
The following paper was originally published in the
Proceedings of the Conference on Domain-Specific Languages

Santa Barbara, California, October 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Programming Language Support for Digitized Images or,
The Monsters in the Closet

Daniel E. Stevenson and Margaret M. Fleck
University of Iowa

Programming Language Support for Digitized Images

or, The Monsters in the Closet

Daniel E. Stevenson� Margaret M. Flecky

Department of Computer Science Department of Computer Science

University of Iowa University of Iowa

Iowa City, IA 52242, USA Iowa City, IA 52242, USA

Abstract

Computer vision (image understanding) algorithms

are di�cult to write, debug, maintain, and share.

This complicates collaboration, teaching, and repli-

cation of research results. This paper shows how

user-level code can be simpli�ed by providing bet-

ter programming language constructs, particularly

a new abstract data type called a \sheet." These

primitives have been implemented as an extension

to Scheme.

Implementation of sheet operations is made chal-

lenging by the fact that images are extremely large,

e.g. sometimes over 5 megabytes each. Therefore,

operations that loop through images must be com-

piled from (a specialized subset of) Scheme into C.

This paper discusses how the need for extreme e�-

ciency a�ects the design of the user-level language,

the run-time support, and the compiler.

1 Introduction

Within the past few years, computer imaging equip-

ment has become dramatically cheaper and more re-

liable. Six years ago, a color camera and framegrab-

ber cost $15,000 and was too heavy to lift. It can

now be replaced by a $400 hand-held digital cam-

era. As a result, cameras are becoming widely avail-

able. Both programmers and researchers are start-

ing to incorporate images into computer science ap-

plications remote from the traditional home of im-

ages, computer vision (image understanding). The

�Now at the University of Wisconsin{Eau Claire, Eau

Claire, WI 54702
yNow at Harvey Mudd College, 301 E. Twelfth St., Clare-

mont, CA 91711

rapid spread of images is particularly obvious on the

World-Wide Web.

Although many users require only image processing

and graphics packages (e.g. xv, Photoshop), an in-

creasing range of applications require basic image

understanding. For example, researchers in the sci-

ences and medicine use images to measure physical

properties (e.g. blood vessel width) and screen for

interesting events (e.g. unusual cell shapes). Com-

panies, governments, non-pro�t organizations (e.g.

museums), and private citizens are converting photo

collections to digitized form. They require e�ective

ways to locate images with speci�c content in large

databases.

Computer vision lies on the border between com-

puter science and electrical engineering. Tradition-

ally, it has been isolated from the rest of computer

science. In particular, it has seen little bene�t from

recent advances in the design and implementation

of programming languages. Computer vision algo-

rithms are still written primarily in C, occasionally

now in C++.

As a result, computer vision code tends to be com-

plex and repetitive. It is di�cult to write, debug,

maintain, and share. Inability to replicate results re-

ported in research papers, which is the norm rather

than the exception, is a major barrier to progress

in this sub�eld. Collaboration with researchers in

other areas of computer science is almost impossi-

ble.

More signi�cantly, many computer vision algo-

rithms are not much easier to program in high-level

languages (in practice, always Common Lisp). O�-

the-shelf compilers and interpreters do not provide

the required e�ciency. And the high-level language

code tends to resemble a word-for-word translation

of the C code. Existing abstract data types and con-

trol constructs do not match the repetitive structure

in this code and, therefore, cannot be used to sim-

plify it.

This paper will present new abstract data types

and associated operations. These primitives, imple-

mented as an extension to Scheme [3], encapsulate

much of the repetitive work common in computer vi-

sion code and can be compiled into e�cient C code.

We will discuss key issues involved in implementing

the required compiler and run-time support, com-

plementing previous work on compiling Scheme into

C. And we will suggest how some of the features

required in computer vision might �nd wider appli-

cation in programming language design.

2 Images are huge!

The most distinctive feature of digitized images is

their size. Digital cameras sold for the home PC

market deliver 24-bit color images at sizes ranging

from 320 by 240 up to 1600 by 1200. When the

data is stored in packed binary arrays, this trans-

lates into between 0.23 and 5.76 megabytes per

image. Images obtained from scanners or certain

specialized cameras are even larger, as are video im-

age sequences and 3D images from medical scanners

(e.g. MRI). Although they can be compressed when

stored in �les, images must remain uncompressed

during analysis.

Said another way, images are about 4-6 orders of

magnitude larger than most objects traditionally

found in a high-level language, and a single im-

age may be comparable in size to the entire heap

of a traditional Scheme session. Moreover, a typi-

cal vision function manipulates several such images

(e.g. two inputs and one output). A typical interac-

tive user doing experiments will use up all available

memory in an attempt to manipulate (e.g. compare)

as many images as possible simultaneously.

Because images are so large and many applications

require fast response (e.g. tracking moving objects),

computer vision programmers are obsessed with ef-

�ciency. Only the most stripped-down algorithms

are fast when iterated over all one million locations

in an image. Hand-coding critical functions in as-

sembler has only recently become rare. This is a

harsh environment in which to test programming

language methods.

To avoid wasting scarce space, image values are typ-

ically stored as packed bytes, both in memory and

in disk �les, even though they are conceptually real

numbers. Allocation and deallocation must be un-

der user control, because images do not naturally

become garbage (in the sense of becoming inacces-

sible to the user) quickly enough to prevent mem-

ory from �lling up. They must be allocated outside

the heap in a language such as Scheme, to prevent

heap fragmentation and unnecessary copying of im-

age data. And it must be possible for related images

(e.g. an image and a subimage) to share storage.

Finally, algorithm designers must be extremely care-

ful about how image data moves within the com-

puter. Scanning through an image in the wrong or-

der, on a machine with insu�cient RAM, can cause

dramatic swapping. Operations such as image rota-

tion, which must access their input and output in

di�erent orders, sometimes require that very large

images be divided into subblocks. Even if there is

enough RAM, swapping could still occur inside in-

ternal memory caches.

When image processing or image-related graphics

is done on an external board, transmitting image

data between the board and main memory is of-

ten a signi�cant fraction of total running time. Bus

speed is one of the major obstacles in using PC-

based cameras. On �ne-grained parallel processors

(e.g. the Connection Machine), transmission of the

image from the camera to the processors may com-

pletely dominate running time.

3 Existing vision packages

A number of packages of standard image process-

ing data structures and operations have been devel-

oped to aid research and teaching in computer vi-

sion. Some packages, such as the standard utilities

xv and pbmplus, support only simple image process-

ing and manipulation. Others, such as the HIPS Im-

age Processing System [12], Khoros [10], LaboImage

[6], and Matlab [19], cover a full range of low-level

image processing utilities. Finally, some packages

o�er support for higher-level vision operations: the

Image Understanding Environment (IUE) [11], KB-

Vision [7], Vista [14], The Iowa Vision System [4],

OBVIUS [5], and the Radius Common Development

Environment [17]. Many large sites have at least one

in-house package. And additional packages are used

to support image understanding projects in scien-

ti�c �elds (e.g. astronomy, biology, medicine).

A typical computer vision package contains a li-

brary of C or C++ image operations and an inter-

preted front-end language. The front-end language

is used to connect operations together, to commu-

nicate with the user, and to implement high-level

(\smart") parts of algorithms such as automatic pa-

rameter setting and control of multi-stage or search

algorithms.

3.1 Front-end language

Existing packages use a variety of front-end lan-

guages, whose main common feature is that they are

always interpreted. Some use the Unix shell (HIPS)

or interpreted C-like languages (Matlab). Others

(Khoros, KBVision, IUE) use a graphical front-end

language. Finally, one can use a high-level pro-

gramming language, such as Common Lisp (Iowa

Vision System, OBVIUS, Radius), Scheme, or ML.

We strongly prefer to use a modern high-level lan-

guage, because they are more powerful and simplify

collaboration between computer vision and arti�cial

intelligence.

The choice of front-end language is largely indepen-

dent of which operations are included in the library.

The Cantata data
ow interface has been used with

at least three packages of operations (Khoros, KB-

Vision, IUE). At least two recent languages, Tcl/Tk

and the Elk [13] implementation of Scheme, were

speci�cally designed to provide front-ends for a wide

variety of applications.

3.2 Operations included in library

All reasonably-designed vision packages support a

range of basic image manipulation operations such

as display, cropping, rotation, altering greyscale or

colormaps, and image statistics. Image process-

ing packages (HIPS, Khoros, LaboImage, Matlab)

also support linear �ltering, some nonlinear �lters,

standard transforms (particularly the Fourier trans-

form), and often simple edge detectors. However,

these packages do not have good support for higher-

level operations that manipulate edge-chains, fea-

tures, and geometrical objects.

Packages designed for computer vision include data

structures and pre-written code for high-level vi-

sion operations, either in the form of C++ classes

and macros (IUE, KBVision, and Vista) or Com-

mon Lisp classes and methods (Iowa Vision Sys-

tem, OBVIUS, and Radius). However, the num-

ber of high-level operations in each package is quite

limited. They typically include only one modern

edge �nder (typically Canny's), one camera calibra-

tion algorithm (invariably Tsai's), and a small se-

lection of vision algorithms (edge segmentation and

grouping, texture features, motion analysis, classi�-

cation).

3.3 How have they fared?

Although these packages are all well-intentioned,

and incorporate many interesting design ideas, there

is no real prospect that any of them will become a

standard tool used by most of the �eld. Computer

vision algorithms are still the subject of active re-

search and there are many recent, rival algorithms.

However, each package includes only one or two al-

gorithms for each task, often ones developed over

ten years ago. For example, most packages do not

include an edge �nder more recent than Canny's.

Furthermore, di�erent packages o�er qualitatively

di�erent features. The best choice depends on how

much money your site can spend, how much memory

and disk space your machines have, what operating

system you run, what applications you study (med-

ical, satellite, etc.), what theoretical approach you

favor, what other software (e.g. LISP) you have,

and whether you prefer a graphic or a textual front-

end.

In any attempt to address these problems, the most

comprehensive packages (e.g. HIPS, IUE, KBVi-

sion) have grown so large that they are di�cult to

maintain and document. For example, the IUE con-

tains over 575 classes, has over 800 pages of docu-

mentation, and consumes 500M of disk space [1]. A

single package satisfying everyone's needs would be

impossibly large.

4 A better approach

The di�culties in designing packages stem from the

fact that designers are attempting to standardize

at an inappropriate level of abstraction. Moreover,

standardization at the correct level requires the full

power of a compiler. Because there has been little

cross-fertilization between computer vision and pro-

gramming language design, package implementers

have used only insu�ciently powerful tools: library

functions, classes, and macros.

4.1 The right level for standardization

Consider the case of the operators that generate

texture features from a gray-scale image. Previ-

ous packages have attempted to provide a standard

set of texture operators. However, the literature

contains a wide range of texture operators, none

of them have entirely satisfactory performance, re-

spected researchers cannot agree about which ones

perform best, and new operators are constantly be-

ing proposed. Since no consensus exists, standard-

ization at this level is premature.

The correct place to standardize is at a level where

there is a scienti�c consensus. This allows the pro-

grammer to have as much support as possible while

making it easy to add new functionality and exper-

iment with new variations in algorithms. Standard-

ization at too low a level (C arrays) makes the pro-

grammer do most of the work by hand, while stan-

dardization at too high a level (image data struc-

tures, image processing functions) limits users to

currently available techniques and discourages them

from expanding the frontiers of science.

Therefore, we must provide standardization and

support at the level of the basic data structures and

control constructs used to write the library functions

in computer vision packages. This would make the

library functions simpler and easier to understand.

Then, each programmer could create a package cus-

tomized to their needs, by merging and modifying

code from standard libraries.

4.2 Many drops of water make a river

Many previous researchers have approached this as

a software engineering problem. Since each piece of

repetitive work is conceptually simple, it should be

easy for mature programmers to do it. So, it should

be su�cient to standardize programming practice,

so as to make everyone's code compatible. And,

therefore, it should be su�cient to de�ne a suitable

set of macros, classes, and accessor functions (e.g.

functions to extract value from di�erent types of

images).

This approach fails due to the sheer volume of

pedestrian work required to properly write a low-

level computer vision algorithm. Creative scien-

tists, even junior ones and those doing applied in-

dustrial work, quickly get bored with repetitive cod-

ing. They will not take the time to make code su�-

ciently general or portable. And it is inappropriate

to make them do so: repetitive work should be done

by a computer.

4.3 The value of compilation

Our extension to Scheme, called Envision, uses a

compiler to transform user-level Scheme code into

e�cient C code. Considerable research has been

done on compilation of high-level languages and the

newest Scheme-to-C compilers [9, 15, 16] perform

quite well. However, these techniques have never

been applied to generating computer vision code,

partly due to lack of communication between pro-

gramming language research and computer vision

and partly due to the signi�cant initial investment

of time required to write or adapt a compiler.

Compilation o�ers several advantages in this do-

main. It allows library operations to be written in

the same language used in the package front-end.

Type inference can expand a small number of user-

level type declarations into type assignments for all

variables. We can e�ciently implement a new con-

trol form (scan) which eliminates much of the work

of looping through all locations in a 2D image, with-

out requiring function calls inside these loops.

Finally, our compiler can automatically perform a

variety of optimizations (section 9). Many of these

optimizations are common in hand-written vision

code. However, human programmers do not apply

them consistently, they apply them in unsafe ways,

they use approximations with poor numerical be-

havior, and they do not adapt quickly to changes in

the hardware, operating system, or C compiler. It is

safer and more e�cient to centralize such knowledge

in the hands of the compiler writer.

4.4 The necessity of compilation

It is tempting to think that the same e�ect could be

achieved without writing a new compiler, by using

facilities such as classes, macros, and type de�ni-

tions (e.g. in ML). Unfortunately, current languages

and compilers seem to lack the power required to

de�ne and optimize our new data structures and

operations.

First, translating our high-level code into a stan-

dard language requires rewrite rules which operate

at compile-time (so the output code is e�cient) but

which are type-dependent. At compile-time, Lisp

and Scheme support only type-independent rewrit-

ing (macros). The type system in ML[20] seems to

lack a mechanism for parameterizing a type by one

or more numbers. This gives us no clean way to

write a rule which manipulates objects of varying

geometrical dimension but which requires access to

their dimensions.

Second, a central feature of Envision is that miss-

ing (unavailable) values are �rst-class objects. For

example, a variable which normally contains a

real value may occasionally be assigned a missing

value. Handling missing values requires modi�ca-

tions to type inference rules, modi�cations to stan-

dard arithmetic operations, code analysis to deter-

mine which expressions can never return a missing

values, and restructuring expressions to minimize

the number of tests for whether a variable value is

missing. Standard compilers do not contain such

support.

5 Sheets

The repetitive parts of low-level vision code can be

isolated and removed from user-level code using a

new data structure called a \sheet." Sheets rep-

resent the large areas of packed storage found in-

side image representations. They provide substan-

tial capabilities beyond those of arrays, but only

capabilities on which there is considerable consen-

sus in computer vision. Using sheets, it is easy to

construct any of the wide variety of image represen-

tations currently in use.

A sheet represents a function between two spaces:

a set of locations (the domain) and a set of values

(the codomain). Each space is locally Euclidean:

every small neighborhood looks like a piece of IRn

or ZZn. The function is represented to �nite preci-

sion: values are only available at a �nitely dense set

of locations and are only known with limited pre-

cision. Each sheet contains homogeneous data: all

values have the same type and precision. This al-

lows packed storage and optimization of compiled

code.

Sheets provide a layer of abstraction which insulates

the programmer from the details of how image data

is stored in arrays. The sheet appears to contain

data of the type described in mathematical speci�-

cations of the algorithm. For example, a log-polar

stereo map might appear to be tubular, to contain

signed
oating point values given to the nearest 20th

of a unit, and to have no values for certain locations

(e.g. where a surface was occluded in one image).

The user need not know the details of how this is im-

plemented using a standard array of unsigned 16-bit

integers.

5.1 Features provided by sheets

Speci�cally, the sheets provide support for multi-

dimensional values, arbitrary ranges of locations

and values, continuity, user-speci�ed precision, cir-

cularity, partiality, shared storage, and restrictions.

Multi-dimensional values: The domain of a

sheet may be of any dimension. This capability

is already provided by arrays. However, in addi-

tion, the values stored in a sheet may be points of

any dimension. The current implementation sup-

ports 1D and 2D domains as well as 1D, 2D, and

3D values. There are several ways to simulate a

multi-dimensional codomain using arrays: the pro-

grammer need not remember which method is being

used.

The use of multi-dimensional values allows the user

to represent a wide variety of image data structure

with sheets. For example, a motion vector �eld can

be represented using a 2D sheet with 2D codomain.

The outline of a 2D image region can be represented

using a list which contains, among other things, a

continuous 1D sheet with 2D values (the x and y

coordinates of the curve).

Range: The locations in a sheet may be any rectan-

gular subsection of 1D or 2D space. For many appli-

cations, the origin of the coordinate system should

be placed at the projection center of the image. By

contrast, arrays force the origin to lie in one cor-

ner of the image, requiring geometrical algorithms

to constantly add and subtract o�sets.

Similarly, the user can freely specify what range of

values will be stored in the sheet. The user is not

con�ned to the limited selection of ranges provided

by arrays (e.g. unsigned integers, signed longs,

oats) nor does the range have to start at zero.

Continuity: The domain and codomain of a sheet

may be either continuous (locally like IRn) or dis-

crete (locally like ZZn). Images have a continuous

domain and codomain. Edge maps have a discrete

domain and codomain. Color maps have a discrete

(1D) domain, but a continuous (3D) codomain.

Sheets with discrete domain provide values only

at grid locations, whereas sheets with continuous

domain provide values at any location within the

bounds of the sheet (by interpolation). Sheets with

continuous codomain provide values as real num-

bers, whereas sheets with discrete codomain provide

values as integers.

Arrays, by contrast, always have a discrete domain.

For the codomain, computer vision programmers are

forced to choose between two bad options: discrete

integers with an appropriate precision or continuous

reals with an inappropriately high precision (thus

wasting memory).

Precision: Numbers used in computer vision have

a known, �nite precision, due to a combination of

quantization and contamination with random noise.

When a sheet is created, the user speci�es the pre-

cision of the values to be stored in it. This, together

with the user's range speci�cation, automatically

determines the number of bytes used to store the

value at each pixel. Similarly, the user speci�es the

spacing between pixel locations.

When using arrays, the spacing between pixel lo-

cations is always one unit. For the integer arrays

typically used in computer vision, this is also true

of the output values. This forces pyramid-based al-

gorithms, for example, to explicitly rescale values.

Circularity: A sheet's domain and/or codomain

may be circular. The current implementation sup-

ports the following topological types: linear (
at)

domain and/or codomain, circular domain (e.g. a

closed 2D region boundary), tubular 2D domain

(e.g. a log-polar image), toroidal 2D domain (both

dimensions are circular), and circular codomain

(e.g. an image whose values are angles).

The topological type determines what happens if

a program attempts to access locations outside the

domain range, or store values outside the codomain

range. For example, circular codomain values are re-

duced to the right range using modular arithmetic,

whereas linear codomain values are approximated

with the closest value in the range. Interpolation of

circular values also uses modi�ed algorithms.

Partiality: Values may be unavailable for some lo-

cations in a sheet. This may happen in the middle

of the sheet (e.g. occluded regions in stereo dispar-

ity maps) or adjacent to its edges (e.g. an image

which has been rotated or corrected for lens distor-

tion). References to such a location, or to a location

outside the sheet's storage range, return a special

\missing" value.

In array-based code, missing values can be indi-

cated by storing a special reserved value in the array.

Unfortunately, programs don't all use the same re-

served value. Di�erent array types (e.g. unsigned

short, signed long,
oat) require di�erent reserved

values. Most programs (notably edge �nders) do

not handle missing values at all.

Shared storage: The packed storage area of a

sheet is separated from header information, such as

scaling. Two sheets with di�erent headers can share

the same packed storage. As a result, rescaling or

shifting a sheet does not require extensive memory

allocation or copying, just creation of a new modi-

�ed header.

Restrictions: The header information for each

sheet includes a focus area, used to limit display

and scanning operations (section 6.4). Thus, a sub-

section can be extracted from a sheet by combining

a new header with the same packed storage.

5.2 How sheets improve programming

Certain packages provide support for some of these

features, but this support is partial and erratic. As

a result, most programmers build their own ver-

sions of features by hand. These implementations

are special-purpose and incompatible with one an-

other. They often use substandard methods, such

as bilinear interpolation.

Standardized support allows simple and portable

user-level code. It ensures that good methods are

used for standard operations such as scaling and

interpolation, that these operations are fully de-

bugged, and that they are implemented using a

standard portable language (e.g. ANSI C). It helps

users write algorithms which handle the full range

of images.

Figures 1 and 2 show C and Envision code for a typ-

ical operation. The Envision code is shorter than

the C code, despite its longer (Lisp-style) function

names. The C code is restricted to 8-bit unsigned

values, whereas the Envision code handles sheets

with any range of values. The Envision code uses

second-order, rather than bilinear, interpolation and

leaves smaller holes around missing values. It re-

quires fewer input arguments. And, it rotates about

the image center, a meaningful user-level location,

rather than about the upper-left corner of the stor-

age array.

void rewindow

(double startx, double starty, double angle,

*char array1, *char array2, int xsize1,

int ysize1, int badval1, int xsize2, int ysize2,

int badval2, int minval2, int maxval2)

{

int newx, newy, lowx, highx, lowy, highy, intout;

double realx, realy, errorx, errory, v1, v2, v3,

v4, sinangle, cosangle, interpolated_value;

sinangle = sin(angle); cosangle = cos(angle);

for (newx = 0; newx < xsize2; newx++) {

for (newy = 0; newy < ysize2; newy++) {

realx = startx + newx*cosangle + newy*sinangle;

lowx = floor(realx); highx = ceil(realx);

errorx = (highx - realx);

realy = starty + newy*cosangle - newx*sinangle;

lowy = floor(realy); highy = ceil(realy);

errory = (highy - realy);

if (lowx < 0 || lowy < 0

|| highx >= xsize1 || highy >= ysize1)

array2[(newx * ysize2) + newy] = badval2;

else {

v1 = array1[(lowx * ysize1) + lowy];

v2 = array1[(lowx * ysize1) + highy];

v3 = array1[(highx * ysize1) + lowy];

v4 = array1[(highx * ysize1) + highy];

if (v1 == badval1 || v2 == badval1

|| v3 == badval1 || v4 == badval1)

array2[(newx * ysize2) + newy]

= badval2;

else {

interpolated_value =

errorx * errory * v1 +

errorx * (1.0 - errory) * v2 +

(1.0 - errorx) * errory * v3 +

(1.0 - errorx) * (1.0 - errory) * v4

+ 0.5;

intout = interpolated_value;

if (intout < minval2) intout = minval2;

else if (intout > maxval2)

intout = maxval2;

array2[(newx * ysize2) + newy]

= intout;}}}}}

Figure 1: C code to rotate and shift an image array.

6 Other new language features

To make full use of sheets, Envision provides a range

of other new language features.

6.1 Points

A new data type, the \point," is introduced to rep-

resent locations in the domain of a sheet and val-

ues stored in its codomain. Following the standard

conventions of pure mathematics, a 1D point is sim-

ply a number. Higher dimensional points, such as

2D and 3D points, are implemented as structures.

(bulk-define

rewindow ; name

((manifold 2 1) ; input types

(manifold 2 1) real real real)

unspecified ; output types

(lambda (insheet outsheet xoffset yoffset angle)

(let ((sinangle (sin angle))

(cosangle (cos angle)))

(scan (location outsheet)

(let*

((point (sample->point location))

(xcoord (point-coordinate point 0))

(ycoord (point-coordinate point 1)))

(sample-set! location

(sheet-ref insheet

(+ xoffset

(* xcoord cosangle)

(* ycoord sinangle))

(- (+ yoffset (* ycoord cosangle))

(* xcoord sinangle)))))))))

Figure 2: Envision code for the same operation.

Basic arithmetic operations are extended to work

transparently on higher dimensional points.

6.2 Missing values

Missing values (unspeci�ed, bottom, ...) are widely

used in programming language design. As far as

we know, however, Envision is the �rst language

in which they are �rst-class objects. That is, they

can be assigned to variables, stored in data struc-

tures including sheets, and so forth. Basic arith-

metic operations have been extended to handle the

possibility that some of their inputs may be missing

(typically returning a missing value) and to return

missing values in other appropriate cases (e.g. divi-

sion by zero).

We believe that �rst-class missing values are an ex-

tremely useful feature, which could be used else-

where in high-level languages. For example, they

could serve as the values of symbols which have not

yet been bound, or as the value of assoc for items

not in the list.

Missing values also represent a di�erent philosophy

for error handling. Standard languages trigger an

error by default, and optionally let the user install

error handlers. By default Envision triggers error

breaks much more seldom. The user must force ad-

ditional error breaks by explicitly testing whether

some condition is satis�ed (e.g. some value is non-

missing). This \mellow" convention is essential for

image processing, in which the failed computation is

typically only one of a million similar computations,

most of which probably succeeded.

6.3 Samples

Any location in a continuous sheet can be accessed,

but only certain speci�c locations, namely those on

the storage grid, can be set. Envision includes direct

pointers to grid locations, called \samples." Sam-

ples allow the programmer to bypass scaling and

interpolation of locations in a sheet's domain, nec-

essary for optimizing certain low-level vision algo-

rithms.

To do this safely, programmers have no direct ac-

cess to the raw array coordinates stored inside each

sample. Rather, high-level operations allow them

to �nd the sample nearest a
oating-point location,

retrieve the samples at the two extreme corners of

a sheet's focus area, �nd the scaled coordinates of

a sample, move by a speci�ed displacement on the

sample grid, and so forth. Because of the restricted

direct access, Envision samples are similar to Java's

\safe pointers."

6.4 Scanners

Applying a low-level vision operation to a sheet typ-

ically requires enumerating the samples in its focus

area. In traditional computer vision programming,

the user must extract the array bounds and com-

pose a double loop. In Envision, most enumeration

is done with the high-level primitive SCAN. Explicit

loops are reserved for algorithms with unusual struc-

ture.

Scan has the following syntactic form, in which the

test and the scanner are optional:

(scan (variable sample-or-sheet

test scanner)

expr1 expr2)

Scan enumerates the samples in the focus area,

binding the variable to each one in turn and evaluat-

ing the expressions inside the form. The scan starts

at the input sample, or at the �rst location in the

input sheet. When a sample passes the test or the

end of the sheet is reached, it halts, returning the

current sample and a boolean indicating whether it

ran out of samples. The returned sample allows the

scan to be restarted from where it left o�.

The scanner input determines which samples are

enumerated (e.g. every sample? every other sam-

ple?) and in which order. Envision includes a selec-

tion of standard scanners, including a default one

used if the scanner input is omitted. Programmers

can easily add new ones.

Scan di�ers from the standard Scheme map opera-

tor in two ways. It enumerates locations (samples),

not values. This is essential in image processing,

where an output value typically depends not only

on the corresponding input value but also on values

near it. Second, scan gives the programmer
exible

control of the enumeration order. Such control is

more important in computer vision than in tradi-

tional Scheme applications, because a 2D image can

be ordered in more useful ways than a 1D list can.

6.5 Geometrical objects

Graphical display is largely handled by a single

primitive DRAW. Input to DRAW includes a ge-

ometrical object, a window, a location in the win-

dow, and a list of options (e.g. color, �lled, size).

The type of the geometrical object determines what

sort of �gure will be drawn.

Geometrical objects include 2D sheets (mapped

onto the window), 1D sheets (drawn as curves),

points, line segments, polygons, ellipses, and text.

The parameters in line segments, polygons, and el-

lipses may be points or 1D sheets. In the latter case,

the object represents a set of objects if the sheets

are discrete. If they are continuous, the object rep-

resents a swept strip or volume. These geometrical

objects can also be used in implementing high-level

vision algorithms.

6.6 File storage

Scheme includes only ASCII �le I/O, unsuitable for

storage of objects as large as sheets. Envision pro-

vides a second type of structured �le I/O, in which

packed sheet data is written in binary and other ob-

jects are written in a tagged ASCII representation.

Operations are also provided to read bytes and se-

quences of bytes, for reading other image �le for-

mats (e.g. PPM, JPEG) and communicating with

devices (e.g. cameras).

6.7 Storage areas, open �les, windows

As described above (section 2), sheets cannot be

garbage collected automatically. To help the user

manage sheet space, Envision maintains a list of

storage groups, i.e. sets of sheets sharing a common

packed storage area. For each storage area, it can

provide one representative sheet, which the user can

examine, e.g. when deciding whether to deallocate

it.

Since we are forced to provide storage-management

tools for one badly-behaved type of data, there is no

conceptual problem extending such tools to other

places where they would be useful. The ease with

which users can lose pointers to open �les and win-

dows is a long-standing problem in high-level lan-

guage design. Envision allows the user to list such

open connections.

7 Our implementation

We have implemented Envision as an extension to

the Scheme48 implementation of Scheme [9]. The

overall structure is determined by three main ideas:

separation of sheet data from the high-level front-

end, variable compilation, and separation of sheet

type handling into run-time and compile-time com-

ponents.

7.1 Two-processor architecture

We have implemented Envision using two processes.

The front-end is Scheme, augmented with a variety

of functions implementing Envision's user front-end

and its compiler. Sheet data, window graphics, and

binary �le I/O, however, are handled by a sepa-

rate C program. This \coprocessor" is connected

to Scheme via a Unix socket.

Crucially, packed data from sheet storage areas is

never passed down the socket. To the user, sheet

data appears to reside in Scheme. In fact, the

packed storage areas for sheets reside in the copro-

cessor. Scheme has only the header data for each

sheet, plus a unique identi�er that allows it to iden-

tify the storage area when communicating with the

coprocessor. Therefore, the socket connection does

not have to be fast. In our experience, the only

interfaces fast enough for image transmission use

shared memory and these tend to be fragile.

This architecture o�ers three advantages. First,

since our primary �eld is not programming lan-

guages and we wanted to produce a usable proto-

type quickly, we simpli�ed our work by using an

existing Scheme implementation and not modifying

its internals. Second, individual users create new

coprocessor binaries whenever they link in C code

generated for them by the compiler. It is convenient

that they need only rebuild the coprocessor binary,

because the Scheme binary is 30 times larger and

more complicated to rebuild. Finally, we wanted

to test how well algorithms could be divided into

sheet-processing and high-level parts. A clean algo-

rithmic separation would simplify taking advantage

of specialized image processing boards or a second

processor, without placing undue strain on the bus

or network connecting these to the main processor.

7.2 Variable compilation

A typical computer vision algorithm contains both

functions that manipulate the values within sheets

and high-level functions that operate on more tra-

ditional data structures. Because they manipulate

objects of grossly di�erent size, these two types of

functions require very di�erent types of compilation.

(It would be premature to decide whether this is a

binary distinction or two samples from a continuous

variation.)

High-level scheme functions are compiled into

Scheme48's byte code by Scheme48's compiler.

They can use all the features of Scheme and Envi-

sion. However, Scheme functions which use sophis-

ticated features cannot be compiled into code e�-

cient enough to scan operations across large sheets,

on current hardware. 1

Functions which scan across sheets must be com-

piled for maximum e�ciency. The types of all vari-

ables must be determined at compile time. The

user must declare the types of input and output

values, because it is frequently impossible to infer

whether numbers and sheets are real/continuous or

integer/discrete. An error is triggered if the com-

piler cannot determine the type of any internal vari-

able.

Furthermore, such functions cannot allocate or del-

locate non-stack space, nor can they call graphical

display functions. Variables are restricted to points,

booleans, sheets, and samples. Only points can be

1They would run faster if compiled into C, e.g. using

Bigloo [15, 16], but not fast enough.

missing. Only basic control constructs are allowed.

These restrictions were inspired, in part, by those

of Prescheme [9].

Previous optimizing Lisp and Scheme compilers,

such as Bigloo or Franz Common Lisp, regard the

input code as �xed and take as their goal optimiz-

ing it as much as possible. The harsh environment

of image processing forces us to take a di�erent at-

titude for sheet-handling code: the code must run

with su�cient speed and therefore the user must be

helped to write such code, by a combination of lan-

guage restrictions and compiler errors. Computer

vision researchers �nd it frustrating to guess what

modi�cations to their code will convince a general-

purpose compiler to make it run fast enough.

Envision's compiler produces two types of output

for sheet-handling functions. For debugging code

on small images, they can be compiled into code

that runs on the coprocessor's stack machine (sec-

tion 8.2). For �nal use, they are compiled into C

code, which can be linked directly into the copro-

cessor.

7.3 Sheet typing

Type features for sheets (and, by extension, sam-

ples) are divided into two groups. The dimensional-

ity of the domain and codomain, and whether each

is continuous or discrete, have profound e�ects on

algorithm design. Only the most trivial functions

(e.g. copy) are polymorphic across these distinc-

tions. Furthermore, they drastically a�ect C code

generation, e.g. whether C variables are declared as

oats or ints, whether 1D or 2D code is substituted

when expanding a SCAN form, and whether the in-

puts to addition are numbers or vectors. Therefore,

these type distinctions are resolved at compile-time.

By contrast, the design of most computer vision al-

gorithms does not depend on the other type fea-

tures: range, precision, circularity, or whether miss-

ing values might be present. Previous systems typ-

ically forced users to make some of these distinc-

tions at compile-time, resulting in annoyingly non-

general code (e.g. edge �nders that would run only

on signed 8-bit images). The increase in generality

obtained by resolving these distinctions at run-time

is worth the small penalty in running time.

8 The Envision coprocessor

The coprocessor provides four capabilities: alloca-

tion and dellocation of packed storage for sheets, the

run-time component of sheet support, a stack ma-

chine that can run user-de�ned code, and a graphics

interface with a built-in event loop.

8.1 Implementation of sheets

Sheets are implemented as arrays of bytes. Depend-

ing on the range and precision requested by the user,

between one and three bytes are allocated per pixel.

Missing values are marked by storing a special re-

served value into the array. Sheets with 2D domain

are implemented using a 1D array of pointers to the

�rst element in each row, which results in faster ac-

cess than standard address arithmetic. Sheets with

2D or 3D codomain are implemented using two or

three arrays.

With each sheet, the coprocessor stores three acces-

sor functions. These accessors are given raw array

coordinates: scaling is handled by Scheme and the

compiler. Two accessors retrieve and set the value

at a particular integer array location. The third

accessor, present only for sheets with continous do-

main, retrieves an interpolated value for a location

speci�ed by
oating point coordinates. All three ac-

cessors handle circularity, missing values, and range

restrictions. However, they return raw integer val-

ues, to which the compiler must apply the appro-

priate scaling and o�set.

Interpolation is implemented using a nine-point

second-order polynomial interpolate. When all 9

values are available, this is similar to the six-point

interpolate described in [2]. However, our inter-

polation algorithm handles any pattern of missing

values, handling simple cases quickly and decaying

gracefully to a bilinear, linear, or nearest-neighbor

interpolate as required. This capability is required

for correct, fully general implementation of opera-

tions such as image rotation. However, it would be

very di�cult for most users to implement on their

own and no previous vision package provides it.

8.2 Running functions

From the Scheme interpreter, the user can call user-

de�ned functions installed in the coprocessor. These

include fully compiled functions linked directly into

the coprocessor and also functions compiled, for de-

bugging, into instructions for the coprocessor's stack

interpreter. The interpreter includes simple assem-

bler instructions, a function calling mechanism, spe-

cial handlers for basic sheet operations, and a wide

range of mathematical functions directly available

in the standard C library (e.g. trignometric func-

tions).

When some inputs to a function are sheets, the sheet

header information is passed from Scheme to the

coprocessor. Sheet headers are large compared to

the other types allowed (216 bytes), and it is very

ine�cient to copy them around C's stack or the co-

processor's stack. Therefore, sheet headers passed

from Scheme are stored in a special array and re-

ferred to by number. The contents of this array are

static during the function call, because user-de�ned

coprocessor functions cannot create, delete, or mod-

ify sheets.

8.3 Graphics support

Finally, the coprocessor manages the user's interac-

tion with the window system. It includes operations

for creating and destoying windows, and primitives

for displaying graphical objects on them. Events

such as window resizing, motion, and exposure

are handled automatically. Command-type mouse

events (moving and clicking inside windows) will

eventually be handled by an X-based user-interface

program. The current implementation uses the X

window system but the user-level language is generic

and should be compatible with many window sys-

tems.

9 The compiler

The Envision compiler transforms the user-level

code into an intermediate language, with operations

and control structure similar to C, but with Lisp-

like syntax. This transformation is carried out by

Scheme-to-Scheme transformation rules inspired by

(but rather di�erent from) those in [8]. From the

intermediate language, it is easy to generate both C

code and code for the coprocessor's stack machine.

With the exception of certain straightforward basic

components, our compiler handles problems largely

disjoint from those treated by previous compilers

(e.g. [9, 15, 16]). On the one hand, we excluded

control constructs which threatened to create dif-

�culties and which did not seem useful in writing

sheet-handling functions (which tend to have a re-

stricted structure). On the other hand, the Envision

compiler spends considerable e�ort optimizing the

handling of higher-dimensional objects and missing

values.

9.1 Type inference

Envision's type inference engine allows types to be

parameterized by dimension. Points have a single

dimension parameter (1D, 2D, or 3D). Sheets and

samples have two dimensions: one for the domain

and one for the codomain. This allows type in-

ference rules to enforce appropriate dimension rela-

tions among the inputs to a function, and between

the inputs and outputs. It also gives compiler func-

tions access to the dimensions as numbers. For ex-

ample, the function which extracts the kth coordi-

nate of a vector must test whether k is in the correct

range.

Type inference handles missing points by assigning

them a type with a special (wildcard) value in place

of the dimension. These types are fused with normal

types in the obvious way, e.g. when a missing and a

non-missing value are generated by the two branches

of an if statement.

9.2 Scanner substitution

To avoid function calls inside loops at run-time,

the enumeration code from the speci�ed scanner is

substituted into each scan form at compile time.

This substitution process must examine whether the

sheet input is a sheet or sample, and whether it is 1D

or 2D. For example, the default scanner FORWARD

contains two versions of the looping code, one for

1D sheets and one for 2D sheets. While not concep-

tually complex, type-dependent substitution cannot

be accomplished with standard Scheme macros and

must therefore be built into the compiler.

9.3 Real numbers

It is incredibly ine�cient to rebuild real-number

handling, including utilities such as trigonometric

functions and random-number generation, on top

of integer arithmetic. C provides well-optimized (if

not ideally general) real number handling, which we

used.

9.4 Missing values

To a �rst approximation, a missing value might ap-

pear anywhere that a point is expected. A naive

implementation might incorporate a test for miss-

ing values into the implementation of each sensitive

operation, e.g. all the numerical functions. How-

ever, this results in massively more testing than is

performed in hand-written code.

The compiler performs a \purity analysis" to de-

termine which variables and expressions can never

return a missing result. A value may never be miss-

ing because it came (directly or indirectly) from a

constant input. It might be the result of a strict

operator 2 applied to never-missing values. Certain

operations for retrieving sheet parameters (e.g. the

o�set) cannot return missing values. These appear

in the expansion of extremely common functions,

notably those for setting and accessing values in

sheets.

Finally, a value can never be missing if it is pro-

tected by an explicit test for whether it is missing.

Some tests occur in the user-level code. Others are

generated automatically when the compiler expands

sensitive operations.

The compiler also recognizes connected groups of

strict functions and collects all required tests for

missing values at the start of the group. Prior to

this step, the compiler restructures the code so that

expressions do not contain any forms which might

generate side-e�ects, so that a left-to-right order of

evaluation is preserved when sub-expressions are ex-

tracted.

9.5 Vector operations

Expansion of vector operations ensures that tem-

porary variables are allocated as needed, but not if

the input is a variable or a constant. Moreover, if an

input is explicitly headed by a 2D or 3D point con-

structor (or a sequence ending in such a form), the

input is decomposed into its constituents at compile-

time rather than at run-time. For example, a se-

quence of 3D vector + and * operations will become

three 1D numerical expressions followed by only one

point constructor.

This complex analysis of the input, and deconstruc-

tion of some inputs, is beyond the power of re-

2I.e. an operator which never returns a missing value when

given non-missing inputs.

stricted macro facilities such as Scheme's de�ne-

syntax. Moreover, the proper expansion depends

on the dimensionalities of the inputs and, thus, it

must follow type inference.

Expansion of vector operations must follow genera-

tion of tests for missing inputs. The vector expan-

sions destroy groups of strict operations, because a

single user-level operation may become a complex

form which sets and uses temporary variables. (A

particularly bad example is the cross-product opera-

tion.) Therefore, even if a general-purpose compiler

supported missing values, it would still be di�cult

to de�ne vector operations using user-level features

such as macros or classes.

9.6 Sheet references

Operations which set or access sheet values must

also be expanded with some care. To a �rst ap-

proximation, they simply add scaling and o�set to

the low-level access function. However, like vector

operations, they must allocate temporary variables

exactly when needed. Furthermore, if the domain

and/or codomain is discrete, scaling must be done

using exact integer operations which check that the

divisions involved have no remainder. Therefore,

certain parts of this expansion must be delayed un-

til after type inference has been done.

9.7 Space allocation

Dynamic storage allocation is too slow to be allowed

inside sheet-handling functions. All the non-stack

storage required must be allocated before the func-

tion is called, and passed to it. Therefore, sheet-

handling functions cannot use lists to return several

objects and so the compiler must support multiple

return values.

Points, including numbers and missing points, are

represented by C structs. When such a value is re-

turned by a form inside a SCAN loop, it is ine�cient

to create the struct anew in each iteration of the

loop (even on C's stack). Instead, the compiler re-

serves stack space for all such internal point structs

once, at the start of the sheet-handling function.

When, in addition, an internal point value is known

never to be missing, the compiler can pre-set the

missing? �eld of the point struct. Thus, inside a

scan loop, the only �elds of the struct which must

be examined or set are the actual numerical values.

This optimization eliminates essentially all overhead

on 1D arithmetic involving non-missing numbers.

Attempting to avoid overhead on simple arithmetic

is common in compilers for high-level languages.

However, it is di�cult to do in the context of a

form which is evaluated only once (or a few times)

each time the function is called. Our optimization

is easy and often applicable, because it exploits the

fact that scan loops contain many strict arithmetic

operations and forms inside scan loops are evaluated

many times.

9.8 Linear operations

Hand-written C code often takes advantage of the

fact that image processing operations often add or

subtract values from di�erent locations in the same

image. We intend, eventually, to detect forms mak-

ing multiple references to the same sheet and factor

out the scaling and o�set applied when extract val-

ues from the sheet.

10 Implementation results

We are in the late stages of debugging Envision and

writing appropriate example code and new-user doc-

umentation. Draft documentation can be found on

our web site [18] and we anticipate releasing the

code in early fall. It requires only standard Unix

components (ANSI C, sockets, and Xlib) and cur-

rently runs on three operating systems (Linux, HP-

UX, and SGI Irix). Both Scheme48 and Envision

are extremely small systems: compressed source for

both will �t on two
oppy diskettes.

The current system is fast enough for many types

of image processing research. Rotation of a 538 by

364 image (by an arbitrary angle) takes 6 seconds

on a 120MHz Pentium PC and under 3 seconds on

an SGI Indigo 2. Functions run on the coprocessor's

stack machine take about 7 times as long: still su�-

ciently fast for debugging using small examples. We

believe that a combination of further optimizations

and rapidly increasing processor speed will eventu-

ally make the output suitable for a wide variety of

image processing applications. The most demand-

ing real-time applications may, however, require a

more sophisticated compiler which can take advan-

tage of image processing boards.

11 Conclusions

This paper has shown how techniques of modern

programming language design can be successfully

applied to an unusual domain: computer vision. We

have seen that that image handling requires inter-

esting new programming language constructs, in-

cluding new data types (sheets, samples), a new

mapping-type operator (scan), and �rst-class sup-

port for missing values. We have also seen that,

although the huge size of images demands extreme

e�ciency, this can be achieved by compiling a high-

level language using current methods, appropriately

adapted to the speci�c application.

Acknowledgments

This research was supported by NSF grants IRI-

9501493, IRI-9420716, and IRI-9209728. We would

also like to thank Richard Kelsey, Jonathan Rees,

Manuel Serrano, and Val Tannen.

References

[1] Amerinex Applied Imaging (1996)

\Image Understanding Environment Program:

Overview," http:// www.aai.com/ AAI/ IUE/

IUE.html, 9 September 1996.

[2] Bracewell, Ronald N. (1995) Two-Dimensional

Imaging, Prentice-Hall, Englewood Cli�s NJ.

[3] Clinger, William, Jonathan Rees, et al. (1991)

\Revised4 report on the algorithmic language

scheme," ACM Lisp Pointers 4/3, 1{55.

[4] Fleck, Margaret and Daniel Stevenson, \The

Iowa Vision System Project," http://www.

cs.uiowa.edu/ ~m
eck/ vision-html/ vision-

system.html, 13 September 1996.

[5] Heeger, David and Eero Simoncelli, \OB-

VIUS," http:// white.stanford.edu/ ~heeger/

obvius.html, 1 November 1996.

[6] Jacot-Descombes, Alain, Marianne Rupp, and

Thierry Pun, \LaboImage: a portable window-

based environment for research in image pro-

cessing and analysis," SPIE Proc. Vol 1659:

Image Processing and Interchange: Implemen-

tation and Systems (1992), pp. 331{340.

[7] \KBVision," Amerinex Applied Imaging Inc.,

Amherst, MA, http:// www.aai.com/ AAI/

KBV/ KBV.html, 1 November 1996.

[8] Kelsey, Richard and Paul Hudak (1989) \Re-

alistic Compilation by Program Transforma-

tion," Proc. 16th ACM Symp. on Principles of

Programming Languages, pp. 281{292.

[9] Kelsey, Richard and Jonathan Rees (1995) \A

Tractable Scheme Implementation", Lisp and

Symbolic Computation 7(4).

[10] \Khoros," Khoral Research Inc., Albuquerque,

NM, http:// www.khoros.unm.edu/ khoros/, 1

November 1996.

[11] Kohl, Charles and Joe Mundy (1994) \The De-

velopment of the Image Understanding Envi-

ronment," CVPR 94, pp. 443{447.

[12] Landy, Michael S., Yoav Cohen, and George

Sperling, \HIPS: A Unix-Based Image Process-

ing System," CVGIP 25 (1984), pp. 331{347.

[13] Laumann, Oliver and Carsten Bormann (1994)

\Elk: the Extension Language Kit," USENIX

Computing Systems 7/4, pp. 419-449.

[14] Pope, Arthur R. and David G. Lowe, (1994)

\Vista: A Software Environment for Computer

Vision Research," CVPR 94, pp. 768{772.

[15] Serrano, M. and Weis, P. (1995) \Bigloo: a

portable and optimizing compiler for strict

functional languages," SAS 95, pp. 366{381.

[16] Serrano, M. (1994) Vers une compilation

portable et performante des langages fonction-

nels, Th�ese de doctorat d'universit�e, Universit�e

Pierre et Marie Curie (Paris VI), Paris, France.

[17] SRI International, \RCDC Home Page,"

http:// www.ai.sri.com/ perception/ software/

rcde.html, 1 November 1996.

[18] Stevenson, Daniel and Margaret Fleck, \En-

vision: Scheme with Pictures," http://www.

cs.uiowa.edu/ ~m
eck/ envision-docs/ envi-

sion.html, 7 June 1997.

[19] Thompson, Clay M. and Loren Shure (1993-95)

\Image Processing Toolbox for use with MAT-

LAB," MathWorks Inc., Natick, MA.

[20] Ullman, Je�rey D. (1994) Elements of ML Pro-

gramming, Prentice-Hall, Englewood Cli�s NJ.

