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Abstract

Domain-speci�c languages (DSL) have many po-

tential advantages in terms of software engineering

ranging from increased productivity to the applica-

tion of formal methods. Although they have been

used in practice for decades, there has been little

study of methodology or implementation tools for

the DSL approach. In this paper we present our

DSL approach and its application to a realistic ap-

plication: video display device drivers.

The presentation focuses on the validation of our

proposed framework for domain-speci�c languages,

which provides automatic generation of e�cient im-

plementations of DSL programs. Additionally, we

describe an example of a complete DSL for video

display adaptors and the bene�ts of the DSL ap-

proach in this application. This demonstrates some

of the generally claimed bene�ts of using DSLs: in-

creased productivity, higher-level abstraction, and

easier veri�cation. The DSL has been fully imple-

mented with our approach and is available 1.

1 Introduction

In contrast to a general purpose language (GPL),
a domain-speci�c language (DSL) is a language that
is expressive uniquely over the speci�c features of
programs in a given problem domain. It is often
small and declarative; it may be textual or graphic.
DSLs have also been called application domain lan-

guages [6], little or micro-languages [2], and are re-
lated to scripting languages [18]. DSLs have been
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used in various domains such as �nancial prod-
ucts [1], telephone switching systems [11, 16], op-
erating systems [19], and robot languages [5]. Lan-
guages such as SQL, TEX and shells may also be
considered DSLs.

Software architectures based on DSLs primarily
aim at achieving faster development of safer appli-
cations. Because constructs in a DSL abstract key
concepts of the domain, the developer (that does
not have to be a skilled programmer) can write
more concise and higher level programs in less time.
Programming with a DSL also contributes to safety
because it is less error-prone than with a GPL. Ad-
ditionally, high-level constructs translate, in prac-
tice, into the reuse of validated components. More-
over, when the language is small and speci�c, it is
possible and easier to build automatic validation
and test generation tools. For example, termina-
tion properties may be considered if the language
is not Turing-complete.

A DSL may also be seen as a way to parameter-
ize a generic application or to designate a member
of a program family. A program family is a set of
programs that share enough characteristics that it
is worthwhile to study them as a whole. In fact,
designing a DSL actually involves the same com-

monality analysis [11] that is used in the study of
a program family: assumptions that are true for all
members of the family and variations among mem-
bers. This process should be performed both by
domain experts and software engineers.

Though actual uses of DSLs record bene�ts such
as productivity, reliability and 
exibility [15], im-
plementing DSLs is often di�cult and costly [7].
There are two main approaches to language im-
plementation, each with signi�cant disadvantages:
those that are based on compilers (translation from



the DSL to a target machine or GPL) are not easy
to write or to extend, and extensions require skills
in compiler technology that cannot be expected
from \domain developers"; those that are based on
interpreters are easier to write or to extend but are
less e�cient [4]. This issue also impacts maintain-
ability [21] because complexity in the compiler de-
feats the software engineering goals of using a DSL.
Depending on objectives, either one or the other
style of implementation is thus chosen: application
generator or interpreter.
We have proposed a framework for the devel-

opment of application generators that reconciles
both alternatives [20]. It relies on partial evalua-

tion [12, 14], a program transformation technique
that is well suited to automatically transform in-
terpreters into compilers [13]. Partial evaluation
exploits known information about a program's in-
put to be able to evaluate parts of a program in
advance. Given a program and the known portion
of its input, a partial evaluator produces a special-
ized program. In this new semantically equivalent
program, computations depending on known values
have already been performed.
Our framework is structured into two levels. The

�rst level consists of the de�nition of an abstract
machine, whose operations can be viewed as generic
components that capture important operations of
the domain. The second level is the de�nition of
a micro-language in terms of the abstract machine
operations, thus providing a high level interface to
the abstract machine. The use of partial evalua-
tion in our framework is twofold, corresponding to
each level: it maps an abstract machine into an ef-
�cient implementation, and a micro-program into
an abstract machine program. The development of
this framework is supported by industry partners
for realistic applications.
This paper describes a realistic application of our

framework for the automatic generation of video
card drivers. This domain naturally forms a pro-
gram family, for which DSLs are well suited. We
present the design and de�nition of a complete
DSL for video display adaptors. Concerning per-
formance, we show how partial evaluation can yield
e�cient drivers. Concerning safety, we insure that
all generated drivers can be proven to terminate
and de�ne some analyses that can greatly improve
their reliability.
Our contributions can be summarized as follows:

� We validate our framework of application gen-
erator design on a realistic example: video card
device drivers.
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Figure 1: Generic program instantiation.

� We de�ne a DSL for generating such drivers.
This restricted language allows program veri�-
cations.

� We provide a 
exible implementation of this
language that generates e�cient video drivers.

� We illustrate the bene�ts of DSLs as a software
architecture.

The rest of the paper is organized as follows. Sec-
tion 2 describes our framework for application gen-
erator design in further detail. Section 3 presents
the domain of video card drivers. Section 4 de-
scribes the two-level design: abstract machine and
graphics adaptor language. Section 5 discusses the
results of applying this approach to the domain of
video drivers. Section 6 summarizes the results of
this experiment and identi�es future work, both for
the language and the framework.



2 The DSL Framework

In a previous paper [20] we presented an ap-
proach to generic software design. In this approach,
we consider the implementation of a program family
as a generic program. The parameterization of this
generic program corresponds to variations within
the program family and can be represented using
a micro-language. A micro-language is a small re-
stricted DSL which formally de�nes the program
family (an instance of the program family is speci-
�ed by a micro-program) and is restricted to allow
analysis. The generic program implementing a pro-
gram family is constructed in two layers, and au-
tomatic instantiation is performed by program spe-
cialization (i.e., partial evaluation), as illustrated
in Figure 1. Together, the two applications of pro-
gram specialization provide a complete path from
a micro-program to an e�cient implementation.

The abstract machine is the de�nition of the fun-
damental operations of the domain that are used to
implement members of the program family. The ab-
stract machine is implemented as a highly param-
eterized library, whose parameters represent oper-
ational variations within the domain. Any given
abstract machine program provides values for oper-
ation parameters that indicate the desired function-
ality. A partial evaluator can eliminate the gener-
icity from the library functions using these known
values to produce an e�cient implementation, as
shown in the bottom section of Figure 1.

The micro-language captures the variations
within the program family in terms of what fam-
ily members do, as opposed to how family mem-
bers operate, which is captured by the abstract ma-
chine. The micro-language is implemented by an
interpreter, which invokes abstract machine opera-
tions by calling the corresponding library subpro-
grams. The micro-language provides an interface
to the abstract machine, and the interpreter imple-
ments a mapping from a micro-program to the ab-
stract machine. This mapping depends only on the
micro-program such that, given a micro-program, a
partial evaluator, with the micro-program as known
input, eliminates all operations in the interpreter
leaving only the remaining calls to the abstract
machine. Thus, a partial evaluator can produce
an abstract machine program from a given micro-
program, as shown in the top section of Figure 1.

For the application of this approach we use a par-
tial evaluation system named Tempo [8]. Tempo
is a fully automatic partial evaluator for C. Users
of Tempo specify inputs to the entry point and

global variables as either known or unknown. In
our approach, we insure the successful application
of partial evaluation via the separation of the ab-
stract machine and the interpreter, each having its
on state represented in C by global variables. The
interpreter state is speci�ed as known and the ab-
stract machine state is speci�ed as unknown. The
following simple rules guarantee correct separation
and thus successful automatic partial evaluation.

1. Interpreter subprograms may only use vari-
ables of the abstract machine state as actual
parameters of a subprogram call.

2. Abstract machine subprograms may not con-
tain any references to the interpreter state.

3 Video Driver Domain

This section introduces the domain of the ex-
periment: video adaptor device drivers. A video

adaptor (or video card) is a hardware component of
a computer system which stores and produces im-
ages on the display. Video cards consist of a frame
bu�er, and a graphics controller. The frame bu�er
is a bank of high speed memory used to store the
display data, including the currently visible image.
The graphics controller consists of two main func-
tionalities: producing the video signal for the dis-
play, and providing access to the frame bu�er to
create the display image. Graphics controllers all
provide similar sets of functionalities (e.g., chang-
ing the display resolution).
Although all adaptors provide similar functional-

ities, their programming interface is di�erent from
vendor to vendor, and often between successive
models of the same adaptor. This is true of most
devices, and is resolved by the use of device drivers.
Device drivers generally consist of a library of func-
tions that implement a standard API that is �xed
for all devices. Thus the driver's purpose is to
translate the standard API operations into the op-
erations required by a speci�c device, providing a
uniform interface to the operating system and ap-
plications.
Video device drivers provide two main services

to the operating system and applications. The �rst
is to put the graphics display into di�erent video
modes. A video mode (or graphics mode) is de�ned
by the horizontal and vertical resolution, the num-
ber of colors per pixel and screen refresh rates. The
second service provided by the driver is to provide
access to hardware drawing operations. For exam-



ple, most video cards provide line drawing hard-
ware, which draws lines on the display at a much
faster rate than would be possible in software.

4 Application of the Approach

We have applied the approach described in sec-
tion 2 to a family of device drivers for video adap-
tors. We considered an already existing set of de-
vice drivers from the XFree86 X Window server
created by The XFree86 Project, Inc. [23]. The
XFree86 SVGA server is a generic X Window
server, written in C, supporting several di�erent
cards using a device driver architecture. This server
contains drivers for cards from about 25 di�er-
ent vendors. Additionally, each driver supports as
many as 24 di�erent models from the same com-
pany. This structure alone indicates that there is
enough similarities between models of the same ven-
dor to implement them as a generic program, but
that it is not reasonable to do so for multiple ven-
dors. This may be due to e�ciency, but more likely
is due to the lack of a methodology to handle larger
scales of variation.

The remainder of this section details the appli-
cation of our approach to the construction of an
application generator of video drivers (for di�erent
vendors) for the X Window server. We �rst dis-
cuss the de�nition of an abstract machine for the
domain, identi�ed by studying the existing device
drivers. Then we describe a DSL for generating
video drivers and related design issues.

4.1 The Abstract Machine

The abstract machine for the video driver domain
was designed primarily by studying the implemen-
tation of existing drivers. The abstract machine
was also iteratively re�ned during the development
of a DSL. We identi�ed three patterns which ap-
peared in the existing drivers that could be used to
guide the de�nition of abstract machine operations.

Operation pattern. The �rst of these patterns
corresponds to simple atomic operations in the ab-
stract machine. There are two forms in which this
pattern appears: as repeated fragments of code that
di�er only by data, and as fragments which per-
form the same treatment but have a small number
of variations on how it is performed. In the �rst
case, the fragments are often already identi�ed and
placed in a library or de�ned as a macro. These

fragments directly correspond to abstract machine
operations.
As an example of the second case, the device

drivers are dominated by occurrences of code frag-
ments which read or write data from or to the video
card. Communication with hardware devices can
be handled in a small number of di�erent ways, and
the scheme chosen varies from vendor to vendor.
There were several occurrences of three of these dif-
ferent schemes of I/O, di�ering only in certain data
(e.g., the I/O address). These fragments were cap-
tured in a single abstract machine operation de�ned
as follows:

write_port(port_number: integer,

index: integer,

indexed: boolean,

pair: boolean,

pci: boolean)

This instruction is parameterized by 
ags to specify
which scheme to use (indexed, paired, or PCI), and
the data used by the scheme to perform the I/O
(port number, index).

Combination of operations pattern. The sec-
ond type of pattern recognized can be identi�ed
as expressions or combinations of operations. This
pattern is characterized by expressions or combina-
tions of operations that have no commonalities be-
tween members of the family. For example, in the
device drivers there are sequences of shifts and log-
ical expressions which are di�erent for every driver.
Although there are no commonalities in those ex-
pressions from one driver to the next, we can iden-
tify a su�cient set of operations to construct any
instance. The selection of these operations depends
not only on the existing samples, but on an un-
derstanding of the domain, and speculation on the
future of the domain.
The following code fragment shows an example

of this pattern from one of the existing drivers.

outb(0x3C2, ( inb(0x3CC) & 0xF3) |

((no << 2) & 0x0C));

outb(OTI_INDEX, OTI_MISC);

outw(OTI_INDEX, OTI_MISC |

((( inb(OTI_R_W) & 0xDF ) |

(( no & 4) << 3)) << 8));

This portion of the driver maps the value of no

onto the appropriate registers in order to select
the clock. For a given driver, there may be any
number of reads, writes, shifts and logic operations,
but no other operations. Thus, we can implement



any given driver with a sequential composition of a
small number of abstract machine operations.

Control pattern. The last pattern consists of
code fragments that share a common control struc-
ture, but contain code fragments matching the com-
bination of operations pattern previously discussed.
For example, consider a function of the device
driver which is used to save, restore, and set the
clock value on the video card.2 This function has
the following form:

Bool ClockSelect(int no)

{

switch (no) {

/* Save the clock value. */

case CLK REG SAVE:

Series of I/Os and logic operations.

break;

/* Restore the saved clock value. */

case CLK REG RESTORE:

A second series of I/Os and logic operations.

break;

/* Set the clock value to no. */

default:

A third series of I/Os and logic operations.

}

}

The series of I/Os and logic operations in this
example follow the combination of operations pat-
tern, and can be constructed by sequences of ab-
stract machine operations.
For this pattern, we introduce higher-order ab-

stract machine operations. That is, abstract ma-
chine operations which take sequences of abstract
machine operations as parameters. These param-
eters correspond to the contained fragments that
follow the combination of operations pattern. The
example above is captured by the following abstract
machine operation:

change_clock(save_clk: instructions,

restore_clk: instructions,

set_clk: instructions)

Conclusion. Using these patterns with existing
examples, we were able to de�ne an abstract ma-
chine that could express the behavior of any par-
ticular device driver. Although they were typically
easy to recognize, it is important to realize that it

2Video cards have programmable clocks which can be set

to di�erent frequencies to control the video refresh rate.

was necessary to abstract from certain details in
order to see the di�erent patterns. E.g., in our ex-
periment, the examples were mostly written by dif-
ferent people, who had di�erent styles of program-
ming, and sometimes took di�erent approaches to
the same problem. In this situation, it was neces-
sary to determine if the same functionality could
be implemented with a common structure, which
happened to always be the case.

4.2 The GAL Language

In this section we present the Graphics Adap-
tor Language (GAL) for video device driver spec-
i�cation. In order to understand where the lan-
guage comes from, it is important to know what
the essential variations are among video adaptors.
The remainder of the section describes the varia-
tions that exist between cards and the correspond-
ing constructs in GAL that capture them. A com-
plete example of a GAL speci�cation is described
in Appendix A.

4.2.1 Ports, Registers, Fields and Params

A video adaptor is controlled by setting certain pa-
rameters stored in hardware registers of the card.
These registers have addresses. A single parameter
may be stored in multiple registers and only certain
bits of the registers may be used. Thus the layout
of the parameters on the register space is the �rst
major variation between cards.
Access to the registers are provided through var-

ious communication schemes. As mentioned in the
previous section, there is a small number of di�er-
ent schemes that can be used to communicate with
a hardware device from a program. The choice of
communication scheme is the second major varia-
tion between cards. We de�ne several concepts to
describe these notions of communication and regis-
ter layout.

Ports. The �rst concept is the port which is used
to de�ne a point of communication. For example,
the declaration

port svga indexed:=0x3d4;

de�nes a port named svga, which uses an indexed
communication scheme at the I/O address 0x3d4.
This is a standard port used by many video cards.

Registers. A second concept is provided by the
register declaration, which de�nes how to access



Standard �eld Purpose

HTotal, Horizontal resolution
HEndDisplay, settings.
HStartBlank,
HEndBlank
VTotal, Vertical resolution
VEndDisplay, settings.
VStartBlank,
VEndBlank
LogicalWidth Width of virtual screen.
StartAddress Display start address.
ClockSelect Clock selection.
Standard param Purpose

RamSize Frame bu�er memory size.
LinearBase Address of linear space.
LinearAperture Size of linear space.
NoClocks Number of �xed clocks.

Table 1: Prede�ned �elds and params.

registers on the card using the de�ned ports. For
example, the declaration

register ChipID:=svga(0x30);

de�nes a register ChipID, which is accessed through
port svga, at index 0x30.

Fields. The next concept is speci�ed with a �eld
declaration. The �eld declaration de�nes where a
logical value is stored (in which bits of what regis-
ters) and a mapping from logical values to actual
stored values. For example, the declaration

field LogicalWidth:=

Control2[5..4] # Offset scaled 8;

de�nes a �eld LogicalWidth, which is stored in bits
5 and 4 of the Control2 register and the entire
Offset register. Additionally, the mapping clause
(scaled 8) speci�es that the value stored in the

register is 1

8

th

the actual value. The mapping is
needed because cards often store a value which is
some function of the �eld's actual value.

Parameters. Related to the �eld declaration, the
parameter declaration is the de�nition of a constant
value that is either explicit in the speci�cation or
read from the card during con�guration. An exam-
ple of the former case would be

param NoClocks:=4;

The majority of a GAL speci�cation consists of
the de�nition of �elds for standard values that are
used to control the video adaptors and parameters
which determine certain features of the card (e.g.,
size of the frame bu�er). Table 1 lists some of these
prede�ned �eld and parameter names that can be
de�ned in GAL speci�cations.

4.2.2 Clocks

A third major variation between di�erent adaptors
is the use of clocks. All adaptors have a clock which
controls the frequency at which data is sent to the
display. This frequency needs to be changed for dif-
ferent resolutions, and there are two approaches to
doing this. One is to have a �xed number of fre-
quencies to choose from, and the other is to have
a programmable chip that can generate many fre-
quencies by changing its parameters. The cards
with a �xed number of clocks vary in the number
of clocks and the frequencies provided, while the
cards with a programmable clock vary in how the
clock is programmed and its range of frequencies.

A card that has �xed clocks can be speci�ed
by de�ning a parameter NoClocks and a �eld
ClockSelect. The NoClocks constant de�nes the
number of clocks available, and the ClockSelect

�eld de�nes the �eld which selects the clock.

For cards that have programmable clocks, a spe-
cial construct is de�ned to specify how to program
the clock. For example,

clock f3 is 14318*f3M / (f3N1*f3N2);

de�nes a clock named f3, which is programmable
according to the equation on the right. The equa-
tion de�nes the frequency generated based on pro-
grammable values, which are de�ned elsewhere by
the three �elds f3M, f3N1, and f3N2. Given the
desired clock frequency, the device driver uses the
speci�ed equation to �nd values of f3M, f3N1, and
f3N2 which approximate this frequency as closely
as possible.

4.2.3 Identi�cation

The fourth major variation observed among video
cards is how the card is identi�ed. This information
is required for systems which dynamically con�gure
themselves to use whatever card is available at that
time. Card identi�cation uses a small number of
predicates which test the card and follows a decision
tree to decide if the card is supported by the driver



and which one.3 Thus, we de�ne an appropriate
construct for specifying this type of decision tree in
GAL.
The following is an example of this identi�cation

construct.

identification begin

1: writable(Segment) => (true=>step 2);

2: Chip_id=>(1=>oti087,others=>step 3);

3: Chip_id2=>(0=>oti037c, 2=>oti067,

5=>oti077);

end identification;

This example identi�es one of four models (oti037c,
oti067, oti077, oti087) of cards that use an OTI
graphics controller. The construct de�nes a series
of steps numbered 1-3 to the left. At each step,
the expression to the left of the arrow is evaluated
and the result is compared to the list of decisions
on the right. If no decision is matched on the right,
then identi�cation fails and indicates that the driver
does not support the card. Possible decisions are to
identify the card or proceed to another step. Step
2, for example, reads the value of the Chip id reg-
ister, and if the result is 1, identi�es that an oti087
is present, otherwise proceeds to step 3 for further
tests. The stepwise syntax re
ects the way diagnos-
tic procedures are commonly described in manuals.

4.2.4 Modes

The �nal major variation between cards is that
many adaptors require some 
ags be set under cer-
tain operating conditions. These are referred to as
modes of operation in GAL, and are de�ned with
the mode construct. The mode construct is used to
specify a predicate and a sequence of assignments
to �elds, which enable or disable the corresponding
mode of operation for the video card. For example,

mode HighRes:=HTotal>800;

enable HighRes sequence is Control[5]<=1;

This mode declaration de�nes a mode, HighRes,
which indicates that a '1' must be stored in bit 5
of Control in order to use a video mode in which
the horizontal resolution is greater than 800 pixels.
In our implementation, the predicate HTotal>800

is tested after changing the video mode; if it is true,
the sequence Control[5]<=1 is executed.
In addition to user de�ned modes, there are also a

few built-in modes. The built-in modes have �xed
predicates, but allow the speci�cation of enabling

3One device driver often supports multiple cards from the

same vendor.

and disabling sequences. For example, the built-in
mode SVGAMode is true for all graphics modes and
thus the user-de�ned enabling sequence is executed
each time the mode is changed.

4.2.5 Run-time variations

In addition to the variations that exist between
cards, there are variations within a single driver
that depend on conditions not known until run-time
(of the driver). For example, some video adaptors
operate di�erently depending on the hardware bus
utilized (AT, PCI, or VLB). Additionally, if one
wants to build a single device driver for a number
of models from the same vendor, the variation be-
tween those models has to be chosen at run-time.
In GAL, the cases construct is used to describe
this type of variation.
As an example, the following statement is used

to de�ne the clocks for di�erent models of S3 cards.

cases

for S3_TRIO32,S3_TRIO64

field ClockSelect:=Miscr[3..2];

for others

field ClockSelect:=Control[3..0];

end;

This example speci�es that if the card identi�ed at
run-time is a S3 TRIO32 or S3 TRIO64, then the
card has four �xed clocks selected by bits 3 and 2 of
the Miscr �eld. All other cards have sixteen clocks
selected by bits 3 down to 0 of the Control �eld.

4.3 Design of GAL

This section discuses some of the many forces
that in
uenced the design of GAL. The �rst two
subsections describe two main inputs to the design
process: a de�nition of variations in the family and
knowledge about the domain. In our case, the do-
main knowledge came from existing documentation
used by domain engineers. Other important issues
are the level of abstraction, the level of restriction,
readability, maintainability, etc. While the level of
abstraction and the level of restriction are of par-
ticular importance for DSLs, issues like readability
and maintainability apply to both DSLs and GPLs

4.3.1 De�ning Variations

One of the main inputs to the design of a DSL is a
description of the variations that exist among the
target set of applications. The de�ned variations



imply requirements on the DSL in order to distin-
guish among instances of the program family. In
our case, these variations came from a study of the
documentation of existing video cards. In addition
to studying di�erent cards, inspection of the exist-
ing device drivers provided a more detailed source
of variations at the implementation level. For ex-
ample, given that there were a small number of
ways to communicate, which varied among cards,
there must be some construct in GAL speci�ca-
tions, which would allow the selection of the correct
communication scheme. Some of this information
can also be extracted from the parameters of the
abstract machine operations.

4.3.2 Domain knowledge

The other main input to the DSL design process is
knowledge of the domain in terms of the abstract
objects or concepts and terminology used in the
domain. This knowledge may come from a domain
expert or from existing natural language speci�ca-
tions, as in our experiment. This is an important
input because it leads to a more abstract user-level
DSL. An appropriate terminology provides a DSL
that is familiar to people of the domain. The identi-
�ed abstract objects that are a�ected by variations
in the program family provide starting points for
declarative constructs.
In this experiment, we looked at several English

speci�cations of video cards to identify the con-
cepts and terminology used within the domain. The
clocks, ports and registers are examples of concepts
in the domain that we identi�ed. After identify-
ing them, we considered what attributes of the ob-
jects were related to variations within the program
family. Declarative statements were then de�ned
to specify the values for the attributes that varied.
Thus, the abstract objects identi�ed in our exper-
iment directly translated to declarative constructs
in the DSL. Additionally, the relationship between
the objects translated into a reference relationship
in the DSL. For example, registers are de�ned by
references to port de�nitions. This may suggest the
use of an object-oriented analysis for DSL design.

4.3.3 Level of Abstraction

One of the most important goals guiding the DSL
is to provide a high-level of abstraction. In par-
ticular, we wish to intentionally focus on raising
the level of abstraction from the abstract machine
level. In fact, it may be desirable to include in-
formation in the DSL, which is not even used for

implementation, but may be used in analyses or for
documentation.
As an example of abstraction, the abstract ma-

chine developed for the video device drivers includes
operations for doing bitwise shifts and logical op-
erations. However, these types of expressions do
not appear in GAL because we intentionally intro-
duced the idea of �elds and parameters to eliminate
the low-level procedural nature of these expressions.
This also eliminates a common source of errors.
After a preliminary design of the language, the

language and abstract machine are revised in an it-
erative way. The revision process must satisfy the
correspondence constraint between the language
and abstract machine: it must be feasible to provide
a mapping from the language to the operations of
the abstract machine as an interpreter. During this
revision process the level of abstraction must also
be considered. Although it is possible to move all of
the functionality of the language into the abstract
machine, making the mapping essentially one-to-
one, there must be conscious decisions made about
where to draw the line between the interpreter and
the abstract machine. The primary consideration
here is the separation of functionality from speci-
�cation. The abstract machine should specify how
applications in the family are implemented. The in-
terpreter, on the other hand, should specify how to
make the design decisions required to map a design
speci�cation (i.e., DSL program) into an implemen-
tation (i.e., abstract machine operators).

4.3.4 Level of Restriction

Another major concern is restricting the language.
It is important to consider what types of analyses
might be performed on speci�cations in the DSL
in order to insure that the language is restricted
enough to make the analyses feasible. For example,
in the GAL language we have intentionally not in-
troduced loops, which insures that all device drivers
can be proven to terminate. Additionally, we per-
form other analyses to detect common errors in the
speci�cation by providing explicit information that
is di�cult or impossible to extract from general pur-
pose languages. An example of this is checking that
the bits of each register belong at most to one �eld.
This information could not be retrieved, in general,
from a driver implemented in a language such as C.

4.3.5 GPL principles

In addition to the design goals that are speci�c to
DSLs, there are several principles of general pur-



pose language design that also apply to DSL design.
General purpose languages can also help DSL de-
sign by providing a standard set of constructs that
may be restricted for use in the DSL, but would
still be recognized as a common construct.
On the other hand, the cases construct intro-

duced in GAL is an interesting example of a con-
struct which possibly has applications in DSLs in
general (when a prede�ned abstraction may, condi-
tionally, have one of several de�nitions), but is not
useful for GPLs, since the behavior is totally de-
scribed by the program itself and abstractions are
explicitly invoked. One of the main purposes of in-
troducing a DSL and an application generator is to
embed knowledge about how to implement certain
operations of the domain into the application gen-
erator. As a result, there are often declarative con-
structs in DSLs that are translated into executable
code by the application generator, which is not
generally true of general purpose languages. Since
these declarations really imply operations, there is
often a need to make choices between the implied
operations that can only be made at run-time. This
leads to the type of dynamic selection of multiple
de�nitions that is provided by the cases statement.
Since a main motivation of utilizing a DSL is to
raise the level of abstraction, it will be common for
DSLs to have declarative objects which imply oper-
ations and require this dynamic selection. Thus, we
suspect that this construct will be useful in DSLs
in general, and in fact have found it necessary in
other DSLs that we have experimented with. This
suggests that there are new constructs and princi-
ples that are interesting and unique to DSLs and
warrant study.

5 Results

In this section we present the results of apply-
ing our framework to the domain of video device
drivers. The results are presented in terms of the
advantages we have gained from using our approach
for this family of drivers. There are two aspects of
the approach that led to these advantages. One as-
pect is the use of DSLs and application generators
in general, and the second is speci�c to our frame-
work for application generator design.

5.1 Domain Speci�c Language

The GAL language demonstrates many advan-
tages of using an application generator with a DSL
for the video device driver domain. These bene�ts
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Figure 2: An extract of generated S3 card pro�le.

include an increased level of abstraction, the pos-
sibility of automated program analyses, reuse, and
productivity.

There are two signi�cant examples of the bene-
�t of a higher level of abstraction. The �rst, al-
ready discussed in section 4.3.3, is the use of ports,
registers, and �elds to abstract from the low-level
bitwise operations that would otherwise have to be
used. This eliminates many common errors, is more
readable, and easier to write. A second example is
an abstraction from implementation. The X Win-
dow server can be considered a framework, where
the device driver provides the additional functions.
As with any framework, the device driver needs to
be implemented in a certain way in order to be com-
patible with the server and requires considerable
knowledge about the framework. Using an appli-
cation generator, knowledge about the framework
and compatibility issues are coded in the applica-
tion generator, and hidden from the designer.
GAL also demonstrates that automatic analyses

can be performed on the DSL, which would not
be possible or feasible with a general purpose lan-
guage. Example analyses that are performed on
GAL speci�cations include detecting unused def-
initions, checking for exhaustive identi�cation of
video cards, identifying overlap in �eld de�nitions,
checking for minimum requirements on prede�ned
�elds, and generating a card pro�le (summary of
card characteristics). None of these analyses would
have been feasible on the existing device drivers im-
plemented in C. Using GAL not only makes the
analyses feasible, but also easy to implement. For
example, all of these analyses for GAL were imple-
mented within a single day.
One particularly interesting analysis is the one

which generates a card pro�le. Generating a card
pro�le is an analysis which, from the GAL speci-
�cation, produces a summary of the video modes
that are supported by the generated device driver.



Figure 2 shows an extract of the pro�le generated
for the S3 speci�cation listed in Appendix B. A
pro�le is generated for each subset of cards in the
speci�cation that have the same pro�le. The �gure
shows the pro�le for the S3 TRIO64 and S3 TRIO32.
This summary can be compared with vendor spec-
i�cations to �nd mistakes in �eld de�nitions and
provides automatic documentation of the speci�ca-
tion.
Finally, using an application generator provides

reuse by capturing design knowledge. In the do-
main of video device drivers there are large bene�ts
of reuse because there is a large growing number of
video cards which could potentially be generated
from a single application generator. The amount of
productivity gained depends on the ease of building
the application generator and consequently on the
approach to its design. Thus, we discuss productiv-
ity measurements in the next section with respect
to our framework.

5.2 Our Framework

In addition to the advantages obtained from the
DSL approach, there are several advantages demon-
strated by GAL due to our framework of generator
design. The experiment shows that the framework
achieves automatic and predictable generation of
e�cient video drivers, and a high-level of reuse.
GAL also demonstrates that the bene�ts of the two-
level approach for analyses and multiple implemen-
tations are of practical value.

5.2.1 Reuse and Productivity

The abstract machine for X Window device drivers
consists of 95 small C procedures totaling 1200
lines. Implementing the abstract machine has
roughly the same di�culty level as implementing
a single driver directly, as the code is very simi-
lar. Since we had existing device driver implemen-
tations, some of the abstract machine code could
be reused from those drivers.
The interpreter for GAL consists of 4300 lines

of C code and an automatically generated parser,
much of which concerns building an environment
and look-up routines for declarations. Thus, to-
gether the system consists of about 5500 lines of
C code. We can compare this to the size of the
existing hand-coded drivers which averaged about
1500 lines. Though the e�ort required to build an
interpreter should be less than that for building a
device driver, we can estimate that the application
generator requires a little more than 3.5 times the

e�ort of an individual driver (assuming code size
proportional to e�ort).

For the version of the X Window server we used,
the existing drivers together consisted of 35000 lines
of code. The GAL speci�cations that have been
written are at least a factor of 9 smaller than the
corresponding existing C driver . We can then es-
timate that these drivers could be generated from
less than 4000 lines of GAL speci�cations plus the
5500 lines of the generator, totaling less than 10000
lines. This is an estimated productivity gain of a
factor of 3.5. In practice there would be a higher
gain, since GAL speci�cations are easier to write
then the corresponding C driver. In addition, hav-
ing an interpreter for GAL provides a prototyping
environment.

5.2.2 E�ciency

Here we consider two measures of e�ciency: object
code size and execution speed. Although designing
an interpreter is easier than designing a compiler,
there are signi�cant losses in speed and size (com-
pared to compilation). In terms of speed, inter-
preters are typically 10-100 times slower than com-
piled programs, and in terms of size, our GAL in-
terpreter is 10 times larger than a typical driver
in object code size. However, a bene�t of using
partial evaluation is that we can regain the loss in
e�ciency.

We used Tempo [8], a partial evaluator for C,
as the program specializer used to translate GAL
speci�cations to abstract machine programs, and
to produce an e�cient implementation of the ab-
stract machine programs. In order to make a size
comparison, we compared the object �le sizes of the
generated drivers to that of the hand-coded drivers.
On average, the generated driver is only 30% larger
than the hand-coded one.

The speed of most of the device driver functions
are insigni�cant, as they are only called during con-
�guration. However, we picked three device driver
functions used for drawing lines and rectangles in
hardware to benchmark performance. Since the in-
terpreter level of our framework is guaranteed to be
eliminated (see section 2), we are only concerned
with the abstract machine layer.

For comparison, we prepared three versions of the
X Window server for an S3 TRIO64V+ video card
on a Pentium PRO-200. Table 2 shows the timing
results for the three servers. The S3 XAA server is
the X Window server provided with XFree86 and
the included hand-coded S3 device driver. S3 AM



Server lines/s percent
S3 XAA 189,000 100
S3 AM 150,000 79
S3 PE 191,000 100

Server rectangles/s percent
S3 XAA 203,000 100
S3 AM 169,000 83
S3 PE 205,000 101

Table 2: Performance results.

is the same server with a device driver which di-
rectly uses the abstract machine. Finally, S3 PE
is the same server using the abstract machine, but
after partial evaluation. The table shows the per-
formance of these servers for lines and �lled rectan-
gles of size 10 as measured by the standard XBench
benchmark utility.4 The table also includes a per-
centage using S3 XAA as a baseline.

The table indicates that there is a loss of about
20% in performance from the use of the abstract
machine. This loss of performance can be con-
tributed to error checking, interpretation, function
call, and data copying overhead. Data copying is
due to the need to communicate across abstract
machine operations. The write operation includes
error checking to insure that if previous opera-
tions fail the resulting data is not written to the
card. This is particularly important because the
card could otherwise be damaged. Finally, the I/O
operations require some interpretation of their pa-
rameters to determine the type of I/O to perform
and which addresses to use. Although directly us-
ing the abstract machine incurs this performance
loss, the results for the S3 PE server show that the
program transformations performed by partial eval-
uation are able to recapture all of the performance
loss. A majority of the error checking can also be
eliminated using Tempo because often the opera-
tions preceding write operations can not fail, and
thus error conditions do not need to be checked.
Finally, the parameters which are interpreted to se-
lect the type of I/O to perform and used for ad-
dress computation are known and eliminated by
Tempo. Tempo also performs inlining and copy
elimination which eliminates function call and data
copying overhead.

4A small size is used to minimize the e�ect of the hard-

ware.

5.2.3 Analyses

Our framework for application generator design
contributes in two ways to the use of program anal-
yses. The generation process is predictable and can
be analyzed, and the separation of the abstract ma-
chine from the interpreter allows analysis at the ab-
stract machine level.
As an example, the GAL abstract machine in-

cludes operations that allocate and deallocate tem-
porary storage and operations which use the tem-
porary storage. As long as the operations which use
the temporary storage are only used between a set
of allocate and deallocate operations, we can insure
there will be no uninitialized pointer dereferences.
The analyses of partial evaluation are capable of
producing a speci�cation of all the programs that
could possibly be generated by the partial evalua-
tion process. From this, we can obtain a formal de-
scription of all possible abstract machine programs
that could be generated, and can check that the op-
erations are always generated in the correct order.
Thus, for the GAL system we can prove that unini-
tialized pointer dereferences will never occur. This
description of the generation process may also be
analyzed for performance properties, for example.
The separation of the abstract machine and the

DSL provides an intermediate level at which anal-
yses can be performed and could allow analysis at
run-time. In fact, this separation corresponds to a
standard technique of program speci�cation, which
factors the veri�cation process into two parts [3].
As an example of analysis at run-time, we may wish
to check that device access within a video driver is
safe (e.g., does not access the disk device). This
cannot be done until run-time because it depends
on what devices are present at run-time. In this
case, we might accept video drivers in abstract ma-
chine form and analyze the abstract machine at run-
time. Partial evaluation can be performed at run-
time [9], so the e�ciency can still be recaptured.
This kind of analysis is not feasible on machine code
or even Java bytecodes due to their general purpose
nature. In proof-carrying code [17], the burden of
proof is put on the programmer and the proof is
sent with the code to be veri�ed (veri�cation being
easier), whereas here we make the proof easier so
that it can be done at run-time.

5.2.4 Multiple implementations

The video device driver family also demonstrates a
useful application of having multiple implementa-
tions of interpreters and abstract machines. In this
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Figure 3: Multiple implementations.

domain, it would be desirable to have abstract ma-
chines for several architectures and interpreters for
di�erent operating systems. For example, Figure 3
shows the situation where there are implementa-
tions of interpreters for Microsoft Windows 95 and
Linux/X11, and implementations of the abstract
machine for the Dec Alpha and Intel based comput-
ers. In this situation, with the equivalent of two ap-
plication generators (interpreter/abstract machine
pairs), the same GAL speci�cation can be used to
generate four di�erent device drivers. We have im-
plemented the X11/Intel path of Figure 3.
For prototyping, we have also bene�ted from hav-

ing a second implementation of the abstract ma-
chine which simulates the abstract machine opera-
tions. The simulation records the values that would
be written to the card by the real abstract machine.
This is an important feature as some video adaptors
can be damaged by writing inappropriate values to
the card.

6 Conclusions and Future Work

Domain speci�c languages hold the promise of
delivering high payo�s in terms of software reuse,

automatic program analysis, and software engineer-
ing. In this paper we have presented GAL, an ex-
ample of a complete DSL for a realistic program
family: video device drivers. We also demonstrated
the bene�ts of DSLs by showing how GAL raises
the level of abstraction of device driver speci�ca-
tions and identifying some analyses that can be per-
formed on GAL speci�cations because it is domain
speci�c.
A further contribution of the paper is to val-

idate our framework of application generator de-
sign by applying it to this program family to pro-
vide an implementation of GAL. Since our imple-
mentation is based on partial evaluation, it pro-
vides a complete interpreter for prototyping device
drivers, but still automatically generates e�cient
device drivers. E�ciency is demonstrated with re-
sults comparing hand-coded drivers to automati-
cally generated device drivers. Generated drivers
are roughly one third larger than hand-code drivers
and perform equivalently in terms of speed. Addi-
tionally, we give measures on expected reuse ben-
e�ts; GAL speci�cations are roughly a factor of 9
smaller than a driver hand-coded in C.
Although our framework signi�cantly reduces the

development time of application generators, future
work could be done in this direction. Speci�-
cally, this approach would bene�t from a generator-
speci�c reuse method that would allow interpreters
and abstract machines to be constructed from
reused composable parts. Additionally, given the
nature of DSLs, they are extended frequently to
adapt to new program requirements, and the ease
of extension also needs to be considered for such
language components.
Our implementation of the static analyses indi-

cates that methods of quickly constructing static
analyses should also be investigated (e.g., compos-
able analyses). This is more important for DSLs
than GPLs, since static analyses are a major moti-
vation of the approach.
In this work we have presented an application

of our approach to a program family with existing
family members. To further validate the approach,
it is also important to study its application to a
program family which is not pre-existing. In this
case, the abstract machine and DSL might be de-
veloped from the results of a domain analysis or a
commonality analysis, such as FAST [11].
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A A Complete GAL Example

Appendix B gives a complete listing of the GAL speci�cation for several models of S3 video adaptors.
In this appendix, we explain some of the constructs that were not included in the main text.
Although the various registers of video cards are typically accessed using an addressing scheme, there is

sometimes a sequential procedure that must be followed to access some registers. The serial construct is
used to specify this kind of procedure (see listing). The construct consists of a list of sequences of actions
that should be performed on the ports to access the registers. Thus multiple ports may be accessed during
the procedure, as in the example. Each sequence consists of a port, an operation (<= write, <=> read/write,
=> read), and a sequence of values for writes or registers names for reads and read/writes. The actions in
the sequence are performed from the �rst port to the last, from left to right in the sequence. The mode
(R read, R/W read/write, W write) to the right of the sequence indicates whether this sequence applies to
reading the registers to writing the registers or both.
The serial construct in the example de�nes the registers PLL1, and PLL2. In order to write values to

these registers the construct would be executed as follows. Write 3 to misc[3..2], write the value of PLL1
to seq(0x12), write the value of PLL2 to seq(0x13), and �nally, write 0, then 1, then 0 to seq(0x15)[5].
The S3 speci�cation also includes an example of a derived �eld, which is not discussed in the paper. This

is a �eld whose value is derived from one of the standard �elds. In the example, StartFIFO is a derived
�eld. Its value is set whenever the graphics mode is set, and is based on the value of HTotal, the horizontal
resolution. The declaration indicates this with the from clause.
The clockmap is used when a card has both �xed and programmable clocks such as the S3 Trio cards. It

indicates which clocks are �xed and which are programmable. The example for the S3 indicates that clock
0 and 1 are �xed, clock 2 is not available (NA), and clock 3 is the programmable clock f3. The parameters
MinPClock and MaxPClock are also related to clocks and specify the minimum and maximum values that
can be generated by the clock (i.e. not all values of f3M, f3N1, and f3N2 are valid).
Finally, the operating mode access is used to lock an unlock registers on the card.

B GAL S3 Listing

-- List all cards/models supported by this driver.

chipsets S3_911,S3_924,S3_80x,S3_928,S3_864,S3_964,S3_866,S3_868,

S3_968,S3_TRIO32,S3_TRIO64;

-- Define ports.

port svga indexed:=0x3d4;

port seq indexed:=0x3c4;

port misc := 0x3cc, 0x3c2;

-- Define registers.

register Miscr:=misc;

register Slock:=seq(0x8);

register Offset:=svga(0x13);

register ExtChipID:=svga(0x2e);

register ChipID:=svga(0x30);

register Memory:=svga(0x31);

register State:=svga(0x36);

register Lock1:=svga(0x38);

register Lock2:=svga(0x39);

register StartFIFOr:=svga(0x3B);

register Misc1:=svga(0x3a);

register Control:=svga(0x42);

register Control2:=svga(0x51);

register HOverflow:=svga(0x5D);



register VOverflow:=svga(0x5E);

register Control3:=svga(0x69);

-- Serial registers (see appendix A).

serial begin

misc[3..2]<= (3,- ,-,-,-) W;

seq(0x12)<=> (-,PLL1,-,-,-) R/W;

seq(0x13)<=> (-,PLL2,-,-,-) R/W;

seq(0x15)[5]<=(-,- ,0,1,0) W;

end;

-- Define predefined fields

-- Horizontal resolution fields.

field HTotal := HOverflow[0]#std;

field HEndDisplay := HOverflow[1]#std;

field HStartBlank := HOverflow[2]#std;

field HStartRetrace := HOverflow[4]#std;

-- Vertical resolution fields.

field VTotal := VOverflow[0]#std;

field VEndDisplay := VOverflow[1]#std;

field VStartBlank := VOverflow[2]#std;

field VStartRetrace := VOverflow[4]#std;

-- Virtual screen fields.

field LogicalWidth := Control2[5..4]#Offset scaled 8;

cases

for S3_928,S3_968,S3_TRIO32,S3_TRIO64

field StartAddress := Control2[1..0]#Memory[5..4]#std;

for S3_80x

field StartAddress := Control2[0]#Memory[5..4]#std;

for S3_864,S3_964

field StartAddress := Control3[4..0]#std;

for others

field StartAddress := Memory[5..4]#std;

end;

-- Define derived fields (see appendix A).

field StartFIFO from HTotal := HOverflow[6]#StartFIFOr offset 10 scaled 8;

-- Special S3 flags that must be set for 256 color graphics modes.

enable SVGAMode sequence is Misc1[4]<=1,Memory[3]<=1;

-- Define standard parameters.

param TwoBankRegisters:=false;

param InterlaceDivide := true;

cases

for S3_911,S3_924

param RamSize:=State[5] mapped (0=>1024,1=>512);

for others

param RamSize:=State[7..5] mapped (0=>4096,2=>3072,3=>8192,4=>2048,5=>5120,

6=>1024,7=>512);



end;

-- Define clocks.

cases

for S3_TRIO32,S3_TRIO64

param NoClocks:=4;

field ClockSelect:=Miscr[3..2];

param MinPClock:=135;

param MaxPClock:=270;

field f3M:=PLL2[6..0] offset 2 range 1 to 127;

field f3N1:=PLL1[4..0] offset 2 range 1 to 31;

field f3N2:=PLL1[6..5] mapped (0=>1,1=>2,2=>4,3=>8);

clock f3 is 14318*f3M / f3N1*f3N2;

clockmap is (fixed,fixed,NA,f3);

for others

param NoClocks:=16;

field ClockSelect:=Control[3..0];

end;

-- Identification procedure.

identification begin

1: ChipID[7..4] => (0x8=>step 2, 0x9=>S3_928, 0xA=>S3_80x, 0xB=>S3_928,

0xC=>S3_864, 0xD=>S3_964, 0xE=>step 3);

2: ChipID[1..0] => (0x1=>S3_911,0x2=>S3_924);

3: ExtChipID => (0x10=>S3_TRIO32, 0x11=>S3_TRIO64, 0x80=>S3_866,

0x90=>S3_868, 0xB0=>S3_968);

end;

-- Register locks on S3 chips.

enable access sequence is Lock1<=0x48,Lock2<=0xA5,Slock<=0x6;

disable access sequence is Lock1<=0x00,Lock2<=0x5A,Slock<=0x0;


