
The following paper was originally published in the
Proceedings of the Conference on Domain-Specific Languages

Santa Barbara, California, October 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Typed Common Intermediate Format

Zhong Shao
Yale University



Typed Common Intermediate Format

Zhong Shao

Dept. of Computer Science

Yale University

New Haven, CT 06520-8285

shao-zhong@cs.yale.edu

Abstract

Application languages are very e�ective in solving

speci�c software problems. Unfortunately, they pose

great challenges to reliable and e�cient implemen-

tations. In fact, most existing application languages

are slow, interpreted, and have poor interoperability

with general-purpose languages.

This paper presents a framework on building high-

quality systems environment for multiple advanced

languages. Our key innovation is the use of a com-

mon typed intermediate language, named FLINT,

to model the semantics and interactions of vari-

ous language-speci�c features. FLINT is based on a

predicative variant of the Girard-Reynolds polymor-

phic calculus F!, extended with a very rich set of

primitive types and functions.

FLINT provides a common compiler infrastructure

that can be quickly adapted to generate compilers

for new general-purpose and domain-speci�c lan-

guages. With its single uni�ed type system, FLINT

serves as a great platform for reasoning about cross-

language interoperations. FLINT types act as a glue

to connect language features that complicate interop-

erability, such as mixed data representations, multi-

ple function calling conventions, and di�erent mem-

ory management protocols. In addition, because all

runtime representations are determined by FLINT

types, languages compiled under FLINT can share

the same system-wide garbage collector and foreign

function call interface.

1 Introduction

Application languages (a.k.a. domain-speci�c lan-

guages or DSLs) are very e�ective in solving spe-

ci�c software problems. Unfortunately, their focus

on a particular domain and their (often) quick turn-

around time make it unrealistic to develop full-scale

compilers from scratch. In fact, due to the lack of

compiler infrastructures, many existing application

languages are interpreted but not compiled. As a

result, software written in application languages are

generally slow and have poor interoperability with

general-purpose languages.

The interoperability problem, of course, also applies

to advanced type safe languages such as Java [10],

Modular-3 [27], ML [22], and Haskell [17]. Each

of these programming languages, whether general-

purpose or domain speci�c, often has its own syn-

tax, semantics, and implementation speci�cs; it

also must run under a special runtime system with

its own garbage collector and foreign function call

interface (to the low-level C code). Interopera-

tion or communication among these languages is

a nightmare, if not impossible. Several recently

proposed object models (e.g, Microsoft's COM [32]

and OMG's CORBA [11]) o�er a partial solution,

however, they all require that programs written in

di�erent languages run under di�erent hardware-

protection domains (i.e., address space). Wallach et

al [41] have shown that cross-domain function calls

under COM can be a factor of 1000 times slower

than the regular function calls within a single do-

main. This is unacceptable for many applications.

The problem on (lack of) compiler infrastructures is

even more serious. To write a compiler for a new

language L, one has to either write everything from

scratch, or compile L into some main-stream lan-

guages such as C and C++. However, for most ad-

vanced languages, C is much too low-level to serve

as a good target language. Modern languages often

support strong typing, automatic memory manage-

ment, program exceptions, and higher-order func-

tions (or closures), but C does not support any of

these. Most C compilers are not designed to produce

good code for these higher-level language features.

To write a compiler from L to C, one still must write



multiple compilation phases and customize her own

runtime system (including support to garbage col-

lection, proper signal-handling, and foreign-function

call interface).

This paper presents a new framework on build-

ing high-quality systems environment for multiple

general-purpose and application-oriented languages.

We are particularly interested in the class of HOT1

languages, namely, languages that are Higher-Order

and Typed. With a broader interpretation, we use

Higher-Order to include languages where objects

contain methods (even though functions are not

�rst-class citizens), and Typed to include both static

and dynamic typing. Thus, Java is HOT, so is ML,

Haskell and Scheme. Because application languages

are designed to exploit a higher-level of abstraction

and program analysis, many of them are designed to

be HOT as well.

Our key innovation is the use of a common typed

intermediate language, named FLINT, to model

the semantics and interactions of various language-

speci�c features. FLINT is based on a predicative

variant of the Girard-Reynolds polymorphic lambda

calculus F! [9, 31], extended with a very rich set of

primitive types and functions. Although HOT lan-

guages can be very di�erent in semantics, they all

have a mathematically rigorous type system. The

fact that almost all HOT features can be compiled

into an F!-like calculus is not surprising, because F!
is frequently used as a meta-language for reasoning

about formal logic and semantics.

FLINT provides a common compiler infrastructure

that can be quickly adapted to generate compil-

ers for new general-purpose or domain-speci�c lan-

guages. With its single uni�ed type system, FLINT

serves as a great platform for reasoning about cross-

language interoperations. FLINT types act as a

glue to connect language features that complicate

interoperability, such as mixed data representations,

multiple function calling conventions, and di�erent

memory management protocols. In addition, be-

cause all runtime representations are determined by

FLINT types, languages compiled under FLINT can

share the same system-wide garbage collector and

foreign function call interface (to the low-level C

code). Finally, because it has a more expressive type

system, FLINT code can also serve as (or translated

into) more powerful executable content than Java

VM code, making all HOT programs internet ready.

1
The acronym \HOT" is coined by Bob Harper, and is

widely publicized by Phil Wadler in his recent editorial [40]

for Journal of Functional Programming.

The FLINT system is being developed at Yale Uni-

versity, using the infrastructure in the type-based

version of the SML/NJ compiler [37]. A prelimi-

nary implementation of the FLINT intermediate lan-

guage has been incorporated into the working re-

leases of the SML/NJ compiler since version 109.24

(January 9, 1997). The resulting compiler handles

the entire SML'97 [22] plus MacQueen-Tofte higher-

order modules [21]. It also gives better performance

(about 20% speedup on benchmarks that involve re-

cursive and mutable types) than the older versions

of the SML/NJ compiler [37]. New front ends for

other languages (e.g., Safe C, Haskell, Java) are un-

der active development.

In the rest of this paper, we �rst give an introduction

to the basic architecture of the FLINT system. We

then present the current design of our typed com-

mon intermediate language, followed by a summary

of the main implementation techniques we used to

compile this intermediate language. We further

show how di�erent general-purpose or application-

oriented languages might be translated into FLINT,

and �nally, we discuss the related work, and then

conclude.

2 The FLINT Architecture

The FLINT system, as shown in Figure 1, is or-

ganized around a strongly typed intermediate lan-

guage also named FLINT. Programs written in var-

ious source languages are �rst fed into a language-

speci�c front end which does parsing, elaboration,

type-checking, and pattern-match compilation; the

source program is then translated into the FLINT

intermediate format. The middle end does conven-

tional dataow and loop optimizations [1, 39], lo-

cal and cross-module type specializations, and �-

calculus-based contractions and reductions [3]; it

then produces an optimized version of the FLINT

code. The back end compiles FLINT into ma-

chine code through the usual phases such as repre-

sentation analysis [34] (to compile polymorphism),

safe-for-space closure conversion [36] (to compile

higher-order functions), register allocation, instruc-

tion scheduling, and machine-code generation [8].

All the compilation stages are deliberately made in-

dependent of each other so that they may be pieced

together in di�erent ways for di�erent languages.

The runtime system provides support to system-

wide garbage collection, foreign-function call inter-

face, and connections to lower-level operating sys-



?

?

?

TypeChecker

Lexer&Parser

?

?

?

TypeChecker

Lexer&Parser

?

?

?

TypeChecker

Lexer&Parser

?

?

?

TypeChecker

Lexer&Parser

?

?

?

TypeChecker

Lexer&Parser

?

-

�

?? ?? ?

JAVA VMALPHASPARC

THE FLINT INTERMEDIATE LANGUAGE

BACK-END CODE GENERATOR

THE FLINT PORTABLE COMMON RUNTIME SYSTEM

(system libraries, bootstrapping, garbage collection)

COMPILATION

MANAGER

MIDDLE-END

OPTIMIZER

THE FLINT

CODE VERIFIER

THE FLINT

INTERPRETER
OTHERIntel X86

ML JAVA DSLs"Safe C" Haskell

Figure 1: Top-Level Structure of the FLINT System

tem services. Our current implementation borrows

SML/NJ's runtime system [30, 2, 18] which runs un-

der all major machine platforms. We plan to extend

it to support new services such as dynamic linking

and bytecode execution.

It is important to emphasize the modular nature

of the overall compiler structure. The FLINT in-

termediate language nicely separates the language-

dependent front end from the language-independent

back end. Compiler optimizations done at the mid-

dle end are always performed as FLINT-to-FLINT

program transformations (so FLINT must be de-

signed as suitable for optimizations). This orgniza-

tion also allows FLINT to be used as an advanced

executable content language, just like the Java VM

bytecode [20]. Here, the front end and the middle

end can be thought as a source-to-FLINT compiler;

the back end and the runtime system are some kind

of just-in-time compiler and virtual machine. Be-

cause FLINT is designed as a compiler intermediate

language, compiling into FLINT does not incur any

e�ciency loss as the stack-based Java bytecode.

Another important aspect is on the organization of

the back end code generator. To keep FLINT's type

system simple, we currently let the back end han-

dle the compilation of polymorphism (i.e., repre-

sentation analysis [19, 34]) and higher-order func-

tions (i.e,. closure conversion [36]). However, there

is no reason why we can't propagate and preserve

type information throughout the back end. In fact,

we intend to propagate the type information into

the assembly or machine code to guide sophisticated

instruction scheduling and to generate Necula-Lee

style proof-carrying code [26].

To construct a compiler for a new application lan-

guage, we only need to write a new front end that

translates the source program into the FLINT in-

termediate code. If the language is embedded in-

side another general-purpose language, we simply

modify the front end for the host language to sup-

port the domain-speci�c aspects. Most of the time,

new primitive operators and type constructors must

be added into the intermediate language to sup-

port the corresponding surface language constructs;

the middle-end optimizer must also be tailored to

support the corresponding domain-speci�c program



analysis and transformations. We believe that ma-

jority of the domain speci�c features can be ab-

stracted into a set of algebraic data types, where

each consists of a set of primitive types, primitive

operators, and proper rewriting rules (i.e., axioms).

So even the process of modifying the intermediate

language and the middle-end optimizer can be auto-

mated.

3 Typed Intermediate Format

Using common intermediate languages to share com-

piler infrastructure is not a new idea. Many existing

compilers, such as GNU GCC, Stanford's SUIF [12],

and U. Washington's Vortex [7], all use some kind of

shared intermediate format for multiple source lan-

guages. In addition, the C programming language

has been used as the de facto standard target lan-

guage for a long time. Since all these are mainly de-

signed for conventional imperative languages, none

of them directly support higher-order functions or

advanced polymorphic type system.

FLINT is designed as a strongly typed common in-

termediate format for HOT languages. There are

many advantages in making the intermediate lan-

guage type-safe. First, a rigorous type system can be

used to reason about the safety of a program, even at

the intermediate language level. This is particularly

important for applications that must be as secure

and mobile as the Java VM code. Second, type infor-

mation makes it possible to reason about principled

interoperability among di�erent languages. In fact,

because all data representations and function calling

conventions are decided based on a uniform type sys-

tem, it is possible to make programs of di�erent sur-

face languages share the same runtime system (with

the same garbage collector and foreign function call

interface). Finally, type information have proven in-

valuable for e�cient compilation of statically typed

languages such as ML and Haskell [19, 28, 37, 38];

types are also useful for debugging compilers and

proving properties of programs.

3.1 Rationale

The current FLINT language is designed based on

the following principles:

� Strong and explicit typing. ML-like languages

often have very tricky type inference problems.

Having an explicitly typed intermediate lan-

guage leaves the type inference issues com-

pletely to the front end.

� Simple and well-de�ned semantics. The inter-

mediate language must be simple, clean, and

semantically well-founded in order to be used

as a common target language.

� Expressiveness. In order to support multiple

HOT languages, the FLINT type system must

be rich enough to express HOT features such as

higher-order functions, ML-like polymorphism,

and higher-order modules.

� Pay-as-you-go e�ciency. The intermediate lan-

guage must, of course, be compiled to gener-

ate e�cient code. Furthermore, simple, �rst-

order, monomorphic functions should be com-

piled as e�ciently as in C or assembly lan-

guages, even though the presence of polymor-

phic functions might complicate data represen-

tations and function calling conventions.

� Optimization ready. The compiler middle end

performs various kinds of optimizations on the

intermediate code. For this reason, the interme-

diate representation must be compatible with

all standard program analysis and transforma-

tions [3, 1]. The intermediate language should

also contain explicit loop (and recursion) con-

struct to support sophisticated loop optimiza-

tions.

� System-programming friendly. The intermedi-

ate language must provide excellent support

to low-level system programming such as safe

type-cast, dynamic types, and bit-manipulation

primitives. It should also contain a subset of

language features that can be used to write real-

time programs (e.g., code fragments that do not

involve garbage collections).

� Extensible. The intermediate language must be

easily extended to support other advanced or

domain-speci�c language features (e.g., concur-

rency, objects, and user-de�ned datatypes).

To summarize, what we want is a intermediate lan-

guage that behaves like a strongly typed assembly

language. It should be high-level enough to express

polymorphism and higher-order functions but low-

level enough to support all standard optimizations.



3.2 Background

The core language of FLINT is a predicative vari-

ant of the Girard-Reynolds polymorphic �-calculus

F! [9, 31], with the term language written in the A-

normal form [33]. In the following, we �rst give a

introduction about F!, and then formally de�ne the

Core-FLINT language.

The standard Girard-Reynolds polymorphic calculus

F! is often de�ned as follows:

(kinds) � ::= 
 j �1 ! �2
(types) � ::= t j �1 ! �2 j 8t ::�:�

j �t ::�:� j �1[�2]
(terms) e ::= x j �x :�:e j @e1e2

j �t ::�:e j e[�]

The calculus contains three syntactic classes: kinds

(�), types (�), and terms (e). Here, kinds clas-

sify types, and types classify terms. The extra

\kind" hierarchy is used to regulate and de�ne well-

formed types. In F!, both simple types (e.g., func-

tions, records, integers) and polymorphic types (e.g.,

8t :: �:�) have kind 
; higher-order types (or really,

type functions) such as �t :: �:� has kind � ! �0, if

� belong to kind �0. A higher-order type �1 can be

applied to another type �2, written as �1[�2].

At the term level, in addition to the usual lambda

abstraction and application, F! also support explicit

type abstraction and type application (written as

�t :: �:e and e[�]). Every type abstraction term

such as �t :: �:e has the polymorphic type 8t :: �:�,
assuming term e has type �.

For example, an F! function f = �t :: 
:�x : t:x

would have type �0 = 8t :: 
:t ! t. In the stan-

dard F!, the polymorphic type such as �0 is still

considered to have kind 
, so expressions such as

\@(f [�0])f" would type check, and yield type �0.

Because F! supports a very general kind of higher-

order polymorphism, it is commonly used as the

meta-language to reason about formal logic and se-

mantics. In fact, many advanced languages such as

ML and Haskell can be embedded into the F!-like

calculus.

3.3 The Core Language

The core language of FLINT is based on the stan-

dard F!, but with the following three important

changes:

� In standard F!, polymorphic types are treated

same as monomorphic types, and they both

have kind 
. This complicates the semantics

and makes the calculus impredicative. Follow-

ing Harper and Morrisett [15], we split the type

hierarchy into two levels: a constructor level

characterizes the monomorphic types (and type

functions), and a type level expresses the poly-

morphic types. \Kind" is now used to classify

\constructors" only; polymorphic types such as

the previous �0 no longer belongs to kind 
. So

expressions such as \@(f [�0])f" will no longer

type check in our predicative variant.

� The call-by-value term language is split into two

levels as well, with values denoting simple vari-

ables or constants. The usual term expressions

must now satisfy new syntactic restrictions as

standard A-normal forms [33]. More speci�-

cally, each function application (or type appli-

cation) can only refer to values (as @v1v2). The

standard F! function application term @e1e2 is

rewritten (according to call-by-value semantics)

into a nested let expressions followed by the

actual value application.

� A new product kind �1 
 �2 is added into the

kind language to express a sequence of type con-

structors. The product kind makes it possible

to de�ne type functions that takes a sequence

of type constructors as argument and returns

another sequence as the result. This is useful to

express the parameterized modules such as ML

higher-order functors [21].

The Core FLINT contains the following �ve syntac-

tic classes: kinds (�), constructors (�), types (�),

terms (e), and values (v):

(kinds) � ::= 
 j �1 ! �2 j �1 
 �2
(con's) � ::= t j Int j ! (�1; �2)

j �t ::�:� j �1[�2]
j 
(�1; �2) j �1� j �2�

(types) � ::= T (�) j 8t ::�:� j �1 ! �2
(terms) e ::= v j �x :�:e j @v1v2

j �t ::�:e j v[�]
j let x = e1 in e2

(values) v ::= x j i

Here, kinds classify constructors, and types clas-

sify terms and values. Constructors of kind 
 now

only name monotypes. The monotypes are gener-

ated from variables, Int, through the constructors

!. As in F!, the application and abstraction con-

structors correspond to the function kind �1 ! �2.



The pairing and selection constructors (i.e., 
, �)
correspond to the product kind �1 
 �2. Types in

Core-FLINT include the monotypes, and are closed

under function spaces, and polymorphic quanti�ca-

tion. We use T (�) to denote the type corresponding

to the constructor � (which must be of kind 
). As

in F!, the terms are an explicitly typed �-calculus

(but in A-normal form) with explicit constructor ab-

straction and application forms. We intentionally

included the primitive constructor Int and the prim-

itive constant i to show how the core calculus might

be extended into a more complete languages.

The static semantics of Core-FLINT, given in Fig-

ure 2, consists of a collection of rules for constructor

formation, constructor equivalence, type formation,

type equivalence, and term formation. The term for-

mation rules are in the form of 4; � ` e : � where

4 is a kind environment mapping type variables to

kinds, and � is the type environment mapping term

variables to types. Harper and Morrisett [15, 23]

have shown that type checking for predicative F!-

like calculus is decidable, and furthermore, its typing

rules are consistent with the standard call-by-value

operational semantics.

3.4 The Full Language

In order to make FLINT as simple as possible, we

let the front end deal with many higher-level lan-

guage constructs. For example, the front end for ML

can translate higher-order modules into the Core-

FLINT-like calculus [35, 14] in a type-preserving

way, thus completely eliminating the need of mod-

ule constructs from the intermediate language. Sim-

ilarly, type classes in Haskell can also be embedded

into F! through explicit dictionary passing.

The complete FLINT language still contains many

more type and term constructs than the core lan-

guages. Because FLINT is an explicitly typed lan-

guage, adding new type constructors into FLINT

does not involve any type reconstruction problem.

In the following, we summarize the main features in

our current design:

� A letrec construct at the term level to allow

the declaration of mutually recursive functions.

� A \sum" type constructor at the constructor

level to represent ML-like concrete datatypes.

Manipulating values of sum types are done

through a set of injection functions plus a

\switch"-based projection function.

� A recursive operator at the constructor level to

allow de�nitions of recursive type constructors

(e.g., List). At the term level, two primitive

operators, roll and unroll, converts values of

recursive types into those of the underlying sum

types.

� A primitive exception type Exn at the construc-

tor level and a pair of term-level constructs:

\raise v" would raise the exception v, and \try

e handle v" would run the expression e, if any

exception is raised, the handler v is called.

� An Abs constructor at the constructor level and

a pair of primitives pack and unpack at the term

level, with the following kind and type signa-

tures:

Abs :: 
! 


pack : 8t :: 
:T(t)! T (Abs(t))

unpack : 8t :: 
:T (Abs(t))! T (t)

Every source-level abstract type t is represented

in the form of Abs[�] inside FLINT, where � is

the internal representation type (hidden from

the programmer). The representation types are

useful when pickling values of abstract types.

Almost all the rest FLINT constructs can be ex-

pressed using the same \signature" form as the

above Abs primitives. Each signature de�nes a prim-

itive type constructor at the constructor level and a

set of primitive constants and operators at the term

level. The primitive functions often satisfy a set of

axioms that can be used to optimize the term-level

expressions. Our current implementation hardwires

the axioms into the middle-end optimizer, but we

plan to automate this process in the future.

The FLINT language also includes primitives such

as N-bit integers (trapping or non-trapping), N-

bit words, N-bit characters (ascii or unicode), N-

bit oating-point numbers, strings, boolean types,

boxed reference cells, array, packed arrays, vec-

tors, packed vectors, mono arrays and mono vectors,

ML-like immutable records (nested or at), �rst-

class continuations, control continuations (used by

CML [29]), suspensions (or thunks, to support lazy

evaluations).

In the long term, we plan to add type dynamic

and some form of F-bounded quanti�cation to sup-

port object-oriented languages such as Java. Type

dynamic would also make it possible to translate

dynamically typed languages such as Scheme into



Constructor Formation and Constructor Equivalence:

(v/i/fn) 4] ft :: �g . t :: � 4 . Int :: 

4 . �1 :: 
 4 . �2 :: 


4 . ! (�1; �2) :: 


(cfn/capp)
4] ft :: �1g . � :: �2

4 . (�t :: �1:�) :: �1 ! �2

4 . �1 :: �
0 ! � 4 . �2 :: �

0

4 . �1[�2] :: �

(cprod)
4 . �1 :: �1 4 . �2 :: �2

4 . �1 
 �2 :: �1 ! �2

4 . � :: �1 
 �2

4 . �i� :: �i
(i = 1; 2)

(cequiv)
4 ]ft :: �0g . �1 :: � 4 . �2 :: �

0

4 . (�t :: �0:�1)[�2] � [�2=t]�1 :: �

4 . �1 :: �1 4 . �2 :: �2

4 . �i(�1 
 �2) � �i :: �i
(i = 1; 2)

Type Formation and Type Equivalence:

(tform)
4 . � :: 


4 . T (�)

4 . �1 4 . �2

4 . �1 ! �2

4] ft :: �g . �

4 . 8t :: �:�

(tequiv)
4 . �1 :: 
 4 . �2 :: 


4 . T (! (�1; �2)) � T (�1)! T (�2)

Term Formation:

(value) 4; � ` i : Int 4; � ` x : �(x)

(fn/app)
4; � ] fx : �1g ` e : �2

4; � ` �x : �1:e : �1 ! �2

4; � ` v1 : �
0 ! � 4; � ` v2 : �

0

4; � ` @v1v2 : �

(let)
4; � ` e1 : �1 4; � ] fx : �1g ` e2 : �2

4; � ` let x = e1 in e2 : �2

(tfn/tapp)
4 ]ft : �g; � ` e : �

4; � ` �t :: �:e : 8t :: �:�

4 . � :: � 4; � ` v : 8t :: �:�

4; � ` v[�] : [�=t]�

Figure 2: The Static Semantics of Core-FLINT



type 'a icell = (int * 'a * aux_info) ref (* internal hash-cell *)

datatype tkindI

= TK_TYC (* the monotype kind *)

| TK_SEQ of tkind list (* the sequence kind *)

| TK_FUN of tkind * tkind (* the function kind *)

| ......................

and tycI

= TC_VAR of DebIndex.index * int (* tyvar in de Bruijn notation *)

| TC_PRIM of PrimTyc.primtyc (* primitive tycons *)

| TC_FN of tkind list * tyc (* constructor abstraction *)

| TC_APP of tyc * tyc list (* constructor application *)

| TC_SEQ of tyc list (* sequence of tycons *)

| TC_PROJ of tyc * int (* projection on sequence *)

| TC_FIX of (tkind * tyc) list * int (* recursive tycon *)

| TC_ABS of tyc (* abstract tycon *)

| TC_IND of tyc * tycI (* tyc memoization node *)

| TC_ENV of tyc * int * int * tycEnv (* tyc suspension *)

| ......................

and ltyI

= LT_TYC of tyc (* monotype *)

| LT_STR of lty list (* structure record type *)

| LT_FCT of lty * lty (* functor arrow type *)

| LT_POLY of tkind list * lty (* polymorphic type *)

| LT_IND of lty * ltyI (* lty memoization node *)

| LT_ENV of lty * int * int * tycEnv (* lty suspension *)

| ......................

withtype tkind = tkindI icell (* hash-consed tkindI cell *)

and tyc = tycI icell (* hash-consed tycI cell *)

and lty = ltyI icell (* hash-consed ltyI cell *)

and tycEnv = ...... (* tyc environment *)

Figure 3: Representing Kinds, Constructors, and Types

FLINT. We also intend to extend FLINT to cover

more interesting representation types. Since most of

these are just new primitive constructors and func-

tions, the overall structure of the FLINT language

remains to be simple and small.

3.5 Implementations

One challenge in implementing the FLINT interme-

diate language is to represent constructors and types

compactly and e�ciently. Type-based analysis often

involve operations such as type application, normal-

ization, and equality test. Naive implementation of

these operations would lead to duplicate copying, re-

dundant traversal, and extremely slow compilation.

We use the following techniques to optimize the rep-

resentations of kinds, constructors, and types ( see

Figure 3 for a fragment of the FLINT de�nitions,

written as ML datatype de�nitions). First, we rep-

resent all type variables as de Bruijn indices [6]. Un-

der de Bruijn notations, all constructors and types

have unique representations.

We then hash-cons all the kinds, constructors, and

types into three separate hash-tables. Each kind

(tkind), constructor (tyc), or type (lty) is repre-

sented as an internal hash cell (or icell). Each icell

is a reference cell that contains three pieces of in-

formation: an integer hash code, a term, and a set

of auxiliary information (aux_info). The aux_info

for constructors and types maintains two attributes:

a ag that shows whether it is already in the normal



form, and if it is in the normal form, a set of its free

type variables. Constructing a new type (or con-

structor) under this representation would involve:

(1) calculating the hash code from its descendants;

(2) look up the hash-table, if it is already in, we are

done; otherwise, calculate the aux_info, and install

the new icell into the hash-table.

Finally, to make type reduction lazy, we use Na-

dathur's suspension notations [24, 25] to represent

the intermediate result of unevaluated type appli-

cations. Intuitively, a type suspension such as

LT_ENV(t; i; j; e) is a quadruple consisting of a term

t with two indices and an environment. The �rst

index i indicates an embedding level with respect

to which variable references have been determined

within the term, and the second index j indicates a

new embedding level [25]. The environment e deter-

mines the bindings for the type variables.

Figure 3 gives parts of the de�nitions of FLINT kind

(tkind), constructor (tyc), and type (lty) using

SML datatype de�nitions. Here, constructor ab-

straction TC_FN and polymorphic type LT_POLY all

abstract or quantify over a list of type variables;

each type variable TC_VAR(i; j) is represented as a de

Bruijn index i plus an integer j that indicates the

exact position in the corresponding list. Suspension

terms are denoted as TC_ENV and LT_ENV; when a

suspension t is reduced, it will be replaced by a mem-

oization node (i.e., TC_IND or LT_IND). Each memo-

ization node contains a pair: the reduction result tn
and the original term to. We keep the original term

in the memoization node so that future creations of

term to can be directly hash-cons-ed to the same

memoization node (which requires checking equality

against to), thus saving unnecessary reductions.

The combination of these techniques have proven to

be very e�ective. With icell-based hash-consing and

memoization, common operations such as equality

test, testing if a type is in the normal form, and

�nding out the set of free variables, can all be done

in constant time. With the use of suspension terms,

type application is always done on a by-need basis,

and once it is done, the result will be memoized

for future use. Our preliminary measurements have

shown that on heavily functorized applications such

as SML/NJ CompilationManager [4], our optimized

implementation is an order-of-magnitude faster (in

compilation time) than naive implementations.

Representing type variables as de Bruijn indices does

have its drawback. For example, the type-based ma-

nipulation becomes much harder to program. A sim-

ple beta-reduction such as v[�] where v = �t :: �:e

requires adjustment of all type variables occurred

free in e; furthermore, if t occurs with some type

abstractions, then � must be adjusted as well.

4 Compiling FLINT

The FLINT code is compiled in two steps. First, the

middle end performs a series of conventional con-

trol and data ow optimizations. All optimizations

are type-preserving so the resulting FLINT code will

still type-check under the same typing rules. Be-

cause FLINT terms are always in the A-normal form,

all CPS-based optimizations [3] apply to FLINT as

well. Apart from the presence of polymorphism and

higher-order functions, the resulting FLINT code

should be very close to the low-level machine lan-

guages.

After the optimizations, the back end uses exi-

ble representation analysis [34] to compile polymor-

phism and safe-for-space closure conversion to com-

pile higher-order functions [36]; it then does the

standard register allocation, instruction scheduling,

and machine code generation [8].

In the rest of this section, we sample several impor-

tant techniques used in our compiler back end.

4.1 Type Specialization

Because polymorphic functions are often more ex-

pensive than monomorphic functions, the middle

end of our compiler performs several rounds of type

specialization to decrease the degree of polymor-

phism. The basic idea can be illustrated by the fol-

lowing example:

let f = �t :: 
:�x :: T (t):x

in let g = �s :: 
:�y :: s:@(f [s])y

in ... g[Int] ... g[Int] ...

Here, assume function f and g are only called as

shown, then we can rewrite the above programs into

the following:

let f 0 = �x :: T (Int):x

in let g0 = �y :: T (Int):@f 0y

in ... g' ... g' ...

Both f and g now become monomorphic functions.

This transformation can be carried out through a



bottom up traversal: because function g is only ap-

plied to Int, g can be specialized to Int �rst; after

this, f can be specialized in the same way.

4.2 Lambda Reduction

Type specialization will only be most e�ective if it is

combined with conventional dataow optimizations

such as dead code elimination, common subexpres-

sion elimination, constant folding, constant propaga-

tion, and loop invariants. The middle-end optimizer

does all of these. The lambda contraction phase is

also a good place to carry out domain speci�c pro-

gram analysis and program optimizations.

4.3 Representation Analysis

One novel aspect in our back end is to use the

new exible representation analysis technique [34]

to compile the polymorphic functions and func-

tors. Under exible representation analysis, re-

cursive and mutable data objects can use unboxed

representations without incurring expensive runtime

cost on heavily polymorphic code. In contrast, the

coercion-based approach used in Gallium [19] and

SML/NJ [37] does not support unboxed represen-

tations on recursive and mutable objects; the type-

passing approach used in TIL [38] does handle all

data objects, but it involves heavy-weight runtime

type analysis and code manipulations.

4.4 Closure Conversion

After the polymorphism is eliminated, we use an

e�cient and safe-for-space closure conversion algo-

rithm [36] to compile the higher-order functions.

Our algorithm exploits the use of compile-time con-

trol and data ow information to optimize closure

representations. By extensive closure sharing and

allocating as many closures in registers as possi-

ble, our closure conversion algorithm not only gives

good performance but also satis�es the strong safe

for space complexity rule [3], thus achieving good

asymptotic space usage.

5 Translation into FLINT

To demonstrate the power of the FLINT language,

we have built a new front end that translates the en-

tire SML'97 [22] plus MacQueen-Tofte higher-order

modules [21]) into our typed common intermediate

format. This new front end and the FLINT mid-

dle end have been incorporated and released as part

of the Standard ML of New Jersey compiler since

version 109.24 (January 9, 1997). Translation from

the Core-ML-like (or Core-Haskell-like) language to

FLINT is same as the standard embedding of ML

into F! [13]; other features such as ML datatypes

are translated into FLINT type constructors. Com-

pilation from SML higher-order modules to FLINT

is quite a challenge because higher-order modules in-

volve the use of dependent types which, in general,

cannot be expressed as F!-like polymorphism.

Fortunately, ML-style higher-order modules have a

clean phase-distinction property; the module lan-

guage is completely separate from the core lan-

guage. In a companion paper [35], we present a type-

directed translation of the MacQueen-Tofte higher-

order modules into the Core-FLINT like language.

The basic idea of our algorithm is like this: we notice

that every ML module can be split into a type part

and a value part; the type (value) part of a struc-

ture includes all its type (value) components plus the

type (value) parts of its structure and functor com-

ponents; the type part of a functor is an higher-order

type function from the type part of its arguments to

that of its result; the value part of a functor can be

viewed as a polymorphic function quanti�ed over the

type part of its arguments; functor applications can

thus be expressed as a combination of type applica-

tion and value application as in the Girard-Reynolds

calculus. The detailed algorithm can be found in the

companion paper [35].

The fact that ML-style higher-order modules can

be embedded into FLINT is a good indication

of FLINT's expressive power. We are currently

working on translations of other source languages

such as Haskell, Java, Safe C. Translating Haskell

into FLINT is not much di�erent from translating

the Core-SML language. Two distinct features of

Haskell are type class and lazy evaluation. Type class

can be eliminated by explicit dictionary-passing,

done by the type checker in the front end. Lazy eval-

uation requires the use of FLINT primitives, delay

and force, to make the evaluation explicit. Translat-

ing Java into FLINT is less trivial, but it boils down

to what kind of encodings [5] we use to model the

Java objects.

We believe that FLINT is a su�ciently rich inter-

mediate language that can be used to handle many

interesting application languages. While building a



new front end will not be completely trivial, it is def-

initely much easier than translating into C or build-

ing a compiler from scratch. If we consider C as

a common intermediate format for conventional im-

perative languages, FLINT plays the same role but

for modern HOT languages.

6 Related Work

Common intermediate format has been an active re-

search area in the past. Many existing compilers

such as GNU's GCC, Stanford's SUIF [12], and U.

Washington's Vortex [7] all use some kind of shared

intermediate representations for multiple source lan-

guages. In addition, the C programming language

has been used as the de facto common intermedi-

ate format for a long time. Of course, none of these

intermediate languages are strongly typed, and nei-

ther do they support advanced HOT languages such

as ML.

One example of typed intermediate format is the

Java VM bytecode [20]. Like FLINT, the Java byte-

code can be statically type-checked, though its type

system is not as formalized as the F! calculus. Be-

cause the Java bytecode is originally designed for

Java only, it does not directly support commonHOT

language features such as higher-order functions and

polymorphic functions.

Typed intermediate languages have gotten a lot of

attentions in the ML community lately. Several

ML compilers, e.g., Gallium [19], SML/NJ [37], and

TIL [38], all maintain explicit type information in-

side their intermediate languages. Our FLINT com-

piler is the �rst that handles the entire SML'97 plus

MacQueen-Tofte higher-order modules.

Using the predicative polymorphic �-calculus to

model the type-theoretic semantics of Standard ML

was pioneered by Harper and Mitchell [13]. Their

XML calculus also includes dependent types to char-

acterize ML module constructs. Harper and Mor-

risett [15, 23] later proposed to use a predicative

variant of F! (but extended with typerec) to com-

pile ML-like polymorphism. Recently, Harper and

Stone [16] gave a new type theoretic account for the

entire SML'97; the internal language they use still

contain a separate module calculus and translucent

types. All these work inspired us to look into the

possibility of building a typed common intermediate

format based on F!.

7 Conclusions

We have presented a new framework for constructing

high-quality compilers for multiple advanced (HOT)

languages. By compiling di�erent general-purpose

and application languages into a single typed inter-

mediate format, some of the \Babel" problems as-

sociated with application languages can be nicely

resolved. For example, the compiler infrastructure

we are building can be quickly adapted to gener-

ate compilers for new application languages. Also,

languages compiled under FLINT can interact with

each other based on their static type information.

They may also share a single runtime system with

system-wide garbage collector and foreign function

call interface.

Although the FLINT compiler has been incorpo-

rated and released with the SML/NJ compiler for

a while, the design of the FLINT language is still at

its very early stage. In fact, some important features

such as objects and type dynamic are still not sup-

ported well. In the future, we plan to gain more ex-

perience about application languages, and to expand

and evolve FLINT into a more mature intermediate

language.

8 Acknowledgments

This research was sponsored in part by the DARPA

ITO under the title \Software Evolution using HOT

Language Technology," DARPA Order No. D888,

issued under Contract No. F30602-96-2-0232, and

in part by an NSF CAREER Award CCR-9501624,

and NSF Grant CCR-9633390. The views and con-

clusions contained in this document are those of the

authors and should not be interpreted as represent-

ing the o�cial policies, either expressed or implied,

of the Defense Advanced Research Projects Agency

or the U.S. Government.

9 Availability

A preliminary implementation of the FLINT inter-

mediate language is now used by (and released with)

the Standard ML of New Jersey (SML/NJ) compiler.

SML/NJ is a joint work by AT&T, Lucent, Prince-

ton and Yale; both the software and the source code

are available via anonymous FTP from :



ftp.research.bell-labs.com/pub/smlnj

More detailed information and related papers on

FLINT can be found at the following WWW page:

http://flint.cs.yale.edu

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison-Wesley,

Reading, MA, 1986.

[2] A. W. Appel. A runtime system. Lisp and Symbolic

Computation, 3(4):343{380, 1990.

[3] A. W. Appel. Compiling with Continuations. Cam-

bridge University Press, 1992.

[4] M. Blume. A compilation manager for SML/NJ. as

part of SML/NJ User's Guide, 1995.

[5] K. B. Bruce, L. Cardelli, and B. C. Pierce. Com-
paring object encodings. In Proc. Third Workshop

on Foundations of Object Oriented Languages, July

1996.

[6] N. de Bruijn. A survey of the project AUTOMATH.

In To H. B. Curry: Essays on Combinatory Logic,

Lambda Calculus and Formalism, pages 579{606.
Edited by J. P. Seldin and J. R. Hindley, Academic

Press, 1980.

[7] J. Dean, G. DeFouw, D. Grove, V. Litvinov, and

C. Chambers. Vortex: An optimizing compiler
for object-oriented languages. In Proc. ACM SIG-

PLAN '96 Conf. on Object-Oriented Programming

Systems, Languages, and applications, pages 83{
100, New York, October 1996. ACM Press.

[8] L. George, F. Guillaume, and J. Reppy. A portable

and optimizing backend for the SML/NJ compiler.

In Proceedings of the 1994 International Conference
on Compiler Construction, pages 83{97. Springer-

Verlag, April 1994.

[9] J. Y. Girard. Interpretation Fonctionnelle et Elim-
ination des Coupures dans l'Arithmetique d'Ordre

Superieur. PhD thesis, University of Paris VII,

1972.

[10] J. Gosling, B. Joy, and G. Steele. The Java Lan-
guage Speci�cation. Addison-Wesley, 1996.

[11] O. M. Group. The common object request broker:

Architecture and speci�cations (corba). Revision
1.2., Object Management Group (OMG), Framing-

ham,M A, December 1993.

[12] M. Hall, J. Anderson, S. Amarasinghe, B. Murphy,

S. Liao, E. Bugnion, and M. Lam. Maximizing mul-
tiprocessor performance with the SUIF compiler.

IEEE Computer, December 1996.

[13] R. Harper and J. C. Mitchell. On the type structure
of Standard ML. ACM Trans. Prog. Lang. Syst.,

15(2):211{252, April 1993.

[14] R. Harper, J. C. Mitchell, and E. Moggi. Higher-

order modules and the phase distinction. In Seven-

teenth Annual ACM Symp. on Principles of Prog.
Languages, pages 341{344, New York, Jan 1990.

ACM Press.

[15] R. Harper and G. Morrisett. Compiling polymor-

phism using intensional type analysis. In Twenty-

second Annual ACM Symp. on Principles of Prog.
Languages, pages 130{141, New York, Jan 1995.

ACM Press.

[16] R. Harper and C. Stone. A type-theoretic account
of Standard ML 1996 (version 2). Technical Re-

port CMU-CS-96-136R, School of Computer Sci-

ence, Carnegie Mellon University, Pittsburgh, PA,
September 1996.

[17] P. Hudak, S. P. Jones, and P. W. et al. Report
on the programming language Haskell, a non-strict,

purely functional language version 1.2. SIGPLAN

Notices, 21(5), May 1992.

[18] L. Huelsbergen. A portable C interface for Standard

ML of New Jersey. Technical memorandum, AT&T

Bell Laboratories, Murray Hill, NJ, January 1996.

[19] X. Leroy. Unboxed objects and polymorphic typ-

ing. In Nineteenth Annual ACM Symp. on Princi-
ples of Prog. Languages, pages 177{188, New York,

Jan 1992. ACM Press. Longer version available as

INRIA Tech Report.

[20] T. Lindholm and F. Yellin. The Java Virtual Ma-

chine Speci�cation. Addison-Wesley, 1997.

[21] D. MacQueen and M. Tofte. A semantics for higher

order functors. In The 5th European Symposium on

Programming, pages 409{423, Berlin, April 1994.
Spinger-Verlag.

[22] R. Milner, M. Tofte, R. Harper, and D. MacQueen.
The De�nition of Standard ML (Revised). MIT

Press, Cambridge, Massachusetts, 1997.

[23] G. Morrisett. Compiling with Types. PhD thesis,
School of Computer Science, Carnegie Mellon Uni-

versity, Pittsburgh, PA, December 1995. Tech Re-

port CMU-CS-95-226.

[24] G. Nadathur. A notation for lambda terms II: Re-

�nements and applications. Technical Report CS-
1994-01, Duke University, Durham, NC, January

1994.

[25] G. Nadathur and D. S. Wilson. A representa-
tion of lambda terms suitable for operations on

their intensions. In 1990 ACM Conference on Lisp

and Functional Programming, pages 341{348, New
York, June 1990. ACM Press.

[26] G. Necula. Proof-carrying code. In Twenty-Fourth
Annual ACM Symp. on Principles of Prog. Lan-

guages, New York, Jan 1997. ACM Press.



[27] G. Nelson, editor. Systems programming with
Modula-3. Prentice Hall, Englewood Cli�s, NJ,

1991.

[28] S. L. Peyton Jones and J. Launchbury. Unboxed
values as �rst class citizens in a non-strict func-

tional language. In The Fifth International Con-

ference on Functional Programming Languages and
Computer Architecture, pages 636{666, New York,

August 1991. ACM Press.

[29] J. H. Reppy. CML: A higher-order concurrent lan-

guage. In Proc. ACM SIGPLAN '91 Conf. on Prog.
Lang. Design and Implementation, pages 293{305.

ACM Press, 1991.

[30] J. H. Reppy. A high-performance garbage collector

for Standard ML. Technical memorandum, AT&T
Bell Laboratories, Murray Hill, NJ, January 1993.

[31] J. C. Reynolds. Towards a theory of type struc-

ture. In Proceedings, Colloque sur la Programma-

tion, Lecture Notes in Computer Science, volume
19, pages 408{425. Springer-Verlag, Berlin, 1974.

[32] D. Rogerson. Inside COM: Microsoft's Component

Object Model. Microsoft Press, 1997.

[33] A. Sabry and P. Wadler. A reection on call-by-

value. In Proc. 1996 ACM SIGPLAN International
Conference on Functional Programming (ICFP'96),

pages 13{24. ACM Press, June 1996.

[34] Z. Shao. Flexible representation analysis. In Proc.

1997 ACM SIGPLAN International Conference on
Functional Programming (ICFP'97), pages 85{98.

ACM Press, June 1997.

[35] Z. Shao. Typed cross-module compilation. Techni-

cal Report YALEU/DCS/RR-1126, Dept. of Com-
puter Science, Yale University, New Haven, CT,

July 1997.

[36] Z. Shao and A. W. Appel. Space-e�cient closure

representations. In 1994 ACM Conference on Lisp
and Functional Programming, pages 150{161, New

York, June 1994. ACM Press.

[37] Z. Shao and A.W. Appel. A type-based compiler for

Standard ML. In Proc. ACM SIGPLAN '95 Conf.
on Prog. Lang. Design and Implementation, pages

116{129. ACM Press, 1995.

[38] D. Tarditi, G. Morrisett, P. Cheng, C. Stone,

R. Harper, and P. Lee. TIL: A type-directed opti-
mizing compiler for ML. In Proc. ACM SIGPLAN

'96 Conf. on Prog. Lang. Design and Implementa-

tion, pages 181{192. ACM Press, 1996.

[39] D. R. Tarditi. Design and Implementation of Code
Optimizations for a Type-Directed Compiler for

Standard ML. PhD thesis, School of Computer Sci-

ence, Carnegie Mellon University, Pittsburgh, PA,
December 1996. Tech Report CMU-CS-97-108.

[40] P. Wadler. Editorial: A HOT opportunity. Journal

of Functional Programming, 2(7), 1997.

[41] D. S. Wallach, D. Balfanz, D. Dean, and E. W.
Felten. Extensible security architectures for java.

Technical Report CS-TR-546-97, Princeton Univer-
sity, Department of Computer Science, Princeton,

NJ, April 1997.


