
The following paper was originally published in the
Proceedings of the Conference on Domain-Specific Languages

Santa Barbara, California, October 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Code Composition as an Implementation Language for Compilers

James M. Stichnoth and Thomas Gross
Carnegie Mellon University

Code Composition as an Implementation Language for Compilers

James M. Stichnoth and Thomas Gross
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Code compositionis an effective technique for a com-
piler to implement complex high-level operations. The
developer (i.e., the language designer or compiler writer)
provides building blocks consisting of sequences of code
written in, e.g., C, that are combined by a composition
system to generate the code for such a high-level opera-
tion. Thecomposition systemcan include optimizations
not commonly found in compilers; e.g., it can special-
ize the code sequences based on loop nesting depth or
procedure parameters. We describe a composition sys-
tem, Catacomb, and illustrate its use for mapping array
operations onto a parallel system.

1 Introduction

Application-specific programming languages capture
properties of a particular problem domain. For many
such problem domains, it is not necessary to design and
implement a completely new language. Instead, a pro-
gramming language like C or Fortran serves as the base
and is augmented by operators or control constructs to
capture specific information about a problem domain.
For example, Fortran and C have been extended with ar-
ray assignment statements and abstractions for computer
vision [10, 28], or parallel looping or synchronization
constructs have been added. These extensions can usu-
ally be expressed in the form of high-level operators.
The benefits of such an extension are obvious: the exten-
sions address the concerns of the problem domain, and
the general-purpose language can be used for everything
else.
There are two challenges in implementing such high-
level operators. First, the implementation of such exten-
sions in the compiler must be cheap, with respect to the
time and effort that is required. Otherwise, the language
may never be used due to the lack of a decent implemen-
tation. The second challenge is to devise a high-quality
implementation. There are many dimensions of quality,
but the two most critical are correctness and efficiency.

While correctness is crucial for every language transla-
tor, one aspect of correctness that has sometimes been
overlooked in the past is completeness; i.e., the transla-
tor must be able to deal with all possible legal inputs,
and the implementor must cover and test all the bound-
ary conditions. Efficiency is also important, since one
of the reasons an application-specific language is used is
that such a languagecan producebetter-performingcode.
Unfortunately, these two demands (correctness and effi-
ciency) tend to increase the cost of implementation, so
there is increased interest in techniques to address these
problems.

A straightforward implementation of such language ex-
tensions is to provide a subroutine for each of the new
operators. Since these operators are at a high level and
provide powerful operations, the implementation of such
a library is far from simple. Furthermore, using a library
either deprives the system of opportunities to optimize
the code (if the library handles only the general case) or
results in many variants (for different parameter values).

A composition system offers an attractive alternative.
The developer of the high-level operations provides code
sequences that are “stitched together” by a composition
system. An analogy to conventionalcompilers may illus-
trate the concept. A compiler takes assembly-language
or intermediate-code sequences, which have been de-
termined as code for a statement or operator, and op-
timizes these low-level code sequences. The compiler
discovers redundant operations and manages resources
(e.g., registers) across boundaries. A composition sys-
tem takes blocks of code in some suitable high-level
general-purpose language and composes the code for the
high-level operation by combining and optimizing the
code sequences. Since the composition system sees a
global view of the program, it can optimize these code
sequences better than a conventional compiler.

In a conventional compiler, the compiler developer de-
cides how the assembly language or intermediate code
sequences are selected and optimized. However, to sup-
port a wide range of high-level operations in a compo-
sition system, the developer of the application-specific
high-level operations must be able to express a wide va-

riety of actions by the composition system. Thus the code
composition must be programmable; i.e., there must be
a programming language to control code composition.
This programmability provided by the composition lan-
guage is the key to the power of the composition system.
In the remainder of the paper, we first provide a few ex-
amples of what we call “complex high-level operations”
from different problem domains. Then we discuss code
composition as a technique to address the two challenges
mentioned above. Then we describe the Catacomb sys-
tem that has been implemented and supports our claim of
the practicality of the idea of code composition. There
are other approaches to address the problem, and we
summarize those after we present an evaluation of the
Catacomb system for one class of high-level operations.

2 Examples of complex high-level opera-
tions

This work is motivated by the challenges faced in com-
piling “complex high-level operations.” In this section,
we briefly present three examples of complex high-level
operations. They are described in more detail in Sec-
tion 5.

2.1 Array assignment statement

The array assignment statement, which is a key compo-
nent of High Performance Fortran (HPF) [10], effects a
parallel transfer of a sequence of elements from a source
array into a destination array. The canonical form of the
array assignment statement is

A[`A:hA: sA] = B[`B :hB : sB]:

The subscript tripletnotation`:h: s, also used in For-
tran 90, describes a sequence of array indices starting
with `, with strides, and having an upper boundh.
An important aspect of the array assignment statement is
that the array elements are distributed across the proces-
sors of a multiprocessor system. This data distribution
dramatically increases the complexity of an efficient al-
gorithm to execute the statement.
Compiling the array assignment statement becomes
much more difficult when we extend the canonical case
to the general case. There are three extensions: multidi-
mensional references (e.g,A[1:m][1:n]), multiple right-
hand side terms (e.g.,B[`B :hB : sB] + C[`C :hC : sC]),
and a mix of subscript triplets and scalar indices (e.g.,
A[x][`A:hA: sA]). While it is conceptually simple to lift
the restrictions on the canonical example, it is much more
difficult in practice to implement the general case within
a compiler or runtime library framework. As such, most

proposed implementations ignore the engineering issues
of embedding general array assignment algorithms into
a parallelizing compiler.

2.2 Data transfer in irregular applications

The array assignment statement is used to performregu-
lar data transfer, in which the access pattern (as specified
by the subscript triplet) and the data distribution both
have regularity that can be exploited at compile time.
When the data distribution becomesirregular, or the ac-
cess pattern becomes irregular, the data transfer depends
on values available only at run time. Irregular access pat-
terns result from multiple levels of array indirection; e.g.,
A[IA[`:h: s]]. Irregular access patterns also result from
explicit loops containing multiple levels of indirection.
Irregular array assignment statements and irregular paral-
lel loops are examples of complex high-level operations.
Engineering difficulties arise in a compiler when we add
multiple levels of indirection, and when we distribute
several dimensions of a multidimensional array.

2.3 Archimedes

The Quake project [4] at Carnegie Mellon focuses on
predicting the ground motion during large earthquakes.
At its heart is Archimedes [19], a system for compil-
ing and executing unstructured finite element simula-
tions on parallel computers. The compiler component
of Archimedes, called Author, presents the programmer
with a language nearly identical to C. The language is
enhanced with additional aggregate data types for nodes,
edges, and elements of a finite element mesh, as well
as statements for iterating in parallel over the collec-
tion of such objects in the mesh (e.g.,FORNODEand
FORELEM). In addition, Author provides a crude mech-
anism that allows the programmer to extend the system
with macro-like constructs that support type-checking of
their arguments.
The statements that iterate in parallel over the aggregate
data types are examples of complex high-level opera-
tions. In addition, there are high-level constructs that
result in both regular and irregular communication, as
described above.

3 Code composition

Traditionally, the compiler translates each input opera-
tion or statement into a small fixed sequence of state-
ments at a lower level of abstraction (e.g., machine in-
structions or operations in an intermediate representa-
tion). For each input construct, there is typically a small
sequence of instructions to perform the task at execution

time. This compilation strategy is calledcustom code
generation.
As a high-level language grows to be more complex, the
complexity of individual operations increases as well,
requiring more and more low-level operations to imple-
ment each complex input construct. At this point, the
typical approach is to shift to theruntime library rou-
tine compilation strategy. In this strategy, the compiler
translates each such high-level operation into a call to a
runtime library routine. This approach tends to be much
more manageable than generating custom code, because
the code appears in a straightforward fashion in the li-
brary, rather than being buried in the compiler. However,
it also tends to suffer in terms of runtime performance,
because the runtime library routine does not have access
to the specific parameters of the construct that are known
at compile time, and cannot optimize accordingly.
The compilation strategies of custom code generation
and runtime library routines trade off three important
issues: efficiency, maintainability, and generality. Effi-
ciency refers to the performance of the generated code
at run time; i.e., being able to optimize the construct’s
runtime execution, based on all available compile-time
information. Maintainability refers to how easy and
straightforward it is to develop and maintain the algo-
rithm, within the framework of the compilation system.
Generality refers to whether the general case or merely
a simplified canonical case is implemented.
Our solution is a technique calledhigh-level code com-
position. Code composition is an approach related to
custom code generation. The code sequences to be
produced, calledcode constructs, appear external to
the compiler. The instructions for piecing together the
code sequences also appear externally, rather than be-
ing embedded in the compiler. These instructions are
calledcontrol constructs. Code constructs and control
constructs are bundled together into manageable-sized
chunks calledcode templates, in the same way that the
code in a typical program is a collection of manageable-
sized functions. The code templates form a specialized
language for directing the compilation process.
There is acomposition systemcoupled with the compiler
that uses these code templates to produce code. Fig-
ure 1 shows how the composition fits in with respect
to the rest of the compiler. This structure is important
for code reuse: the same composition system can be
used in several different compilers, for several different
problem domain. The composition system’s function is
to executethe code templates at compile time. Execut-
ing the code templates means following the instructions
specified by the control constructs. Because the control
constructs constitute a programming language, the com-
position system can be thought of as an interpreter of the
control constructs.

The composition system is invoked by the compiler,
which instructs the system to execute a template on a par-
ticular input. This input is a high-level programming lan-
guage operation, such as an array assignment statement.
The composition system then executes the template with
full knowledge of all compile-time information (for the
array assignment, information like number of array di-
mensions, dimension sizes, and distribution parameters).
It uses this knowledge to produce the correct code for the
input and to optimize the code.
The control constructs constitute a small language that
the composition system interprets at compile time. As
such, they must be designed as one would design a real
programming language, containing variables, condition-
als, procedure calls, and so forth. Furthermore, it is
important to choose a syntax that is easily distinguish-
able from the syntax of the code constructs. There are
several features that should be present in the control con-
structs: control procedures and procedure calls, control
variables, control variable assignment, a control test, a
control loop,and a concept calledvariable renaming. All
of these features but the last are fairly self-explanatory.
Variable renaming is a subtle point that is easy to over-
look, but is important in practice. Often we need to
compose the same template several times, but each com-
position needs a different set of variable names. For
example, we might want to recursively compose a ba-
sic “loop” template several times to create a loop nest,
but each loop induction variable name must be unique.
To allow this, a variable renaming operator allows new
variable names to be constructed during template exe-
cution, similar to Lisp’sgensym function, only more
controllable.
There is also the question of what, if any, relationship
the control and code constructs should have toward each
other. There are two styles in which the constructs can be
interleaved: thesyntacticstyle and thelexicalstyle. With
the syntactic style, code constructs and control constructs
are required to fully nest within each other. With the
lexical style, there is no such requirement.
Figures 2 and 3 demonstrate these two styles for writ-
ing templates, assuming C-like control constructs and
Fortran-like code constructs. The purpose of the code
in the figure is to produce ann-deep loop nest, where
n is a parameter passed to the template. The tem-
plate would be invoked through the control construct
call template(loopnest, n) . The lexical style
uses a control loop to generate theDOstatements and the
matchingEND DOstatements. The syntactic style has
to use a recursive template to form a loop nest, calling
itself recursively between theDOand theEND DO.
It is preferable for the code and control constructs to
interact through the syntactic style. The primary benefit
of the syntactic style is readability of the template code.

Input ProgramInput Program

Partition
input constructs

Integrate

Process all
constructs

constructs for
code composition

n
or

m
a

l
co

n
st

ru
ct

s

custom-generated code
Composition

System

Composition
System

Code TemplatesCode Templates

Output CodeOutput Code

C
O

M
P

IL
E

R

Figure 1: Integration of a composition system into a compiler.

TEMPLATE loopnest(depth)
{
 call_template(loopnest1, 0, depth);
}

TEMPLATE loopnest1(cur_depth, max_depth)
{
 if (cur_depth < max_depth) {
 DO I(cur_depth) = 1, 10
 call_template(loopnest1, cur_depth+1, max_depth);
 END DO
 } else {
 /* inner loop code goes here */
 }
}

TEMPLATE loopnest(depth)
{
 call_template(loopnest1, 0, depth);
}

TEMPLATE loopnest1(cur_depth, max_depth)
{
 if (cur_depth < max_depth) {
 DO I(cur_depth) = 1, 10
 call_template(loopnest1, cur_depth+1, max_depth);
 END DO
 } else {
 /* inner loop code goes here */
 }
}

Figure 2: A template for constructing a loop nest, using thesyntacticstyle.

TEMPLATE loopnest(depth)
{
 for (count=0; count<depth; count++) {
 DO I(count) = 1, 10
 }
 /* inner loop code goes here */
 for (count=depth-1; count>=0; count--) {
 END DO
 }
}

TEMPLATE loopnest(depth)
{
 for (count=0; count<depth; count++) {
 DO I(count) = 1, 10
 }
 /* inner loop code goes here */
 for (count=depth-1; count>=0; count--) {
 END DO
 }
}

Figure 3: A template for constructing a loop nest, using thelexicalstyle.

It is easier to develop and maintain code written with
this style, and it is also easier to automatically detect
syntactic mistakes in the template code. Using the lexical
style, it is much easier to make mistakes in matching
up the syntactic constructs in the generated code (e.g.,
the DOandEND DOin a Fortran loop). But with the
syntactic style, syntax errors are obvious when the code
or control constructs do not match up correctly, and can
be easily detected when the composition system parses
the templates.
It is important to stress that a composition language is
not meant to be programmed by the end user. Rather,
the composition system is a tool used by thecompiler
writer to facilitate the translation of complex high-level
operations into lower-level code.

4 Catacomb

To illustrate the usefulness of a composition system, we
have developed Catacomb, a composition system for
generating C code. As such, its code constructs have
the syntax and semantics of C constructs. The control
constructs are C-like, but since they interleave with the
code constructs using the syntactic style, the syntax is
slightly different from C.
To illustrate the combination of code and control con-
structs, Figure 4 shows an annotated set of Catacomb
templates. Its purpose is to construct a loop nest for
setting the elements of a multidimensional array. Be-
low the set of templates is a sample invocation and its
corresponding result. The example consists of three tem-
plates:

� loopnest : The entry point. It takes three input
arguments: the number of array dimensions (equiv-
alent to the depth of the loop nest to be produced),
the array whose elements are to be set, and the size
of the array dimensions (for the sake of simplicity,

all dimension sizes are assumed to be equal). The
template verifies thatn, the number of array dimen-
sions, is a compile-time constant, and then calls the
recursiveloopnest1 template.

� loopnest1 : The recursive template. This tem-
plate generates the outer loop, and then calls itself
recursively to generate the rest of the loop nest.
When it reaches the innermost loop, it generates the
inner-loop assignment statement.

� genlist : Creation of the array subscript list. Be-
cause the number of array dimensions is an input
parameter to theloopnest template, the subscript
list for the inner-loop array reference has to be
generated each time the template is called. The
genlist template is responsible for building the
subscript list.

This set of templates illustrates all of Catacomb’s control
constructs. Also in the figure is a sample invocation of
the entry template, and the resulting C code. This is a
complete working example of a Catacomb template and
its output, with the caveat that the actual declaration of
the input array is omitted; the array is assumed to be
declared elsewhere.
The template header declares the template and its argu-
ments, as well as template-local control variables, syn-
tactically similar to a C function declaration. Control
variables can be set using the:= control assignment
operator. Theinclude statement executes a control
function call, passing a list of arguments to a template.
By default, arguments are passed by value; thevar
keyword in the template argument declarations allows
arguments to be passed by value-result, making it pos-
sible for a template to return results to the caller. The
cif andcwhile are the control conditional and con-
trol loop, respectively; the condition must evaluate to a
compile-time constant.

TMPL loopnest(n,array,upper,init)
{
 cif (!CONSTANT(n))
 PRINT("Error: non-constant ", n);
 else
 include loopnest1(0,n,array,upper,init);
}

TMPL loopnest1(i,n,array,upper,init)
DEPTH 5;
LOCAL subs;
{
 cif (i < n) {
 int idx#i;
 for (idx #i =0; idx #i <upper; idx #i ++)
 include loopnest1(i+1,n,array,upper);
 } else {
 include genlist(n,idx,subs);
 A[subs] = init ;
 }
}

TMPL genlist(size, ivar, var list)
LOCAL i;
APPEND (i) ivar;
{
 list := MAKE_LIST(size,0);
 i := 0;
 cwhile (i < size) {
 list := REPLACE_LIST_ITEM(list,i,ivar);
 i := i + 1;
 }
}

TMPL loopnest(n,array,upper,init)
{
 cif (!CONSTANT(n))
 PRINT("Error: non-constant ", n);
 else
 include loopnest1(0,n,array,upper,init);
}

TMPL loopnest1(i,n,array,upper,init)
DEPTH 5;
LOCAL subs;
{
 cif (i < n) {
 int idx#i;
 for (idx #i =0; idx #i <upper; idx #i ++)
 include loopnest1(i+1,n,array,upper);
 } else {
 include genlist(n,idx,subs);
 A[subs] = init ;
 }
}

TMPL genlist(size, ivar, var list)
LOCAL i;
APPEND (i) ivar;
{
 list := MAKE_LIST(size,0);
 i := 0;
 cwhile (i < size) {
 list := REPLACE_LIST_ITEM(list,i,ivar);
 i := i + 1;
 }
}

External functions
for list manipulation

Recursive
include

Declaration of template
name, input arguments

Maximum recursion depth
Local control variable

Variable renaming

Output variable

Control
loop

Control
conditional

Control
function call

Automatic
variable renaming

include
 loopnest(3, A, 100,0);

include
 loopnest(3, A, 100,0);

int idx_0, idx_1, idx_2;
for (idx_0=0; idx_0<100; idx_0++)
 for (idx_1=0; idx_1<100; idx_1++)
 for (idx_2=0; idx_2<100; idx_2++)
 A[idx_0][idx_1][idx_2] = 0;

int idx_0, idx_1, idx_2;
for (idx_0=0; idx_0<100; idx_0++)
 for (idx_1=0; idx_1<100; idx_1++)
 for (idx_2=0; idx_2<100; idx_2++)
 A[idx_0][idx_1][idx_2] = 0;

Figure 4: A set of Catacomb templates for constructing a loop nest that sets values in a multidimensional array. Also
depicted are a sample invocation and the corresponding result.

Catacomb introduces the# operator for variable re-
naming. For example,x#3 evaluates to the vari-
ablex 3, y#4#5 evaluates to the variabley 4 5, and
foo#"bar" evaluates to the variablefoobar . (When
the right operand is an integer constant, Catacomb also
inserts an underscore character, “”, to help avoid vari-
able name conflicts.) To aid in the conversion of library
routines into templates, Catacomb provides theAPPEND
statement in the template header. With the statement
APPEND (i) x; in the header, every occurrence of
the variablex in the template body is automatically re-
placed withx#i .
In addition, Catacomb provides a number of control func-
tions, calledexternal functions, to performoperations not
possible using the basic C operators on which the con-
trol constructs are based. For example,CONSTANTis
used to test whether the input evaluates to a compile-time
constant. There is a default set of external functions in
Catacomb, and the set is easily extended (e.g., to add
functions that query the distribution parameters of HPF
arrays).
Catacomb implements several global optimizations [1,
8], as well as some nonstandard optimizations based on
bounds analysis. Bounds analysis is based on the obser-
vation that sometimes, even though the compiler cannot
determine a specific value for a variable or expression, it
can determine that it must fall within a certain range of
values. Catacomb uses bounds information to simplify
expressions where possible. It uses copy propagation
techniques to propagate the bounds across assignment
statements. Catacomb also extracts bounds information
from if conditions where possible. Because standard C
optimizers do not implement bounds analysis, and some
bounds information is available only within Catacomb
(e.g., the number of processors in an array distribution is
always positive), Catacomb needs to include these opti-
mizations.
There is an additional issue related to the Catacomb im-
plementation: the execution model of the interaction be-
tween control constructs and global optimizations. The
most obvious and straightforward way to integrate them
is to make them completely independent. This suggests
a two-phase execution approach: in the first phase, Cat-
acomb executes only the control constructs, leaving just
the code constructs, and in the second phase, the result-
ing code constructs are passed off to the global optimizer,
and then emitted. An attractive feature of the two-phase
approach is the simplicity in both semantics and imple-
mentation.
Unfortunately, under this model, code composition de-
cisions can only be made based on the values of control
variables. For example, consider the following template
code:

x=1; cif (x==1) f ... g

Note thatx is a code variable, not a control variable.
Under the two-phase execution model, even though it is
obvious that the value ofx is always 1 at thecif site,
the control constructs are executed before the global op-
timizations, and thus thecif has no way of knowing
that the value ofx is 1 at that point.
There are several alternative template programming
styles, execution models, and semantics for allowing
composition decisions to be made based on the values
of code variables (these are discussed in greater detail
elsewhere [20]). Most are insufficient and/or have un-
acceptably confusing semantics under different circum-
stances. The best alternative, although naturally the most
difficult to implement, is a single-phase execution model,
in which global optimizations are performed at the same
time as the control execution. The single-phase model
improves the efficiency of the generated code; the imple-
mentation details are beyond the scope of this paper.

5 Complex high-level operations

In this section, we consider two examples of complex
high-level operations,and demonstrate why code compo-
sition is superior to the standard compilation techniques
for these operations.

5.1 Array assignment statement

The array assignment statement is nontrivial to exe-
cute because of two properties: the elements of the
arrays are distributed across different processors, and
the sequence of elements indexing each array can be
an arbitrary arithmetic sequence. Evidence of the com-
plexity and importance of the array assignment state-
ment can be found in the number of different algo-
rithms that have been proposed for executing it effi-
ciently [21, 11, 7, 13, 26, 14, 2, 25]. The compact
syntax that hides the complexity of an efficient and com-
plete implementation is what makes the array assignment
statement particularly interesting.
The canonical form of the array assignment statement is

A[`A:hA: sA] = B[`B :hB : sB]:

The statement is equivalent to the pair of sequential loops
shown in Figure 5.
HPF arrays are allowed to have ablock-cyclicdistribu-
tion, in which fixed-size blocks of array elements are
distributed to the processors in a round-robin fashion
(see Figure 6). Two parameters characterize this distri-
bution: the block sizeb and the number of processors
P . The distribution defines anownership setfor each
processor, which is the set of array elements mapped to

j = "B
DO i = "A, hA, sA
 T[i] = B[j]
 j = j + sB
END DO

DO i = "A, hA, sA
 A[i] = T[i]
END DO

j = "B
DO i = "A, hA, sA
 T[i] = B[j]
 j = j + sB
END DO

DO i = "A, hA, sA
 A[i] = T[i]
END DO

Figure 5: Sample sequential code for the array assignment statementA[`A:hA: sA] = B[`B:hB : sB].

b bb

Processor p0 Processor p1 Processor p2

Figure 6: A block-cyclic data distribution in HPF, with three processors (P = 3) and block sizeb = 4.

the processor. Extremal cases of the block-cyclic distri-
bution include the block distribution, in which a single,
suitably large block is distributed onto each processor,
and the cyclic distribution, in which the block size is 1.
For the canonical array assignment statement, the chal-
lenge is to efficiently enumerate thecommunication set,
the set of array elements to be transferred between a
given pair of processors. The subscript triplets and the
two processors’ ownership sets determine the communi-
cation set. Implementations of the published algorithms
for the array assignment require on the order of hundreds
of lines of C code. For this reason, the array assignment
is considered to be a complex high-level operation.
Compiling the array assignment statement becomes
much more difficult when we extend the canoni-
cal case to the general case. There are three
extensions: multiple right-hand side terms (e.g.,
B[`B :hB : sB]+C[`C :hC : sC]), multidimensional refer-
ences (e.g,A[1:m][1:n]), and a mix of subscript triplets
and scalar indices (e.g.,A[x][`A:hA: sA]). While it is
conceptually simple to lift the restrictions on the canon-
ical example, it is much more difficult in practice to im-
plement the general case within a compiler framework.
Embedding an array assignment algorithm into a com-
piler severely degrades themaintainabilityof the algo-
rithm. It becomes difficult to write the code within the
compiler framework, and equally difficult to read and
modify the code. For this reason, it is tempting to use
the runtime library routine approach, writing the array
assignment algorithm in a straightforward fashion in a
runtime library.

Unfortunately, efficiency and generality suffer under the
runtime library routine approach. Efficiency suffers be-
cause in general, it is no longer possible to compile all
parameters that are known at compile time into the li-
brary. For the canonical array assignment statement,
there are 14 parameters: 3 parameters for a subscript
triplet, and 4 parameters for the distribution (block size,
number of processors, array size, and processor number),
all of which is multiplied by two because the statement
operates on two arrays. Usually, most of these parame-
ters are known at compile time, allowing more efficient
code to be generated.
Generalitysuffers in a runtime library as we extend the
canonical array assignment to the general case. This
generality has three aspects: multidimensional arrays,
multiple right-hand side terms, and scalar subscripts (as
opposed to subscript triplets). Implementing the array
assignment for multidimensional arrays requires iterat-
ing over a loop nest whose depth is proportional to the
number of dimensions. There are two ways to imple-
ment such a loop nest in a runtime library. The first is to
write a separate routine for each dimensionality, but this
method imposes a limit on how many dimensions can be
handled in an array, and it creates an exponential code
explosion in the amount of code to write in the library.
The other method is to write a function that recursively
calls itself for each successive level of the loop nest-
ing. However, this method lowers runtime efficiency by
precluding function inlining and by imposing additional
overhead in the inner loop.
Code composition is easily used to handle multidimen-

sional arrays. Using a recursive template like that of
Figure 4, the composition system generates a loop nest
customized for the specific input array assignment state-
ment. There are then no limits on the number of dimen-
sions, nor is there extra inner-loop overhead. In addition,
there are no exponential code explosion problems reduc-
ing maintainability.
A runtime library routine that handles multiple right-
hand side terms is even more difficult to write than one
for multidimensional arrays. Such a library must be able
to handle an arbitrary set of arithmetic operators describ-
ing the right-hand side expression. Without runtime code
generation techniques, the inner loop in which the com-
putation is performed is bound to have a great deal of
overhead. On the other hand, using code composition,
the code templates create a customized inner loop, into
which the specific operators are compiled. Once again,
the increased generality does not cause any additional
inner-loop overhead.
Although scalar subscripts generally do not cause ef-
ficiency problems in a runtime library, handling them
generally decreases the maintainability of the runtime
library. In fact, as each aspect of generality is added to
a runtime library, there is a corresponding decrease in
maintainability of the library. Code composition, on the
other hand, allows the templates to directly manipulate
subscript lists at compile time, providing generality with
little impact on maintainability.

5.2 Data transfer in irregular applications

The array assignment statement is used to performregu-
lar data transfer. The regularity of the transfer arises from
the regularity of the subscript triplet and the block-cyclic
distribution. Sparse and unstructured problems result in
irregular data transfer, due to irregular data distributions
and irregular access patterns (e.g., array references with
multiple levels of indirection). In an irregular problem,
the data transfer depends on values available only at run
time; thus runtime analysis is required.
The key to the runtime analysis is theinspector/executor
approach. This approach divides the runtime execution
into two parts, the inspector phase and the executor phase.
The inspector analyzes the global access pattern and cal-
culates which array elements each processor needs to
send, and where to send each element. The executor
carries out the data transfer and the computation. The
most effective means of executing irregular computa-
tions is through the use of the PARTI or CHAOS runtime
libraries [24, 17, 18], developed by Saltz et al. These
libraries contain sophisticated routines that help the pro-
grammer translate a sequential program into a parallel
program that uses the inspector/executor approach.
More recently, several parallelizing compilers [6, 30]

analyze the sequential loops in a program and automati-
cally produce parallel loops with calls to the appropriate
CHAOS routines. For many kinds of simple sequential
loops, this translation is fairly straightforward. However,
the translation becomes more complex as more levels of
indirection in the array references are added.
For compiling irregular programs that use multiple levels
of indirection in distributed arrays, Das, Saltz, and von
Hanxleden use a technique calledslicing analysis[9].
The idea behind slicing analysis is that for each loop
containing a distributed array reference with multiple
levels of indirection, that loop can be rewritten as several
loops, each of which contains only a single level of in-
direction. The resulting program, containing only single
levels of indirect array references, is then amenable to
parallelizing techniques in existing compilers for irregu-
lar problems.
Because of the complex structure of an irregular parallel
loop, the loop itself is not amenable to being implemented
purely with a runtime library routine. Instead, a com-
piler is needed to translate the loop into a sequential loop,
possibly with calls to a support library like CHAOS. The
complexity of the code to be generated usually leads the
compiler writer to sacrifice some amount of generality in
the solution. For example, many compilers only allow a
single level of indirection in array references, and exist-
ing compilers only allow a single dimension of an array
to be distributed.

6 Evaluation

Along with our implementation of Catacomb, we de-
veloped templates to implement several solutions to the
array assignment statement. These algorithms are known
as the CMU algorithm [22], the OSU algorithm [11], and
the LSU algorithm [26]. We divided our implementa-
tion into three components: preprocessing, architecture,
and algorithm. The algorithm component determines the
communication sets and packs/unpacks the communica-
tion buffers. The architecture component provides an
interface to the architecture-specific communication fea-
tures, such as the specific method for calling the send,
receive, and synchronization primitives. The prepro-
cessing component attempts to simplify the input array
assignment statement into a form that is closer to the
canonical array assignment statement. This division al-
lows an arbitrary algorithm to be combined with an arbi-
trary architecture to form a complete implementation.
There are three issues that we can evaluate: efficiency,
generality, and maintainability. Regarding efficiency,
Catacomb’s aggressive optimization framework results
in code whose quality is close to that of hand-tuned
code. Because this paper focuses more on the soft-

ware engineering issues, we omit a discussion of the
performance of the generated code; details are available
elsewhere [20].

Regarding generality, the code templates make it simple
and straightforward to support any regular array assign-
ment statement, containing an arbitrary number of di-
mensions, and arbitrary number of right-hand side terms,
and an arbitrary interleaving of scalar subscripts and sub-
script triplets. None of the implementations of the algo-
rithms we studied handle more than the canonical case,
yet the Catacomb template mechanism enables us to au-
tomatically extend the algorithm for the canonical case
to the general case. In fact, this is the first implemen-
tation of the array assignment that allows an arbitrary
algorithm to be coupled with an arbitrary architecture to
form a complete implementation.

Evaluating maintainability is largely a subjective task.
There is, however, an objective measurement that gives a
rough idea of the maintainability of our template frame-
work for the array assignment. This measurement con-
sists of looking at the breakdown of the template code
into control and code constructs, and comparing the
amount of code constructs to the amount of control con-
structs. One could argue that as the amount of con-
trol constructs increases, the actual code being produced
(i.e., the code constructs) becomes increasingly obscured
within the control constructs,and the maintainability cor-
respondingly decreases.

Figure 7 shows the breakdown of the CMU, OSU, and
LSU template code, as well as the MPI communica-
tion architecture template code. This measurement was
taken after removing comments and blank lines from
the templates, and should only be considered as an ap-
proximation. We consider the number of lines of control
constructs, code constructs, and external support libraries
(i.e., code from the original implementation that did not
need to be converted to template code). The breakdown
shows that the control constructs are relatively evenly
matched with the code constructs. In contrast, the origi-
nal implementation of the CMU algorithm in the Fx par-
allelizing compiler [23] required roughly 15,000 lines
of compiler code. Given that the CMU algorithm itself
contains less than 1,000 lines of code, we can see that
the vast majority of the 15,000 lines was dedicated to
compile-time control. Because the Catacomb templates
contain far less code devoted to compile-time control,
the implementation is far more maintainable.

7 Related work

7.1 Templates and macro processing

Code composition includes control constructs that allow
generalized computation at compile time. The concept
of compile-time compilation has been around for some
time. A widely-used example today is the C prepro-
cessor. Its computational power is extremely limited,
though; for example, looping is not possible, either di-
rectly or through recursion. Furthermore, its decoupling
from the compiler prevents anything like the single-phase
integrated execution model mentioned in this document
at the end of Section 4. A consequence that many C pro-
grammers may be familiar with is the inability to perform
preprocessor operations like#if sizeof(int)==4 .
PL/I [15] offers a more powerful preprocessor. However,
it also is incapable of a single-phase execution mode, and
neither it nor the C preprocessor is equipped to perform
structural queries on general expressions, a feature criti-
cal to code composition.

The C++ template system provides a simple way to gen-
erate new functions and methods, tailored to a specific
data type. Veldhuizen [27] has developed a mecha-
nism calledexpression templates, which allows the tem-
plate system to compose code in more complex ways,
based on the structure of input expressions. For exam-
ple, with the appropriate declaration ofx and defini-
tion of integrate , the statementdouble result
= integrate(x/(1.0+x), 0.0, 10.0); pro-
duces custom code at compile time to integrate the func-
tionx=(1+x) over the domain 0� x � 10. While this is
an interesting way to gain compile-time control over the
structure of an expression, in practice the specifications
end up being overly complex and unreadable.

There are other macro extensions to C (e.g., SaferC [16]
and Programmable Syntax Macros [29]) that offer many
of the same benefits as Catacomb. These systems are gen-
erally not extensible like Catacomb, and do not offer an
integrated single-phase execution model, thus precluding
the use of global optimizations in the macro processing
decisions.

Barrett et al. [5] use the concept of templates in a numer-
ical computation context. Templates are designed and
written in a high-level language to handle specific fea-
tures of iterative solvers for linear systems (e.g., sparse or
dense, convergence requirements, sequential or parallel,
data layout). At compile time, the system automatically
finds the right set of templates to match the needs of
the user. This kind of system fits well within the code
composition framework we describe.

Li
ne

s
of

 c
od

e

CMU OSU LSU MPI
0

100

200

300

400

500

600

700
639

675

0

226

511

59

283

100

165
187

63

0

Control constructs

Code constructs

Library code

Figure 7: Comparison of the number of lines of control constructs and code constructs in the Catacomb templates for
the array assignment, as well as lines of code in support libraries.

7.2 Partial evaluation

Like most optimizing compilation systems, Catacomb
and the concept of code composition are related to the
field of partial evaluation[12]. A partial evaluation sys-
tem takes as input a program in a source language, and
a set of known inputs to the program, and produces a
residual programspecialized for those particular inputs.
The code templates are similar to a two-level version of
an imperative input language. The control constructs,
including the control variables, explicitly have a static
binding time. The binding times of the code constructs
are analyzed online using the global optimization frame-
work, allowing some variables and statements to be clas-
sified as static, rather than the default of dynamic. Cata-
comb’s technique of bounds analysis has some similarity
tobounded static variation, in which the partial evaluator
can restrict an otherwise-dynamic variable to a finite set
of static values.
A notable difference between code composition and stan-
dard partial evaluation is the fact that control constructs
follow a different flow of control from the code con-
structs. For example, a control assignment statement in
the body of a loop is executed exactly once, regardless of
the number of loop iterations at run time. This means that
the straightforward translation of control constructs into
their correspondingcode constructs doesnotpreserve the
original semantics, in contrast to standard partial evalua-
tion. Future work in this direction is to explore the issues

of whether the Catacomb model (which is similar to the
C preprocessor model) or the standard partial evaluation
model presents the user with more “natural” semantics
and ease of use, and whether there is in fact a realistic
situation in which Catacomb’s semantics are necessary.

7.3 Runtime code generation

Dynamic approaches attempt to improve the code at run
time, and dynamic methods have lately received renewed
attention (e.g., [3]). If the program notices that some
parameter always has the same value,a runtime optimizer
can customize the program by working with the known
parameter values. Since these values are known, some
tests may be resolved, or special instructions chosen,
and such transformations have the potential to improve
performance. However, dynamic methods too face a
number of challenges: for one, the system must ensure
that the overhead spent on detecting the occurrence of
a common scenario is bounded and in relation to the
expected benefits.
Runtime code generation should be used as an additional
performance enhancement to code composition, rather
than as a replacement. Optimizations should be per-
formed in advance by the compiler whenever possible.
In addition, using runtime code generation in place of
code composition requires a full runtime library for the
problem to be designed, which still trades off maintain-
ability and robustness. (Efficiency is ignored, since it

would be the responsibility of the runtime code genera-
tion system to provide runtime efficiency.)

8 Concluding remarks

We have identified a class of high-level languages formed
by adding complex high-level operations to a base lan-
guage. For these languages, traditional compilation
techniques are inadequate. The traditional techniques,
namely custom code generation and runtime library rou-
tines, fall short because custom code generation offers
efficiency and robustness at the cost of maintainability,
while runtime library routines offer maintainability at
the cost of efficiency and robustness. We developed a
new method called code composition and implemented a
code composition system to demonstrate the practicality
of this idea.
Code composition is under the control of the imple-
mentor of the complex operations, who uses a domain-
specific language for directing the compilation process.
Programmable code composition provides the union of
the benefits of the traditional approaches: the compo-
sition system optimizes the code and thereby ensures
efficiency, yet the composition templates are concise.
We designed and implemented Catacomb, a system for
code composition, and explored several issues relating
to the automatic optimization of the code it produces.
We implemented several algorithms for the HPF array
assignment statement in the context of Catacomb, and
used the implementation to evaluate several aspects of
efficiency, maintainability, and robustness. In our expe-
rience, use of a code composition system is a good way
to control the translation of complex operations and pro-
vides for an elegant and effective approach to producing
high quality code without undue implementation cost.

References

[1] A. Aho, R. Sethi, and J. Ullman.Compilers, Prin-
ciples, Techniques, and Tools. Addison Wesley,
1986.

[2] C. Ancourt, F. Coelho, F. Irigoin, and R. Keryell.
A linear algebra framework for static HPF code
distribution. Technical Report A-278-CRI, Cen-
tre de Recherche en Informatique,École Nationale
Suṕerieure des Mines de Paris, November 1995.

[3] J. Auslander, M. Philipose, C. Chambers, S. Eggers,
and B. Bershad. Fast, effective dynamic compila-
tion. InProceedings of the ACM SIGPLAN’96 Con-
ference on Programming Language Design and Im-

plementation, pages 149–159, Philadelphia, Penn-
sylvania, May 1996. ACM.

[4] H. Bao, J. Bielak, O. Ghattas, D.R. O’Hallaron,
L.F. Kallivokas, J.R. Shewchuk, and J. Xu. Earth-
quake ground motion modeling on parallel comput-
ers. InSupercomputing ’96, Pittsburgh, Pennsylva-
nia, November 1996.

[5] R. Barrett, M. Berry, T.F. Chan, J. Demmel, J. Do-
nato, J Dongarra, V. Eijkhout, R. Pozo, C. Romine,
and H. Van der Vorst.Templates for the Solution
of Linear Systems: Building Blocks for Iterative
Methods, 2nd Edition. SIAM, Philadelphia, Penn-
sylvania, 1994.

[6] Z. Bozkus, A. Choudhary, G. Fox, T. Haupt,
S. Ranka, and M.-Y. Wu. Compiling Fortran
90D/HPF for distributed memory MIMD comput-
ers.Journal of Parallel and Distributed Computing,
21(1):15–26, April 1994.

[7] S. Chatterjee, J. Gilbert, F.J.E. Long, R. Schreiber,
and S.-H. Teng. Generating local addresses and
communication sets for data-parallel programs.
Journal of Parallel and Distributed Computing,
26(1):72–84, April 1995.

[8] F. Chow.A Portable Machine-Independent Global
Optimizer – Design and Measurements. PhD thesis,
Stanford University, 1984.

[9] R. Das, J. Saltz, and R. von Hanxleden. Slicing
analysis and indirect accesses to distributed arrays.
In Proceedings of the Sixth Workshop on Languages
and Compilers for Parallel Computing, volume 768
of Lecture Notes in Computer Science, pages 152–
168, Portland, Oregon, August 1993. Springer Ver-
lag.

[10] High Performance Fortran Forum. High Perfor-
mance Fortran language specification version 1.0,
May 1993.

[11] S.K.S. Gupta, S.D. Kaushik, C.-H. Huang, and
P. Sadayappan. Compiling array expressions for ef-
ficient execution on distributed-memory machines.
Journal of Parallel and Distributed Computing,
32(2):155–172, February 1996.

[12] N.D. Jones, C.K. Gomard, and P. Sestoft.Partial
Evaluation and Automatic Program Generation.
International Series in Computer Science. Prentice
Hall, 1993.

[13] K. Kennedy, N. Nedeljkovic, and A. Sethi. A linear-
time algorithm for computing the memory access
sequence in data-parallel programs. InProceedings

of the Fifth ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming, pages
102–111, Santa Barbara, California, July 1995.

[14] S. Midkiff. Local iteration set computation for
block-cyclic distributions. Technical Report RC-
19910, IBM T.J. Watson Research Center, January
1995.

[15] S. Pollack and T. Sterling.A Guide to PL/I and
Structured Programming (Third edition). Holt,
Rinehart, and Winston, New York, 1980.

[16] D.J. Salomon. Using partial evaluation in support
of portability, reusability, and maintainability. In
Tibor Gyimóthy, editor,Proceeding of the Sixth In-
ternational Conference on Compiler Construction,
volume 1060 ofLecture Notes in Computer Sci-
ence, pages 208–222, Link̈oping, Sweden, April
1996. Springer Verlag.

[17] J. Saltz, R. Ponnusamy, S.D. Sharma, B. Moon, Y.-
S. Hwang, M. Uyasl, and R. Das. A manual for the
CHAOS runtime library. Technical Report CS-TR-
3437, Department of Computer Science, University
of Maryland, March 1995.

[18] S.D. Sharma, R. Ponnusamy, B. Moon, Y.-S.
Hwang, R. Das, and J. Saltz. Run-time and
compile-time support for adaptive irregular prob-
lems. InProceedings of Supercomputing ’94, pages
97–106, Washington, DC, November 1994.

[19] J.R. Shewchuk and O. Ghattas. A compiler
for parallel finite element methods with domain-
decomposed unstructured meshes. In David E.
Keyes and Jinchao Xu, editors,Proceedings of the
Seventh International Conference on Domain De-
composition Methods in Scientific and Engineering
Computing, volume 180 ofContemporary Math-
ematics, pages 445–450. American Mathematical
Society, October 1993.

[20] J. Stichnoth.Generating Code for High-Level Op-
erations through Code Composition. PhD thesis,
School of Computer Science,Carnegie Mellon Uni-
versity, August 1997.

[21] J. Stichnoth, D. O’Hallaron, and T. Gross. Gener-
ating communication for array statements: Design,
implementation, and evaluation.Journal of Par-
allel and Distributed Computing, 21(1):150–159,
April 1994.

[22] J.M. Stichnoth. Efficient compilation of array state-
ments for private memory systems. Technical Re-
port CMU-CS-93-109, School of Computer Sci-
ence, Carnegie Mellon University, February 1993.

[23] J. Subhlok, J. Stichnoth, D. O’Hallaron, and
T. Gross. Exploiting task and data parallelism on a
multicomputer. InProceedings of the Fourth ACM
SIGPLAN Symposium on Principles and Practice
of Parallel Programming, pages 13–22, San Diego,
California, May 1993.

[24] A. Sussman, G. Agrawal, and J. Saltz. A manual for
the multiblock PARTI runtime primitives, revision
4.1. Technical Report CS-TR-3070.1, University
of Maryland, December 1993.

[25] R. Thakur, A. Choudhary, and G. Fox. Runtime ar-
ray redistribution in HPF programs. InProceedings
of the 1994 Scalable High Performance Computing
Conference, pages 309–316, Knoxville, Tennessee,
May 1994.

[26] A. Thirumalai and J. Ramanujam. Efficient com-
putation of address sequences in data-parallel pro-
grams using closed forms for basis vectors.Journal
of Parallel and Distributed Computing, 38(2):188–
203, November 1996.

[27] T. Veldhuizen. Expression templates.C++ Report,
7(5):26–31, June 1995.

[28] J. Webb. Steps toward architecture-independent
image processing. IEEE Computer Magazine,
25(2):21–31, February 1992.

[29] D. Weise and R. Crew. Programmable syntax
macros. InProceedings of the ACM SIGPLAN’93
Conference on Programming Language Design
and Implementation, pages 156–165, Albuquerque,
New Mexico, June 1993. ACM.

[30] H. Zima, P. Brezany, B. Chapman, P. Mehrota, and
A. Schwald. Vienna Fortran – a language specifica-
tion version 1.1. Technical Report ACPC/TR 92-4,
Austrian Center for Parallel Computation, March
1992.

