOT_left(var1 p,var1 q) =

(TYPE_Tree(p) &

GROUP_Tree_red_black(p) & (q=p.10)

) |

(TYPE_Tree(p) &

GROUP_Tree_leaf(p) & (q=p)

);

assume ex1 p: root(p) & TREE_Tree(p);

ex0 t0_1,t1_1,g0_1,s0_1:

ex0 t0_2,t1_2,g0_2,s0_2:

(ex1 POS6:

(ex1 POS5:

(ex1 POS4:

(ex1 POS3:

root(POS3) & DOT_left(POS3,POS4)

) &

DOT_right(POS4,POS5)

) &

DOT_left(POS5,POS6)

) &

(t1_1<=>(POS6 in T1)) &

(t0_1<=>(POS6 in T0)) &

(g0_1<=>(POS6 in G0)) &

(s0_1<=>(POS6 in S0)) &

(t0_2 & ~t1_2 & ~g0_2 & ~s0_2) &

(g0_1 <=> g0_2) & (s0_1 <=> s0_2)

);

The analogy to run-time is the computation by
MONA of a �nite-state automaton from the gen-
erated formula. This is always guaranteed to ter-
minate, but may be prohibitively expensive. Thus,
the FIDO compiler does extensive optimizations at
many levels, in most cases relying heavily on the
type structure. FIDO formulas are symbolically re-
duced to detect simple tautologies and to eliminate
unnecessary variables and quanti�ers. A careful
strategy is employed to allocate short bit patterns
for �nite domains, which includes a global analysis
of concrete uses.

We have also discovered that the FIDO type struc-
ture contains a wealth of information that is not
currently being exploited by the MONA implemen-
tation. An ongoing development e�ort will enrich
the notion of tree automata to accommodate posi-
tional information that can be derived from FIDO
speci�cations. This may in some case yield an ex-
ponential speed-up at the MONA level.

7 FIDO as a DSL

In our opinion, FIDO is a compelling example of a
domain-speci�c language. It is focused on a clearly
de�ned and narrow domain: formulas in monadic

second-order logic or, equivalently, automata on

large alphabets. It o�ers solutions to a classical soft-
ware problem: drowning in a swamp of low-level en-

codings. It advocates a simple design principle: go

by analogy to standard programming language con-

cepts. It uses a well-known and trusted technol-
ogy: all the phases of a standard compiler, includ-

ing optimizations at all levels. It provides unique

bene�ts that cannot be matched by a library in a
standard programming language: notational con-

veniences, type checking, and global optimizations.
And during its development, we discovered new in-
sights about the domain: new notions of tree au-

tomata and algorithms.

References

[1] A. Ayari, D. Basin, and A. Podelski. Lisa:
A speci�cation language based on WS2S. In
Proceedings of CSL'97. BRICS, 1997.

[2] D. Basin and N. Klarlund. Hardware veri�-
cation using monadic second-order logic. In
Computer aided veri�cation : 7th International

Conference, CAV '95, LNCS 939, 1995.

[3] Morten Biehl, Nils Klarlund, and Theis Rauhe.
Algorithms for guided tree automata. In Pro-

ceedings of WIA'96. Springer Verlag, 1996.

[4] Randal E. Bryant. Graph-based algorithms for
Boolean function manipulation. IEEE Trans-

actions on Computers, August 1986.

[5] Jesper Gulmann Henriksen, Michael Jrgensen,
Jakob Jensen, Nils Klarlund, Bob Paige, Theis
Rauhe, and Anders Sandholm. Mona: Monadic
second-order logic in practice. In Proceedings of

TACAS'95, LNCS 1019, May 1995.

[6] G.J. Holzmann. The model checker spin. IEEE
Trans. on Software Engineering, May 1997.
Special issue on Formal Methods in Software
Practice.

[7] J.L. Jensen, M.E. Jrgensen, N. Klarlund, and
M.I. Schwartzbach. Automatic veri�cation of
pointer programs using monadic second-order
logic. In Proceedings of PLDI'97, 1997.

[8] N. Klarlund, M. Nielsen, and K. Sunesen. A

case study in automated veri�cation based on
trace abstractions. Technical Report RS-95-54,
BRICS, Aarhus University, 1995.

[9] N. Klarlund, M. Nielsen, and K. Sunesen. Au-

tomated logical veri�cation based on trace ab-
straction. In Proceedings of PODC'96, 1996.

[10] Nils Klarlund, Jari Koistinen, and Michael I.
Schwartzbach. Formal design constraints. In

Proceedings of OOPSLA'96, October 1996.

[11] Nils Klarlund and Theis Rauhe. BDD algo-
rithms and cache misses. Technical Report RS-
96-05, BRICS, 1996. Submitted.

[12] J.C. Reynolds. Three approaches to type struc-
ture. In Mathematical Foundations of Software

Development, LNCS 185, 1985.

