
The following paper was originally published in the
Proceedings of the Conference on Domain-Specific Languages

Santa Barbara, California, October 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

The Zephyr Abstract Syntax Description Language

Daniel C. Wang, Andrew W. Appel, Jeff L. Korn,
and Christopher S. Serra

Princeton University

The Zephyr Abstract Syntax Description Language

Daniel C. Wang Andrew W. Appel Jeff L. Korn
Christopher S. Serra

Department of Computer Science, Princeton University, Princeton, NJ, 08544
fdanwang,appel,jlk g@cs.princeton.edu, csserra@cs.wisc.edu

Abstract

The Zephyr1 Abstract Syntax Description Language
(ASDL) describes the abstract syntax of compiler in-
termediate representations (IRs) and other tree-like data
structures. Just as the lexical and syntactic structures of
programming languages are described with regular ex-
pressions and context free grammars, ASDL provides
a concise notation for describing the abstract syntax of
programming languages. Tools can convert ASDL de-
scriptions into the appropriate data-structure definitions
and functions to convert the data-structures to or from a
standard flattened representation. This makes it easier to
build compiler components that interoperate.

Although ASDL lacks subtyping and inheritance, it
is able to describe the Stanford University Intermedi-
ate Format (SUIF) compiler IR, originally implemented
in C++. We have built a tool that converts ASDL into
C, C++, Java, and ML data-structure definitions and
conversion functions. We have also built a graphical
browser-editor of ASDL data structures. ASDL shares
features found in many network interface description
languages (IDLs), algebraic data types, and languages
such as ASN.1 and SGML. Compared to other alterna-
tives ASDL is simple and powerful. This document de-
scribes ASDL in detail and presents an initial evaluation
of ASDL.

1 Introduction

Reusable components make it easy to build compil-
ers to test new compilation techniques. The components
of a compiler communicate with each other through an
intermediate representation (IR), which is a description
of a program suitable for optimization and analysis. If

1Zephyr is a compiler infrastructure project conducted jointly at the
University of Virginia and Princeton University (seehttp://www.cs.
virginia.edu/zephyr). This work is supported in part by the De-
partment of Defense under contract MDA904-97-C-0247 and DARPA
order number E381, and the National Science Foundation grant ASC-
9612756.

compiler components can exchange compatible IRs they
can interoperate.

To interoperate, components need an implementation
of an IR and a way to transmit IR values to other com-
ponents. A simple way to transmit IR values across
different components is to read and write the IR to a
file in a standard format. These files are called pick-
les, and conversion to pickles is called pickling or mar-
shaling [BNOW93]. Since different compiler research
groups program in different implementation languages,
IRs need to be implemented in more than one program-
ming language. Otherwise compiler components written
in different languages cannot interoperate.

Unfortunately, many IRs are only described by one
implementation in one language. For these IRs it can be
hard to separate the abstract structure of the IR from im-
plementation artifacts. Since IRs are often recursively
defined tree-like data structures, once the IR is under-
stood it is easy but tedious to develop different imple-
mentations in other languages. Writing functions to
pickle the IR is also easy but tedious.

A parser implementation is a poor way to describe the
concrete syntax of a programming language. A set of
data structures is a poor way to describe an IR. This doc-
ument describes the Abstract Syntax Description Lan-
guage (ASDL), a simple declarative language for de-
scribing the abstract structures of IRs. IRs described
with ASDL are converted into an implementation au-
tomatically by tools. Tools generate the data-structure
definitions for a target language as well as the pickling
functions and other supporting code. ASDL is designed
so that it is easy to convert descriptions into readable
implementations. ASDL descriptions are more concise
than data-structure definitions in languages such as C,
C++, and Java.

The idea of special notation for tree-like data struc-
tures is not new. Compiler-construction systems
and attribute-evaluation tools contain small sublan-
guages that are descriptions of tree-like data structures
[GHL+92, Bat96, Vol91, JPJ+90]. Programming lan-
guages that provide support for algebraic data types also
have concise notation for defining tree-like data struc-

Good Notation Language IndependentSimple
Compiler Construction Systems yes no yes

Algebraic Data Types yes no yes
ASN.1 could be better yes no
SGML no yes no

Network IDLs no yes yes

Table 1: Evaluation of existing systems

tures [BMS80]. Unfortunately these systems and lan-
guages do not solve the problem of providing IR imple-
mentations for more than one programming language.

Languages like SGML [GR90] and ASN.1 [ISO87,
ITU95b] are not much more than complex descrip-
tion languages for tree-like data structures. These de-
scriptions are declarative specifications of structured
data, independent of a particular implementation lan-
guage. However, these languages have many features
not needed in the description of compiler IRs. For ex-
ample, ASN.1 contains thirteen different primitive string
types. SGML has a “tag minimization” feature to help
define formats that are easier to write by humans but
more difficult to parse.

Although SGML and ASN.1 do solve the problems
of component interoperation, they seem verbose, cryp-
tic, and complex. The extra complexity of these sys-
tems alone makes them unsuitable, since the resources
spent understanding and using the systems can often be
greater than the time the systems saves the programmer.
There already are groups advocating the use of a simpli-
fied subset of SGML for for distribution of web content
[XML97]. ASDL in some ways can be viewed as sim-
plification of ASN.1.

Heterogeneous networked systems have solved a sim-
ilar component interoperation problem with interface de-
scription languages (IDLs) that describe abstract inter-
faces to network services. Tools automatically gener-
ate glue code from an IDL description and export a ser-
vice to the network. ONC RPC [Sri95], OMG CORBA
[Obj95], and Xerox’s ILU [Xer96] are examples of this
approach. Unfortunately CORBA and the other IDLs
have awkward encodings for the tree-like data structures
seen in IRs.

Ideally those in the compiler research community
could reuse existing solutions. Unfortunately none of
the existing systems are a good solution to the problem
of building interoperable compiler components and con-
cisely defining abstract IRs. Table 1 summarizes our
evaluation of existing systems. The following is a sum-
mary of the concrete design goals of ASDL.

� The language must be simple and concise.

� The language must be able to encode existing IR’s

such as SUIF [W+94], FLINT [Sha97], and lcc’s
IR [FH95].

� Tools that use the language must initially be able to
produce code for C, C++, Java, and ML.

� Tools must be able to produce code designed to be
understood by programmers, not just other tools.

� Language features must have a natural encoding in
all the target languages.

The next sections present the language informally, eval-
uate the language, and discuss related and future work.

2 ASDL by Example

definitions = ftyp id "=" typeg
type = sumtype j product type

product type = fields
sumtype = constructorf"|" constructorg

["attributes" fields]
constructor = con id [fields]

fields = "(" ffield "," g field ")"
field = typ id ["?" j "*"] [id]

Figure 1: Grammar of ASDL. Braces indicate zero or
more. Brackets indicate zero or one.

Figure 1 is the grammar for ASDL. The syntax of
ASDL has been designed to be natural and intuitively
obvious to anyone familiar with context free grammars
(CFG) or algebraic data types. In the same way that
an unambiguous CFG can be viewed as describing the
structure of parse trees, ASDL describes the structure of
tree-like data structures. An ASDL description consists
of a sequence of productions, which define the structure
of a tree-like data structure. ASDL descriptions are tree
grammars.

ASDL is simple enough to describe with a few exam-
ples. Since one goal is to generate human readable code,
there are a few restrictions on ASDL whose rationale is

not completely obvious. These restrictions and their mo-
tivation are described as they arise. Figure 3 is the ASDL
description of a trivial programming language.

2.1 Lexical Issues

upper = "A" j . . . j "Z"
lower = "a" j . . . j "z"
alpha = "_" j upper j lower

alpha num = alpha j "0" j . . . j "9"
typ id = lowerfalpha numg
con id = upperfalpha numg

id = typ id j con id

Figure 2: Lexical structure

Figure 2 is a description of the lexical structure of to-
kens used in the ASDL grammar in Figure 1. The names
of constructors and types in the description contain in-
formal semantic information that should be preserved
by a tool when translating descriptions into implemen-
tations. To keep the mapping from ASDL names to tar-
get language names simple, the names of types and con-
structors are restricted to the intersection of valid iden-
tifiers in the initial set of target languages. To help the
reader distinguish between types and constructor names,
types are required to begin with a lower case letter and
constructor names must begin with an upper case let-
ter. Rather than restricting ASDL names to exclude the
union of keywords in all target language, ASDL tools
will have to keep track and correct conflicts between
target language keywords and the type and constructor
names.

ASN.1 has a similar restrictions. However, the ASN.1
equivalent of ASDL types must begin with an upper case
letter, and non-type identifiers must begin with a lower
case letter. The ASN.1 restrictions are incompatible with
many common stylistic conventions in ML, Java, C++,
and C. For example, enumerated constants in ASN.1
must begin with a lower case letter, but C style languages
conventionally use all uppercase identifiers for enumer-
ated constants.

2.2 ASDL Fundamentals

An ASDL description consists of three fundamental
constructs: types, constructors, and productions. A type
is defined by productions that enumerate the construc-
tors for that type. In Figure 3 the first production de-
scribes astmtype. A value of thestmtype is created by
one of three different constructorsCompound, Assign,
andPrint . Each of these constructors has a sequence of

stm = Compound(stm, stm)
j Assign(identifier, exp)
j Print (exp list)

exp list = ExpList (exp, exp list) j Nil
exp = Id (identifier)

j Num(int)
j Op(exp, binop, exp)

binop = Plus j Minus j Times j Div

Figure 3: Simple ASDL description

fields that describe the type of values associated with a
constructor.

TheCompoundconstructor has two fields whose val-
ues are of typestm. One can interpret the production as
defining the structure ofstmtrees which can have three
different kinds of nodesCompound, Assign, andPrint
where theCompound node has two children that are
subtrees that have the structure of astmtree.

Notice that thebinop type consists of only construc-
tors which have no fields. Types likebinopare therefore
finite enumerations of values. Tools can easily recog-
nize this and represent these types as enumerations in
the target language. ASDL does not provide an explicit
enumeration type, unlike ASN.1 and the various IDLs.
Tools should recognize this idiom and use an appropri-
ate encoding.

There are three primitive pre-defined types in ASDL.
Figure 3 uses two of themint and identifier. The int
type represents signed integers of infinite precision. Spe-
cific tools may choose to produce language interfaces
that represent them as integers of finite precision. These
language interfaces should appropriately signal an error
when they are unable to represent such a value during
unpickling. Theidentifiertype is analogous to Lisp sym-
bols. ASDL also provides a primitivestring type.

2.3 Generating Code from ASDL Descriptions

From the definitions in Figure 3, it is easy to auto-
matically generate data type declarations in target lan-
guages such as C, C++, Java, and ML. For languages
like C, each type is represented as a tagged union of val-
ues. Languages like Java and C++ have a single abstract
base class for each type and concrete subclasses of the
base class for each variant of the type.

Figure 4 shows one way to translate thestmtype into
C. Each ASDL type is represented as a pointer to a struc-
ture. The structure contains a “kind” tag that indicates
which variant of the union the current value holds. It is
also convenient to have functions that allocate space and
properly initialize the different variants ofstm. Notice
that thebinopis translated as an enumeration.

typedef struct stm *stm ty;
struct stmf

enum fCompound kind=1,Assign kind=2,
Print kind=3g kind;

unionf
struct f stm ty stm1;stm ty stm2;g Compound;
struct f . . .g Assign;
struct f . . .g Print ;

g v;
g;
. . .
enum binop ty fPlus=1,Minus=2, Times=3,Div=4g;
. . .
stm ty Compound (stm ty stm1,stm ty stm2)f

stm ty p;

p = malloc(sizeof(*p));
p-> kind = Compound kind ;
p-> v.Compound.stm1 = stm1;
p-> v.Compound.stm2 = stm2;
return p;

g

stm ty Assign(identifier ty identifier1,exp ty exp1)f . . .g
stm ty Print (exp list ty exp list1) f . . .g
. . .

Figure 4: Simple translation to C

Figure 5 shows one possible encoding in Java, which
is applicable for many other languages with objects,
such as C++ and Modula-3. Thestmtype is represented
as an abstract base class. The various ASDL construc-
tors are translated into subclasses of the abstract base
class. Each constructor class inherits a tag that identifies
which variant ofstmit is. The translation to a language
like ML that has algebraic data types is almost trivial
(See Figure 6).

Our prototype definitions generator tool uses these en-
coding schemes to automatically translate ASDL into C,
C++, Java, and ML. These encodings are simple and uni-
form; they are not necessarily the most efficient possi-
ble. Better tools can potentially generate more efficient
encodings, or allow the programmer to specify an en-
coding explicitly.

2.4 Field Names

Since languages like C, Java, and C++ access compo-
nents of aggregates with named fields, ASDL descrip-
tions allow the specification of a field name to access the
values of constructor fields. In the absence of a supplied
field name tools can easily create field names based on

abstract public class stmf

protected int k;
public final int kind()f return k; g
public static final int Compound= 1;
public static final int Assign= 2;
public static final int Print = 3;

g

public class Compound extends stmf

public stmstm1;public stmstm2;
public Compound(stmstm1,stmstm2)f . . .g

g

public class Assignextends stmf . . .g
public class Print extends stmf . . .g
. . .

Figure 5: Simple translation to Java

datatype stm= Compound of (stm* stm)
| Assignof (identifier* exp)
| Print of (exp list)
. . .

Figure 6: Simple translation to ML

the position and type of a constructor field. Since field
names often encode semantic information, the ability to
provide names for fields in the descriptions improves the
readability of descriptions and the code generated from
those descriptions. There are no restrictions on the case
of the first character of field names. Figure 7 contains a
fragment of the original description which also includes
field names.

2.5 Sequences

The exp list type illustrates a common idiom for ex-
pressing a uniform sequence of some type. Sequences of
a uniform type occur throughout descriptions and gen-
eral programming. ASDL provides special support for
sequences of values through the “* ” (sequence) qualifier,
which means that the type of some value is an sequence
of zero or more elements of that type. Figure 8 demon-
strates its use in the context of the previous definitions.
The sequence qualifier is not just syntactic sugar. It pro-
vides a mechanism in the description for the writer to
more clearly specify the intent giving tools that generate
code more freedom to use appropriate representations in
the native language. For example, a tool may translate a

stm = Compound(stmhead,stmnext)
j Assign(identifierlval, exprval)
j Print (exp list args)

exp list = ExpList (exphead,exp list next)
j Nil

. . .

Figure 7: ASDL description with named fields

stm = Compound(stmhead,stmnext)
j Assign(identifierlval, exprval)
j Print (exp* args)

. . .

Figure 8: ASDL description with sequences

sequence type into an array or another built-in sequence
type that the target language supports, such as a poly-
morphic or templated list type.

ASN.1, SGML, ONC RPC, OMG IDL, and Xerox’s
ILU have qualifiers for sequence types. These systems,
except for ASN.1 and SGML, also have qualifiers to
specify the minimum or maximum length of a sequence.
ASN.1 and SGML also have qualifiers to specify that
the order of components in sequences has no meaning.
They support the notion of a set of values. ASDL does
not support this feature, since sequences can model sets.

2.6 Product Types, Attributes, and Options

Those familiar with EBNF[Wir77] or algebraic data
types may expect to be able to write descriptions with
productions such as

t = C(int, (int, int)*) .

However, complex expressions of this type are not al-
lowed in ASDL. The reason behind this restriction is
that not all the source languages support a natural en-
coding for complex type expressions. One would expect
that equivalent type expressions are translated into com-
patible types in the target language. Since the semantics
of aggregate types in C and C++ require each new ag-
gregate (struct/class) definition to be a new distinct type,
tools would have to use target language type abbrevia-
tion mechanisms (e.g. typedef) to achieve this effect. So
a tool must assign a name to the type that a program-
mer must use and remember. There are several obvi-
ous ways to automatically generate type names for the
expressions, however it would be preferable to require
description writers to provide semantically meaningful
names to these intermediate types, since generated code
is intended to be readable by the programmer. So the
above would be written as

t = C(int, int pair*)
int pair = IP(int, int) .

This restriction is unsatisfactory since it requires de-
scriptions writers to also provide a name for the single
constructor,IP, of this type. To overcome this problem,
ASDL provides (Cartesian) product types which are pro-
ductions that define a type that is an aggregate of sev-
eral values of different types. Product types are also re-
stricted in that they can not lead to recursive definitions,
since recursive product type definitions to not describe
tree structures. Another way to encode the first expres-
sion in ASDL which avoids the extra constructor would
be

t = C(int, int pair*)
int pair = (int, int) .

Often several constructors of a type share a set of
common values. To make this explicit, ASDL includes
an attribute notation. Since all variants of a type carry
the values of an attribute, its fields can be accessed with-
out having to discriminate between the various construc-
tors. Attributes can be seen as providing some limited
features of inheritance.

Most languages provide the notion of a special distin-
guished empty value (NULL, nil, NONE). ASDL pro-
vides a convention for specifying that certain values may
be empty with the “?” (optional) qualifier.

pos = (string? file, int line, int offset)
stm = Compound(stmhead,stmnext)

j Assign(identifierlval, exprval)
j Print (exp* args)

attributes (posp)
real = (int mantissa,int exp)
exp = Id (identifier)

j Num(int)
j Op(exp, binop, exp)

attributes (real? value)
binop = Plus j Minus j Times j Div

Figure 9: ASDL description with products, attributes,
and options

Figure 9 is an example of an ASDL description that
uses, products, attributes, and options. It is important to
emphasize that ASDL says nothing about how a defini-
tion should be translated by a tool into a specific concrete
implementation. The description language and external
data encoding are fixed; the particular target language
interfaces are not. Different tools may produce differ-
ent language interfaces, as long as the pickle formats
used by various tools are compatible. For example since
ASDL does not provide a primitive type for real num-
bers the ASDL description in Figure 9 describes a real

type in terms of two arbitrary precision integers. Pro-
grammers can provide the translation tool hints and con-
version functions so actual implementations of the above
IR use native floating-point values.

ASDL product types are nothing more than records.
Many IDLs (XDR, ISL, and IDL) which have support
for records place a similar restriction on the recursive
definitions of structures. The description language for
Xerox’s ILU system (ISL) forbids complex type expres-
sions in the same way ASDL does. The XDR speci-
fication allows for complex type expressions, but com-
mon implementations of the tools do not allow the use
of them.2 ASN.1, SGML, and OMG’s IDL allow the
construction of complex type expressions. All the previ-
ously mentioned languages have a similar optional qual-
ifier. Although attributes can be simulated in all the
description languages, only SGML has a notion of at-
tributes similar to ASDL.

2.7 Pickles

. . .
void pkl write exp(. . .)f . . .g
void pkl write exp list(. . .) f . . .g
void pkl write binop(. . .) f . . .g
void pkl write stm(stm ty x, outstreamty s)f

switch(x-> kind) f
case Compound kind :

pkl write int(1, s);
pkl write stm(x-> v.Compound.stm1, s);
pkl write stm(x-> v.Compound.stm2, s);
break;

case Assign kind :
pkl write int(2, s);
. . .
break;

case Print kind :
pkl write int(3, s);
. . .
break;

default: pkl die();
g

g

. . .
exp ty pkl readexp(instreamty s)f . . .g
. . .
stm ty pkl readstm(instreamty s)f . . .g

Figure 10: Automatically Generated Pickler

2rpcgen on Solaris and OSF 3.2

Since ASDL data structures have a tree-like form,
they can be represented linearly with a simple prefix en-
coding. It is easy to generate functions that convert to
and from the linear form. Figure 10 is a generated rou-
tine that “pickles” thestmtype seen previously in Figure
4. A pre-order walk of the data structure is sufficient to
convert astm to its pickled form. The walk is imple-
mented as recursively defined functions for each type in
an ASDL definition. Each function visits a node of that
type and recursively walks the rest of the tree.

In Figure 10 the functionpkl write stm dispatches
based on the kind ofstmconstructor of the node being
visited. It visits the node by writing a unique tag to iden-
tify the constructor to an output stream and then recur-
sively visits any values carried by the constructor. Tags
are assigned based on the order of constructor definition
in the description. Values are visited from left to right
based of the order in the definition. If there are any at-
tribute values associated with a type, they are visited in
left to right order after writing the tag but before vis-
iting the values unique to a given constructor. In this
case there are no attribute values. Since the prefix en-
coding does not represent pointers in the data structure
the linear form is significantly smaller than the pointer
data structures.

The functionpkl write stm callspkl write int to
output integer values to the output stream. Since ASDL
integers are intended to be of infinite precision they are
represented with a variable-length, signed-magnitude
encoding. If most integer values tend to be values near
zero, this encoding of integers may use less space than a
fixed precision representation.

Sequence types are represented with an integer
length-header followed by that many values. Optional
values are preceded by an integer header that is either
one or zero. A zero indicates that the value is empty
(NONE, nil, or NULL) and no more data follows. A one
indicates that the next value is the value of the optional
value. Identifiers and strings are encoded with an integer
size-header followed by the raw bytes needed to recon-
struct the string or identifier. All the headers are encoded
with the same arbitrary precision integer encoding de-
scribed previously.

Product types are written out sequentially without any
tag. The ASDL pickle format requires that both the
reader and writer of the pickler agree on the type of the
pickle. Other than constructor tags there is no explicit
type information in the pickle. The prefix encoding of
trees, variable-length integer encoding, and lack of ex-
plicit type information, all help keep the size of pickles
small. Smaller pickles reduce the system IO since there
is less data to write or read. Smaller pickles are also
more likely to fit completely in the cache of the IO sys-
tem.

The ASDL pickle format resembles the Packed En-
coding Rules (PER) of ASN.1 [ITU95a]. Like the ASDL
pickle format the PER is a prefix encoding of tree val-
ues. Neither format encodes redundant type information.
Rather than using a variable-precision encoding for in-
teger values and headers, the PER determines from the
ASN.1 specification the maximum precision need for a
particular value and uses fixed precision integers to rep-
resent those values. In the case where an ASN.1 speci-
fication does not constrain an integer value so the max-
imum precision can be determined, ASN.1 resorts to a
variable precision integer encoding. The PER encod-
ing of optional values is also slightly different from the
ASDL approach. PER optional values are encoded as a
bitmap that precedes a record of values that may contain
optional values.

Preliminary performance evaluations of the generated
pickled code suggest that they are efficient enough not to
be the primary performance bottlenecks. Writing pick-
led values is dominated by IO time, while reading values
is dominated by memory allocator time.

3 Evaluation

The next few sections describe insights gained by at-
tempting to respecify an existing compiler IR in ASDL,
an evaluation of ASDL’s syntax, and some initial expe-
riences using ASDL related tools to build applications.

3.1 ASDL SUIF

ASDL has been used to respecify the core IR of an
existing compiler infrastructure, the Stanford University
Intermediate Format [W+94] (SUIF) written in C++.
Being able to specify existing compiler IRs in ASDL
is one of the key design goals of ASDL. SUIF uses an
object oriented framework to implement its core IR.

instruction = In rrr (. . .)
j In ldc(. . .)

. . .
j In gen(. . .)

attributes (. . .)

Figure 12: ASDL encoding of SUIF class hierarchy

Figure 11 shows the class hierarchy for SUIF. Look-
ing at classes such assymnodeandinstruction, it is easy
to model these classes as types in ASDL with their sub-
classes represented as constructors in ASDL. Fields that
the subclasses may inherit frominstructionare modeled
as common fields and use the attribute mechanism in

ASDL. Figure 12 outlines this approach for theinstruc-
tion class.

There are situations where the intent of C++ SUIF
code does not fit well into the ASDL model, but
these situations are isolated. For exampleproc symtab,
tree proc, andenumtyperequire us to simulate two lev-
els of inheritance in the ASDL description. Attributes in
ASDL provide only one level of inheritance. To handle
cases where class hierarchies have more than one level
of inheritance, extra intermediate types have to be intro-
duced, making the ASDL description less than perfect.

Figure 13 demonstrates how to simulate two levels of
inheritance in ASDL. The classtree proc inherits from
tree block. The classtree block inherits fromtree node.
The ASDL description models this by introducing a
new intermediate typetree block restwhich consists of
two constructors. TheTree block constructor has all
the fields from thetree block class. TheTree proc
constructor contains or all the fields inherited from the
tree blockclass and the fields oftree proc class. There
is a slightly better encoding that uses attributes, since the
Tree block andTree proc constructors share a common
set of fields.

The C++ code also uses subtyping to express the con-
straint that a field must be a particular subtype of an
abstract class. In ASDL this is equivalent to using an
ASDL constructor as a type in the description. This
problem can be solved by allowing the ASDL encoding
to be more permissive by not encoding this constraint.
Figure 14 provides an example. Thepr field is declared
as atree proc class, which is a subtype oftree node.
In the ASDL description thetree proc corresponds to
a constructor, not a type, sopr in the ASDL descrip-
tion cannot be declared with the proper type. Instead the
ASDL description must use thetree nodetype.

There are issues not unique to C++, such as how to
encode pointers to other tree nodes, making the data
structures arbitrary graphs, or the encoding of pointers
to other external data structures such as symbol tables.
These issues can easily be handled by including unique
identifiers and an auxiliary mapping from identifiers to
values, to simulate the effect of pointers.

Although the ASDL description is not a verbatim
translation of the C++ implementation, the majority of
the ASDL description captures most of the features of
the C++ implementation in a natural way. The ASDL
encoding is less restrictive than the C++ implementa-
tion, so functions can be written that convert between
data structures that use the original C++ implementa-
tion of SUIF and the equivalent ASDL data structures
and without loss of information. Using these functions
along with code automatically generated from the ASDL
description, we have built a tool tool that allows the com-
pilers written in ML and Java to interface to the existing

base_symtab instructionsym_nodetree_node type_node

block_symtab

proc_symtab

global_symtab

in_rrr

in_ldc

in_array

in_cal

in_mbr

in_lab

in_bj

in_gen

var_sym

proc_sym

label_sym

tree_block

tree_proc

tree_for

tree_if

tree_loop

tree_instr

base_type

enum_type

array_type

func_type

modifier_type

ptr_type

struct_type

var_deffile_set_entry

suif_object

Figure 11: SUIF class hierarchy

SUIF compiler components[Ser97].

3.2 ASDL Syntax

Table 2 compares the size of ASDL SUIF description
and the C++ implementation. The C++ kernel is the core
set of source files that defines the structure of the SUIF
IR and the related support functions. From the kernel
there are ten core header files that describe IR structure.
The ASDL description was written by examining the
original C++ sources. The ASDL description uses the
same set of identifiers that the original C++ code uses.
The ASDL description does not completely capture all
aspects of the C++ code as, explained previously. Table
2 reports the total numbers of lines, words, and charac-
ters as reported by the UNIXwc command for each set
of these files. It is clear that ASDL description is more
compact than the C++ implementation.

A qualitative comparison between the ASDL and al-
ternative systems syntax can be found in Appendix A. It
contains an ASDL description and semantically equiva-
lent encoding of the description in various other spec-
ification languages (ASN.1, SGML, GMD’s ast, and
OMG’s IDL). Of the specification languages, the ASN.1
specification seems to be comparable in clarity to ASDL.
Though syntax is sometimes a matter of taste, the lexi-
cal restrictions of ASN.1 makes translation of an ASN.1
identifiers into idiomatic target language identifiers more
complicated than necessary.

3.3 ASDL Tools

We have constructed the following tools:

� A prototype definitions generator that reads ASDL
descriptions and produces data structures defintions
and pickling routines in C, C++, Java, and ML

� A browser-editor that can graphically view and ma-
nipulate arbitrary ASDL pickles

� A tool to convert between the original C++
SUIF data structures and data structures produced
from the ASDL description by the definitions
generator[Ser97].

3.3.1 Prototype Definitions Generator

ASDL has been used to describe the internal data struc-
tures of a prototype tool that generates code from ASDL
descriptions. Rather than manipulating raw strings, the
tool works with data structures that represent the abstract
syntax trees (AST) of the target languages (C, C++, Java,
ML). The AST is then pretty printed [Opp80] to produce
the final output. The tool uses the translation techniques
outlined in Section 3. A related tool produces a set of
C++ functions that automatically pickle and unpickle the
C++ data structures.

During the initial design process of ASDL the first
thing discussed was the abstract syntax of ASDL. A pro-
posal for the abstract syntax of ASDL was written using
the algebraic data type notation of ML. A purposed con-
crete syntax was also discussed along with the abstract
syntax. The clean separation between the abstract and
concrete syntax helped isolate important issues of lan-
guage design from issues of syntax. Although the ini-
tial concrete syntax was substantially modified for the

Original C++ code
class tree node . . .
class tree block : public tree nodefty1 f1; . . . ; tyn fn; g
class tree proc : public tree blockfty0

1 f0

1; . . . ; ty0

n f0n; g

Encoding without Attributes
tree node = . . .

j Tree block rest(tree block rest)
tree block rest = Tree block(ty1 f1, . . . , tyn fn)

j Tree proc(ty1 f1, . . . , tyn fn, ty0

1 f0

1, . . . , ty0

n f0n)

Encoding with Attributes
tree node = . . .

j Tree block rest(tree block rest)
tree block rest = Tree block

j Tree proc(ty0

1 f0

1, . . . , ty0

n f0

n)
attributes(ty1 f1, . . . , tyn fn)

Figure 13: Encoding inheritance in ASDL

class symnode : . . .
class proc sym : public symnodef

. . .tree proc *pr; . . .g

symnode = Proc sym(. . . , tree nodepr,. . .)

Figure 14: Ignoring subtyping constraints

asdl ty = Sum(identifier, field*,
constructor, constructor*)

j Product(identifier, field, field*)
constructor = Con(identifier, field*)

field = Id (identifier, identifier?)
j Option(identifier, identifier?)
j Sequence(identifier, identifier?)

Figure 15: Abstract Syntax of ASDL in ASDL

current version of ASDL syntax, the abstract syntax has
changed little from the initial proposal.

The abstract syntax for ASDL can itself be expressed
in ASDL (see Figure 15). This is an important property
that is used by the browser-editor. Since an ASDL de-
scription can be represented as an ASDL value, after a
parser converts the concrete syntax of an ASDL descrip-
tion into its abstract form the description can itself be
pickled. Other tools can read and manipulate the abstract
syntax without any dependence on the concrete syntax.
The browser is one such tool.

3.3.2 Graphical Pickle Browser and Editor

The browser is a graphical tool for viewing and edit-
ing arbitrary pickled ASDL values. The browser reads
in two pickles to do this. One is an arbitrary pickled
ASDL value. The other it the pickled ASDL descrip-
tion that contains all the ASDL types that occur in the
first pickle. Given the ASDL description for the first
pickle the brower-editor is able to display the first pickle
as a hierarchical list or a graphical tree. It allows the
user to specify how each kind of node is drawn by al-
lowing the selection of colors, fonts, etc. Trees can be
edited using standard cut and paste operations or by cre-
ating/modifying nodes. If the user double-clicks on a
particular constructor, a pop-up menu will appear al-
lowing the user to change which constructor-type the
node should have. Upon selecting a type for a node, the
browser fills in new nodes for the children of that type
automatically. Pickles edited with the browser can be
saved as a new pickled value.

The browser is written in C. It manipulates a C ver-
sion of the ASDL abstract syntax produced by the def-
inition generator from the ASDL description of ASDL.
When the user edits an object, the browser modifies an
abstract representation of generic ASDL values in mem-

files lines words characters
C++ kernel (with comments) 63 25,095 76,094 632,693
C++ core files (without comments) 10 2,316 6,533 60,984
ASDL description 1 204 562 6,921

Table 2: Code size comparison of SUIF data structures.

Figure 16: Browser-editor for ASDL pickles

value = SumVal(identifier, value*, value*)
j ProductVal(value, value*)
j SequenceVal(value*)
j NoneVal
j SomeVal(value)
j PrimVal (priml)

prim = IntVal (int)
j IdentifierVal (identifier)
j StringVal (string)

Figure 17: ASDL values specified in ASDL

ory, also generated from the ASDL description in Fig-
ure 17. The in memory representation is then converted
into the correct pickle format. This makes the browser

completely independent of the actual details of both the
concrete syntax of ASDL or the actual pickling format.
As long as the abstract structure of the pickles and con-
crete syntax stay unchanged, changes to the details of
the pickle format or concrete syntax have little impact
on the browser. Since ASDL descriptions are also pick-
led values the browser can be used to create, edit, or
view ASDL type descriptions by manipulating the ab-
stract syntax of ASDL directly. The browser-editor and
parser for the concrete syntax of ASDL are two different
user interfaces to building the abstract syntax of ASDL
descriptions.

Since the ASDL approach allows applications written
in different programming languages to interoperate, the
browser is implemented in C allowing the use of an ex-
isting and advanced GUI toolkit such as Tcl/Tk. The

definitions generator and the parser for ASDL descrip-
tions are implemented in Standard ML, but these two
tools easily interoperate with each other because of the
standard pickle format. ASDL gives developers more
flexibility in choosing the appropriate language for a
given task.

4 Related Work

Automatically encapsulating runtime data structures
into external out of core values is not an idea unique to
ASDL. Some languages, notably Modula-3, have built-
in language support for translating values into “pickles”.
Unlike ASDL, Modula-3 pickling is able to handle ar-
bitrary graph structures and does pickling based on run-
time type information and support from a garbage col-
lector. ASDL pickling is based on compile time static
information, which makes it less flexible than Modula-
3 but more portable and efficent. ASDL pickling code
need not depend on any special runtime support and can
be optimized based on static information. Java has bor-
rowed the pickling techniques and ideas from Modula-3
to provide the automatic “serializing” of arbitrary lan-
guage objects.

Pizza [OW97] is a superset of Java that provides al-
gebraic data types, giving Java concise notation for tree-
like data structures. A combination of Pizza along with
the automatic serialization of types in Java has some
similarities to the ASDL approach. Unfortunately the
pickles that Java produces are not meant to be language
independent.

The most similar work to ASDL is ASN.1. Ignoring
syntactic issues, ASDL, resembles a subset of ASN.1.
The original evaluation of the existing systems sug-
gests that ASN.1 can solve the component interoperation
problem. Commercial tools exist that translate ASN.1
into C, C++, and Java, so it is tempting to use ASN.1 and
write the remaining tools for languages not supported
by commercial systems. However, ASDL has one sig-
nificant advantage over ASN.1. ASDL is much simpler
than the full ASN.1 specification language. Simplicity is
not just an esthetic concern. The complexity of ASN.1
makes it difficult to write tools that use it. Considering
ASDL is able to solve the problems in the compiler do-
main, the extra effort in dealing with the complexity of
ASN.1 complexity does not seem worth the effort.

The official context free grammar of the most recent
version of ASN.1 contains over 150 non-terminals and
300 productions, and occupies eight pages [ITU95b].
The equivalent ASDL context free grammar contains a
little over ten non-terminals, twenty productions, and
easily fits on half a page. The size of the ASN.1 gram-
mar alone makes it difficult to build tools for it. A freely

available ASN.1 compiler [Sam93], which converts a
subset of ASN.1 to C and C++ but parses the full ASN.1
language, has a 3000 lineyacc grammar. The rest of the
system consists of 13000 lines of C. Because of ASDL’s
simplicity, it is easy to construct a definitions genera-
tor for different languages. The prototype tool described
in this document took a few weeks to implement and is
around 5000 lines of ML code. This prototype generates
definitions for four different languages.

Although ASN.1 is intended to describe network
data, it is also used to describe data in other domains,
such as chemical abstracts [CXF94] and gene sequences
[NCB96]. These ASN.1 specifications exist to help im-
prove the exchange of information across software sys-
tems written to manipulate data in these domains. Close
inspection of the ASN.1 specifications for these domains
reveals that they only use a small subset of the features
of ASN.1 and that the subset they use is very close to
ASDL. This suggests that ASDL has wider applications,
and that it is worthwhile to develop a strategy to interop-
erate with existing systems using ASN.1.

5 Future Work

As the SUIF encoding demonstrates, realistic ASDL
descriptions may still be reasonably long. ASDL should
support modularized descriptions. Modularizing de-
scriptions at the ASDL level requires us to address the
issue of how modular descriptions are translated into the
target language. Should each module of the description
correspond to a compilation unit in the target language?
Should cyclic module dependencies be allowed? Cyclic
module dependencies are convenient when describing
ASTs, but languages like ML do not support cyclic mod-
ule dependencies.

More work needs to be put into building tools that use
the ASDL definitions. Our current prototype tool per-
forms a naive translation of an ASDL description into
target languages. The tools that generate ASDL descrip-
tions need to have more hooks so that users can con-
trol how descriptions are translated. Tools could also
perform more aggressive automatic representation opti-
mizations on the generated code.

It seems appropriate to reuse ASDL descriptions for a
wide variety of other tools, such as attribute evaluators,
parsers, pattern matchers, and pretty printers. All these
systems can benefit from the formalisms that ASDL pro-
vides. Jansson [JJ97] presents a formalism (polytypic
programming) to describe functions that generate func-
tions based on structural induction on an arbitary alge-
braic data type. Polytypic programming allows the cre-
ation of generator generators. Jansson’s approach could
be extended into a tool that generates code generators

for ASDL data types. A polytypic description that in-
ductively describes the equality of arbitary types can be
turned automatically into a program that takes an ASDL
description and produces another program to check for
equality.

6 Conclusions

Declarative languages such as regular expressions and
context-free grammars, with tools likelex and yacc ,
help popularized the notion of describing the concrete
syntax of programming languages formally. Descrip-
tion languages like ASDL will popularize the notion of
formally describing the abstract syntax of programming
languages and the internal representations of compilers.
Our initial experience with SUIF and other descriptions
suggests that ASDL is able to encapsulate the fundamen-
tal structures of important data structures in a concise
and language independent way.

The core idea of concise notation for describing
tree like-data structures behind ASDL is so simple it
has been reinvented in different guises by several sys-
tems that span a variety of domains. ASN.1 is one
such system, which also provides support for cross lan-
guage interoperation. Unfortunately the full ASN.1 lan-
guage is complex, making tool development a difficult
task. ASDL represents a simple and powerful subset of
ASN.1. The simplicity of ASDL allows for easier im-
plementation of tools that use it.

7 Availability

ASDL is part of a larger project to develop a resuable
compiler infrastructure. The most up to date information
on ASDL can be found athttp://www.cs.virginia.
edu/zephyr . We are currently working on a produc-
tion quality release of the software and documentation,
which should be completed in January 1998. Working
releases of the software will be available in the interim;
see the web page for details.

8 Acknowledgments

We would like to thank all those who have helped out
along the way including the developers of SUIF, Norman
Ramsey, and David Hanson.

9 Glossary of Acronyms

ASDL Abstract Syntax Description Language

ASN.1 Abstract Syntax Notation One

AST Abstract Syntax Tree

CORBA Common Object Request Broker Architecture

EBNF Extended Backus Naur Form

IDL Interface Description Language

ILU Inter Language Union

IR Intermediate Representation

ISL Interface Specification Language

ONC Open Network Consortium

OMG Object Management Group

PER Packed Encoding Rules

RPC Remote Procedure Call

SGML Standard Generalized Markup Language

SUIF Stanford University Intermediate Format

XDR External Data Representation

References

[Bat96] Rodney M. Bates. Examining the Cock-
tail toolbox. Dr. Dobb’s Journal of Soft-
ware Tools, 21(3):78, 80–82, 95–96, March
1996.

[BMS80] R. Burstall, D. MacQueen, and D. San-
nella. Hope: an experimental applicative
language. InProceedings of the 1980 LISP
Conference, pages 136–43, Stanford, 1980.

[BNOW93] Andrew Birrell, Greg Nelson, Susan Ow-
icki, and Edward Wobber. Network objects.
In Proceedings of the 14th Symposium on
Operating System Principles, pages 217–
230, 1993.

[CXF94] Chemical exchagne format.ftp://info.
cas.org/pub/cxf , 1994.

[FH95] Chris W. Fraser and David R. Hanson.A
Retargetable C Compiler: Design and Im-
plementation. Benjamin/Cummings Pub.
Co., Redwood City, CA, USA, 1995.

[GHL+92] Robert W. Gray, Vincent P. Heuring,
Steven P. Levi, Anthony M. Sloane, and
William M. Waite. Eli: A complete, flex-
ible compiler construction system.Com-
munications of the ACM, 35(2):121–130,
February 1992.

[GR90] Charles F. Goldfarb and Yuri Rubinsky.
The SGML handbook. Clarendon Press,
Oxford, UK, 1990.

[ISO87] Information Processing — Open Systems
Interconnection — Specification of Ab-
stract Syntax Notation One (ASN.1). Inter-
national Organization for Standardization
and International Electrotechnical Com-
mittee, 1987. International Standard 8824.

[ITU95a] Information Technology – Abstract Syntax
Notation One (ASN.1): Encoding Rules
– Packed Encoding Rules (PER). Inter-
national Telecommuncation Union, 1995.
ITU-T Recommendation X.691.

[ITU95b] Information Technology – Abstract Syn-
tax Notation One (ASN.1): Specification
of Basic Notation. International Telecom-
muncation Union, 1995. ITU-T Recom-
mendation X.680.

[JJ97] Patrik Jansson and Johan Jeuring. PolyP—
a polytypic programming language exten-
sion. InConference Record of POPL ’97:
The 24th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Lan-
guages, pages 470–482, Paris, France, 15–
17 January 1997.

[JPJ+90] M. Jourdan, D. Parigot, C. Julie, O. Durin,
and C. Le Bellec. Design, implementa-
tion and evaluation of the FNC-2 attribute
grammar system. InIn Proceedings of
the ACM SIGPLAN’90 Conference on Pro-
gramming Language Design and Imple-
mentation, pages 209–222, White Plains,
New York, June 1990.

[NCB96] National center for biotechnology software
development toolkit. ftp://ncbi.nlm.
nih.gov/toolbox/ncbi_tools , 1996.

[Obj95] Object Management Group, Inc., 492
Old Connecticut Path, Framingham, MA
01701. The Common Object Request Bro-
ker: Architecture and Specification, 2.0
edition, 1995.

[Opp80] Dereck C. Oppen. Prettyprinting.ACM
Transactions on Programming Languages
and Systems, 2(4):465–483, October 1980.

[OW97] Martin Odersky and Philip Wadler. Pizza
into Java: Translating theory into practice.
In Proceedings POPL 1997, Paris, January
15-17 1997.

[Sam93] Michael Sample. Snacc 1.1.http://www.
nsg.bc.ca/Software.html , 1993.

[Ser97] Christopher S. Serra. Bridging suif
and zephyr:a compiler infrastructure inter-
change. Princeton University Senior The-
sis, May 1997.

[Sha97] Zhong Shao. An overview of the
FLINT/ML compiler. In Proc. 1997 ACM
SIGPLAN Workshop on Types in Compila-
tion, June 1997.

[Sri95] Raj Srinivasan. RFC 1831: RPC: Remote
Procedure Call Protocol specification ver-
sion 2, August 1995.

[Vol91] J. Vollmer. Experiences with gentle: Effi-
cient compiler construction based on logic
programming.Lecture Notes in Computer
Science, 528:425–??, 1991.

[W+94] Robert Wilson et al. SUIF: An infrastruc-
ture for research on parallelizing and opti-
mizing compilers.ACM SIGPLAN Notices,
29(12):31–37, December 1994.

[Wir77] N. Wirth. What can be do about the un-
necessary diversity of notation for syntactic
definitions? Communications of the ACM,
20(11):882, November 1977.

[Xer96] Xerox Corporation.ILU 2.0alpha8 Refer-
nce Manual, May 1996. ftp://ftp.
parc.xerox.com/pub/ilu/ilu.html .

[XML97] Extensible markup language (XML).
http://www.w3.org/TR/WD-xml , 1997.

A Appendix A

A.1 Zephyr ASDL

stm = Compound(stm head, stm next)
| Assign(identifier id, exp exp)
| Print(exp* args)

exp = Id(identifier id)
| Num(int v)
| Op(exp lval, binop bop, exp rval)

binop = Plus | Minus | Times | Div

A.2 GMD’s compiler toolkit

-- See http://www.gmd.de/SCAI/lab/adaptor/ast.html
Stm = <

Compound = head: Stm next: Stm .
Assign = [id: char*] exp: Exp .
Print = args: ExpList .

> .
Exp = <

Id = [id: char*] .
Num = [v: int] .
Op = lval: Exp bop: Binop rval: Exp .

> .
Binop = < Plus = .

Minus = .
Times = .
Div = .

> .

A.3 ISO X.680 ASN.1

-- See http://www.itu.ch/itudoc/itu-t/rec/x/x500up/x680_27252.html
Stm ::= CHOICE {

compound SEQUENCE {head Stm, next Stm},
assign SEQUENCE {head Stm, next Stm},
print SEQUENCE {args SEQUENCE OF Exp}

}
Exp ::= CHOICE {

id STRING,
num INTEGER,
op SEQUENCE {lval Exp,bop BinOp,rval Exp}

}
Binop ::= ENUMERATED {plus, minus, times, div}

A.4 SGML DTD

<!ENTITY % id "(#PCDATA)">
<!ENTITY % int "(#PCDATA)">
<!ENTITY % binop "(Plus|Minus|Times|Div)">
<!ENTITY % stm "(Compound|Assign|Print)">

<!ELEMENT Compound - - (%stm,%stm)>
<!ELEMENT Assign - - (%id,%exp)>
<!ELEMENT Print - - (%exp*)>

<!ENTITY % exp "(Id|Num|Op)">
<!ELEMENT Id - - (%id)>
<!ELEMENT Num - - (%int)>
<!ELEMENT Op - - (%exp,%binop,%exp)>

A.5 OMG IDL Object Encoding

-- http://www.omg.org/corba/corbiiop.htm
enum binop { Plus, Minus, Times, Div};
interface stm {

enum stm_tag { Compound_tag, Assign_tag, Print_tag};
attribute stm_tag tag;

}
interface Compound : stm {

attribute stm head; attribute stm next;
}
interface Assign : stm {

attribute id string; attribute exp exp;
}
interface Print : stm {

attribute sequence<exp> args;
}
interface exp {

enum exp_tag { Id_tag, Num_tag, Op_tag};
attribute exp_tag tag;

}
interface Id : exp { attribute id string; }
interface Num : exp { attribute int v; }
interface Op : exp {

attribute exp lval; attribute binop bop; attribute exp rval;
}

