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Abstract
A domain-specific language (DSL) is a framework

which is designed to precisely meet the needs of a particu-
lar application. Domain-specific languages exist for a vari-
ety of reasons. As productivity tools, they are used to make
application prototyping and development faster and more
robust in the presence of evolving requirements. Further-
more, by bridging the “semantic gap” between an applica-
tion domain and program code, DSLs increase the oppor-
tunity to apply formal methods in proving properties of an
application.

In this paper, we contribute a synthesis of two existing
systems that address the problem of providingsoundse-
mantic descriptions ofrealistic programming languages:
action semantics and modular monadic semantics. The
resulting synthesis, modular monadic action semantics, is
compatible with action semantics yet adds true modularity
and allows domain specific specifications to be made at a
variety of levels.

1 Introduction

“I’d rather write programs to write programs than
write programs.” (Programming proverb).

A domain-specific language (DSL) is a framework
which is designed to precisely meet the needs of a particu-
lar application. Domain-specific languages exist for a vari-
ety of reasons. As productivity tools, they are used to make
application prototyping and development faster and more
robust in the presence of evolving requirements. Further-
more, by bridging the “semantic gap” between an applica-
tion domain and program code, DSLs increase the oppor-
tunity to apply formal methods in proving properties of an
application.

Designing and implementing a domain specific language
is, however, problematic. Putting aside the requirement
for an efficient implementation, the language needs to be:
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clearly and precisely defined; modular enough to change
incrementally; and amenable to formal reasoning. Differ-
ent tools exist that address these varied requirements, but
few make any attempt to address them all. Compiler gener-
ators provide efficient implementations, but they typically
have weak formal properties. We do not consider such sys-
tems further in this paper. Semantic formalisms, such as
denotational semantics and structural operational seman-
tics, have richly developed theories but are difficult to use
and lack modularity.

The conceptual distance between the high-level language
and established semantic formalisms is huge. Writing such
specifications is a tedious and difficult task. Natural con-
cepts in the high-level language must be accurately simu-
lated by constructs built from the small range of primitives
in the semantic formalism. The probability of introducing
errors is large, and the maintainability of the specification
is poor.

Three attempts at solving the problem of providing
soundsemantic descriptions ofrealistic programming lan-
guages are presented here. The first isaction seman-
tics [Mos92], a highly readable notation with formal foun-
dations in Peter Mosses’s unified algebra and Plotkin’s
structural operational semantics [Plo83]. This system has
proven quite popular, and has been used to specify a num-
ber of existing and evolving languages.

The second is Hudak, Liang and Jones’modular
monadic semantics[LH96]. Modular monadic semantics
is a structured form of denotational semantics, embedded
in the Haskell language. As a relatively new system it is
yet to gain widespread use, but it has a number of highly
attractive features, foremost its excellent modularity prop-
erties.

These two systems can be seen as competing for the
same market (Figure 1(c) and (d)): both are attempts to
reduce the conceptual distance that must be bridged when
formally specifying a high-level language (compare with
Figure 1(a) and (b)). Both appear to do so successfully;
they are, however, different DSLs and are based in differ-
ent semantic formalisms.
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Figure 1: Formal specification techniques.

The third approach arises our observation that action
semantics and modular monadic semantics have much to
offer each other. Action semantics provides a friendly
syntax to the language specifier, and encapsulates a sub-
stantial but fixed range of language concepts. Modular
monadic semantics, on the other hand, provides a rather
less friendly syntax, but with complete flexibility and ex-
tensibility afforded by its internal modularity. By combin-
ing these two systems, we obtain a tiered system containing
two domain-specific semantic notations, featuring all the
key features of action semantics along with the underlying
flexibility and extensibility of modular monadic semantics
(Figure 1(e)). This system we callmodular monadic action
semantics(MMAS).

The user of modular monadic action semantics specifies
the high-level language using the rich set of primitives pro-
vided by action semantics. If the language requires a con-
cept that is not present in action semantics, the specifier
simply drops down one level, and uses the underlying mod-
ular monadic semantics to specify the new feature. If this
is not sufficient, the modular monadic layer itself may be
modified or extended as required. All this takes place in a
highly modular fashion, with little or no change to existing
parts of the specification. Furthermore,theoriesdeveloped
at each layer can also be developed in a modular fashion.
New features can be introduced without undermining the
validity of existing proofs.

In the remainder of this paper we describe action seman-
tics, modular monadic semantics, and modular monadic
action semantics in more detail, and we investigate some
of the applications of MMAS. We conclude with a look
at some related work, some concluding comments, and
directions for future work. Full details on modular
monadic action semantics can be found in Wansbrough’s
thesis [Wan97].

2 Action semantics

Action semantics [Mos92, Mos96a] is a notation devel-
oped over some years by Mosses at Aarhus University. As
Mosses puts it,

The primary aim of action semantics is to al-
low usefulsemantic descriptions ofrealistic pro-
gramming languages. [Mos92, p. xv]

It aims at being simultaneously formal and readable, and
achieves this goal admirably. An action semantic descrip-
tion is entirely formal, yet it can be intuitively understood
to a surprising degree by someone with no prior knowledge
of the system.

However, action semantics has two significant limita-
tions. Firstly, it is incomplete. Not all programming lan-
guage concepts can be represented directly within action
semantics—only those which Mosses has chosen to build
into the system. There is no provision for the extension
of action semantics. Secondly, action semantics theory has
not progressed very far: it is difficult to use an action se-
mantics of a language to prove properties of that language
or of programs written within it.

Despite these disadvantages, action semantics has
proven quite popular and rather successful. A num-
ber of compiler generators based on action semantics
exist [Ørb94, BMW92, Pal92], along with at least one
tool [vDM96] for assistance in developing new action se-
mantic descriptions. Action semantic descriptions exist for
a number of real languages [Mos96a,x7.1], and others are
being developed. An action semantics for an intermedi-
ate language for compilers, ANDF-FS [NT94, HT94], is
currently in use in the ‘real world’, by the Open Software
Foundation. Work is progressing in a number of directions.

In the following sections the essential features of ac-
tion semantics are briefly summarised. More detail can be
found in Mosses’ book [Mos92], or his tutorial [Mos96b].

2.1 Structure of action semantics

An action semantic description (ASD) of a language spec-
ifies the semantics of the language by means ofactions,
representing computations. The action corresponding to a
given program phrase is built up from primitive actions and
actioncombinators. Data referred to by the actions may be
accessed by means ofyielders, and new types of data may
be readily defined in an algebraic fashion.

Action semantics divides program behaviour into a num-
ber of facets, corresponding to the types of information
dealt with. Thebasicfacet refers to control flow. Thefunc-
tional facet refers to transient information, i.e., data passed
between successive actions. Thedeclarativefacet refers to
scoped information, i.e., bindings of tokens to data. The
imperativefacet refers to stable information, i.e., the stor-
age of data in cells. Finally, thecommunicativefacet refers
to permanent information, i.e., the communication of data
between distributed actions. Two further facets, thereflec-
tive anddirectivefacets, refer to reflection and indirection.
Action semantics has these seven computational concepts
built in, and they can be used directly by specifications.



The primitive actions, yielders and data of action seman-
tics are separated into these categories, and are intended to
act on only one facet at a time. This automatically lends a
degree of modularity to an action semantic description: ac-
tions involving only, say, basic and functional behaviour
(such as expression evaluation) need not concern them-
selves with behaviour in other facets (such as the declar-
ative or imperative facets). The result is a readily maintain-
able description: alterations to behaviour relating to one
facet do not affect unrelated code (as they inevitably do
when a monolithic approach is used, such as the conven-
tional structural operational semantic or lambda-calculus
approaches).

A key advantage of action semantics is its very readable
notation. Action semantics uses words rather than symbols,
and these are chosen in a way that allows even a reader un-
familiar with action semantics to obtain a broad impression
of the intended meaning of the description. This is par-
tially enabled by its flexible (albeit idiosyncratic) type sys-
tem, which permits definition of new types by extending or
specialising existing ones and definition of abbreviations
for commonly-occurring patterns of notation, and behaves
much more like conventional set theory than do traditional
domains.

As a simple example of the use of action semantics, con-
sider the following semantics for the ‘if’ statement of a con-
ventional imperative language. In this example,execute
is a semantic function which gives the semantics of state-
ments. The brackets[[ � ]] enclose the abstract syntax for the
statement, and the term to the right of the equals sign is the
action representing the semantics of the statement.

execute [[ “if” E “then” S1 “else” S2 ]] =
evaluate E then

check it and then execute S1
or

check not it and then execute S2 .

The action corresponding to the phrase“if” E “then” S1
“else” S2 begins by callingevaluate E, defined elsewhere.
The result of the expression is threaded by thethen combi-
nator to the next action. This is anor, which nondeter-
ministically executes one branch and backtracks on fail-
ure. The actioncheck, applied to the yielderit, fails if
the yielded value is false and succeeds if it is true; the other
branch has the complementary test. After the test, execu-
tion passes (viaand then) to anexecute of the appropriate
branch.

This example shows the way in which action semantics
builds up actions from primitive actions, combinators, and
yielders. Notice how easy the specification is to read, even
without any familiarity with the notation. Also note that
there is no need to thread the store through this equation,
even though the evaluation ofE may access or modify it.
The modularity of action semantics means we need not
consider facets not directly referenced.

2.2 Semantics

Action semantics is intended to be a formal notation, and
in order to achieve this its own semantics must be precisely
and formally defined. Mosses chose to do this by providing
a low-level definition of action semantics as astructural
operational semantics(SOS) [Plo81, Plo83], using a slight
variation on Plotkin’s original approach.

As an example, here are some of the equations describ-
ing the behaviour of theor combinator, used above to de-
fine the semantics of the ‘if’ statement. The equations are
taken from [Mos92,xC.3.3.2.1].
(7) stepped (A1, l) � (A0

1
:Acting, l0:local-info, uncommitted) ;

[[A1 O A2 ]] : [[ Intermediate “or” Intermediate ]] )

stepped ([[ A1 O A2 ]], l:local-info)
� (simplified [[ A0

1
O A2 ]], l0, uncommitted) .

(8) stepped (A2, l) � (A0

2
:Acting, l0:local-info, uncommitted) ;

[[A1 O A2 ]] : [[ Intermediate “or” Intermediate ]] )

stepped ([[ A1 O A2 ]], l:local-info)
� (simplified [[ A1 O A

0

2
]], l0, uncommitted) .

(9) stepped (A1, l) � (A0

1
:Acting, l0:local-info, c0:committing) ;

[[A1 O A2 ]] : [[ Intermediate “or” Intermediate ]] )

stepped ([[ A1 O A2 ]], l:local-info) � (A0

1
, l0, c0) .

(10) stepped (A2, l) � (A0

2
:Acting, l0:local-info, c0:committing) ;

[[A1 O A2 ]] : [[ Intermediate “or” Intermediate ]] )

stepped ([[ A1 O A2 ]], l:local-info) � (A0

2
, l0, c0) .

Equations (7) and (8) handle uncommitted cases, and
equations (9) and (10) committed cases (commitment is
analagous to the action of Prolog’s ‘cut’ operator (!):
it commits to the chosen branch, prohibiting backtrack-
ing). In both cases, the equations specify nondetermin-
istic choice of one action to bestepped. Once this is
done, if the state remains uncommitted then equations (7)
and (8) indicate a simplification is to be performed over the
whole phrase; if the state becomes committed then equa-
tions (9) and (10) specify that the alternate branch is dis-
carded. The result (in combination with the omitted defi-
nition of thesimplify function) is a nondeterministic back-
tracking choice with commitment.

2.3 Problems

Action semantics provides an usable foundation on which
to build specifications of programming languages. Refer-
ring back to Figure 1, it bridges the gap between high-level
language and low-level formalism very effectively, provid-
ing a language that already contains the features required
by the high-level language. In addition, it is highly read-
able and ensures a degree of modularity in specifications.

However, the features supported by action semantics are
fixed: the facets of action semantics are those defined by
Mosses, and no mechanism is provided to modify or extend
them. The facets provided are sufficient to describe many
common imperative languages; but there are language fea-
tures (notably continuations, as popularised by Scheme for
example) that arenotpresent in action semantics. The only
way to specify languages containing such features is by



low-level simulation; resorting to this instantly loses all the
advantages of action semantics.

One of the reasons for the fixed nature of the facets in
action semantics is indicated in the diagram in Figure 1(c).
While the specification of the high-level language in action
semantics is done in a modular manner, Mosses’ defini-
tion of action semantics in terms of structural operational
semantics is done monolithically. This means that there
is no real separation between facets at this level, and the
defining equations for each component must correctly han-
dle not only their own information but also the information
from other, unrelated components. Without modularity we
are back to the situation of Figure 1(a), where specification
is tedious and error-prone, and maintainability is poor.

Another problem with action semantics lies in its theory.
One of the goals of a formal specification of a language, as
articulated by Mosses [Mos92, p. 4], is to use it

. . . as a basis forreasoningabout the correctness
of particular programs in relation to their speci-
fications, and for justifying program transforma-
tions.

An action semantic description of a language certainly pro-
vides a formal specification, but is it useful? Mosses him-
self notes that “a decent theory for action semantics has
been slow to emerge” [Mos96a,x6]. Compilers incorporat-
ing provably valid action transformations exist [Mos96a,
x6.2–3]; but the closest approach to a general and tractable
theory for action equivalence still covers only the basic,
functional and declarative facets of action semantics—
omitting the imperative and communicative facets essential
to most real programming languages [Mos96a,x6.4].

3 Modular monadic semantics

Modular monadic semantics (MMS) [LHJ95, LH96] is a
structured form of denotational semantics developed re-
cently by Liang, Hudak, and Jones of Yale University
based on the work of Moggi [Mog89a, Mog91a] and Es-
pinosa [Esp93, Esp94]. It provides a very usable ap-
proach to denotational semantics with excellent flexibility
and modularity properties. MMS is presented in the syntax
of an existing functional language, thus permitting specifi-
cations to be directly executed.

In the following sections we very briefly note the es-
sential features of modular monadic sematics; more details
may be found in [LH96] and [LHJ95].

3.1 Structure of MMS

Modular monadic semantics specifies the semantics of a
language by a mapping from terms tocomputationsper-
formed within amonad. The monad hides details of se-
mantic features such as environments and stores that are

used by the computation, and exposes operators allowing
access to these features.

All monads have the two primitive operatorsreturn and
>>= (pronounced “bind”). The expressionreturn x rep-
resents the trivial computation with resultx; the expression
c1 >>= �v ! c2 represents the computation that com-
putesc1, binds the result tov, then computesc2.

In addition to these essential operators, monads encapsu-
lating semantic features provide operators to access them.
For example, an environment monad might providerdEnv

andinEnv operators; a continuation monad would provide
a callcc operator.

This abstraction allows the underlying monad (repre-
senting the required semantic features) to be modified with-
out altering the specification that uses it. Even if new fea-
tures are added to the monad, the existing interface remains
unchanged. Equations from one specification can be used
within another, as long as the features used in the one are
all found in the other.

The abstraction also allows us to ignore irrelevant de-
tails. As we manipulate the store, for example, we need not
concern ourselves with preserving the environment—this is
done transparently by thereturn and>>= operators.

Alone, this is not sufficient. Even though the specifi-
cation using the monad need not change as the feature set
represented changes, it is clear that the monad itself must
change: it must incorporate new operators, and the be-
haviour of existing operators (especiallyreturn and>>=)
must change appropriately. For this reason, we introduce
monad transformers.

A monad transformeris an object that transforms a
monad, modifying the behaviour of its existing operators
and adding new ones. In modular monadic semantics, we
represent each desired semantic feature by a monad trans-
former, and then apply them all to a trivial monad. The
resulting monad incorporates all of the features of the com-
ponent monad transformers, and is used for the semantic
specification of the high-level language.

The great advantage of this system its flexibility. De-
pending on how much support is needed, any set of monad
transformers representing any set of semantic features may
be combined in a modular fashion to provide that support.
Monad transformers provide the power needed to encapsu-
late high-level semantic features, but still allow access to
the low-level semantic detail.

The system is highly modular: the definition of each
monad transformer is independent of the others; one need
not concern oneself with handling the details of unre-
lated semantic features. As well as simplifying the writ-
ing of monad transformers, this also means that one may
construct modularproofs within the system: as modular
monadic semantics is simply a structured form of denota-
tional semantics our normal proof methods still apply, but
now we may deal with each semantic feature separately and
rely on the system to cleanly and safely combine them.



3.2 Example

As a simple example of the use of modular monadic se-
mantics, consider a specification for a small expression lan-
guage. The language is to support nested environments
and exceptions. These are common language features, and
from a standard library of monad transformers we select
ErrorT for supporting errors andEnvT for environments.
A monad for our expression language can be formed by
composing these monad transformers as follows1:

typeM = ErrorT (EnvT Id)

Next, consider the equation for the addition operation:

evaluate (Add e1 e2) =

evaluate e1 >>= �v1 !

evaluate e2 >>= �v2 !

return (v1 + v2)

Here we simply evaluate the two subexpressions and
return the sum of the results. Errors and environments
are transparently passed around by the>>= operator, and
hence need not be considered at all by this equation.

The equation for a variable reference involves both envi-
ronments and errors, and demonstrates the use of the oper-
ators provided by those monad transformers:

evaluate (Var x) =

rdEnv >>= �� !

case lookup x �of

Just v ! return v

Nothing ! raise “unbound identifier”

HererdEnv andraise are operators provided by the en-
vironment and error monad transformers, respectively. The
functionlookup is a helper function defined elsewhere. The
environment is accessed by means of the operatorrdEnv ,
“read the value of the environment”, which uses the envi-
ronment that is passed implicitly within the monad; it does
not need to appear explicitly as a parameter toevaluate .

Underneath this example, of course, are the actual
monad transformers involved. As mentioned before, a
monad transformer adds new operators to the monad, mod-
ifies the existing ones, and alters the definitions ofreturn

and >>=. The definition ofEnvT , the environment
monad transformer, is as follows:

typeEnvT m a = e! m a

return(EnvT m) v = ��! returnm v

1Id is the trivial monad

c >>=(EnvT m) f = ��! c� >>=m �v ! fv�

rdEnv (EnvT m) = ��! returnm �

inEnv (EnvT m) c = ��0
! c�

lift (EnvT m) c = ��! c

The first equation defines the new monad transformer
EnvT as taking a monadm defined over a result typea
and turning it into a new monad,EnvT m, overa. An en-
coding in the lambda calculus is given for environments.

Next we define the operatorsreturn(EnvT m) and
>>=(EnvT m), in terms of the operators of the lower
monadm.

We define the operatorsrdEnv andinEnv next, thus per-
mitting access to the environment now being passed around
within the monad.

Finally, we define an operatorlift (EnvT m) which is used
to transform computations in the lower monadm to compu-
tations in the upper monadEnvT m. This lifting operator
is used by the MMS system to lift the operators ofm to the
upper monad level, so they may still be used.

In reality, the situation is a little more complex than
this. For details, consult Liang, Hudak, and Jones’ pa-
per [LHJ95].

4 Modular monadic action semantics

We have seen that action semantics is an excellent nota-
tion for describing the semantics of real programming lan-
guages. However, we have also seen that certain constructs
pose grave difficulties when the language specifier attempts
to encode them in action semantics. These difficulties are
due to the fixed nature of action semantics—certain notions
of computation are built into action semantics, and any that
are not must be tediously simulated. This situation is inad-
equate.

As we noted in Section 2.3, the fixed nature of action
semantics is in large part due to the monolithic nature of
its underlying semantic definition, written in a variant of
Plotkin’s structural operational semantics.

The recent work on modular monadic semantics, de-
scribed in Section 3, suggested to us a solution to the prob-
lem. Modular monadic semantics provides a mode of se-
mantic definition that is truly modular. Yet it is also suffi-
ciently low-level to be used for the specification of action
notation. A tiered system with action notation specified
by a modular monadic semantics would preserve the user-
friendliness of action notation, but permit the notation to
be modified relatively easily to incorporate even quite ma-
jor modifications or additions to the notions of computation
represented.

As an added bonus, modular monadic semantics de-
scends ultimately from denotational semantics, and so in-
herits its rich theory—yet without the customary tangle
of unmaintainable equations. Hence, while providing a



clear operational interpretation of action notation, a mod-
ular monadic semantics for action notation would also pro-
vide a sound basis for the development of theories of action
semantics.

The result of these observations is MMAS—a mod-
ular monadic action semantics. MMAS appears identi-
cal to Mosses’ action semantics, but internally its seman-
tics is specified by means of a modular monadic seman-
tics in the style of Liang, Hudak, and Jones, rather than
Mosses’ structural operational semantics. As a conse-
quence, MMAS is modular and extensible, and dialects of
MMAS can be created that incorporate new or modified
notions of computation.

4.1 Structure of MMAS

In Figure 1 we have considered the structure of action se-
mantics as a formal specification technique, along with
other semantic formalisms. We now consider the structure
of systems thatimplementaction semantics, in order to in-
terpret or compile a language defined in it.

In Figure 2(a) we have Mosses’ definitive formal model,
as described in [Mos92]. The action-semantic interface of
the system is described by a kernel action notation (here
denoted ‘KAN’) and a layer of “sugar” reducing full action
notation to this kernel action notation. The kernel is de-
scribed in terms of a structural operational semantics (see
Section 2.2), and this structural operational semantics is ex-
ecuted by an abstract machine.

It is not practical to implement Mosses’ formal model
directly. Instead such a system is simulated by some other
technique, and this shown formally or informally to be
equivalent to Mosses’ scheme. The architecture of an ac-
tion semantics interpreter of this nature is depicted in Fig-
ure 2(b). Notice that the interpreter in this system is gen-
erally more or less monolithic, and implemented in some
low-level implementation language such as C.

An action compiler (or action semantics-based compiler
generator) is similar, except that actual code generation is
usually deferred to another compiler and hence the com-
piler is really a translator between action notation and the
low-level implementation language. Figure 2(c) depicts
this scenario. Again, the system is essentially monolithic:
the program implements the semantics of action notation,
but in an opaque manner that is not at all easy to modify.

In contrast to these techniques, consider the MMAS ap-
proach, as shown in Figure 2(d). Here the external ac-
tion semantic interface of the system is provided by the
action notation layer, which is coded in modular monadic
semantics. The action notation layer depends on amonad
transformer layer, which defines and combines a series of
monad tranformers representing features required by the
action notation layer. As there is some common code in the
monad transformer layer, this is abstracted out into thegen-
eral monad transformer layer; both these latter two layers
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SOS Abstract Machine
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Figure 2(a): Mosses’ model action semantics system
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Figure 2(b): An action semantics interpreter

are coded in Haskell and the system depends on an under-
lying Haskell interpreter or compiler.

The larger number of distinct layers in this scheme en-
sures that flexibility and modularity is possible at each
level. The modular structure of each layer is depicted in
Figure 3. Features in the high-level language are based
upon notions of computation provided by modules in the
action notation layer, which are based in turn on those pro-
vided by the monad transformers of the monad transformer
layer, and so on. As features change in the high-level lan-
guage, the architecture allows existing modules to be re-
moved or modified and additional modules to be added,
with a high-degree of independence from other modules in
the system.

4.2 The base system

Like Mosses’ action semantics, modular monadic action
semantics can be divided into facets. In general, each facet
consists of an action notation module and a supporting
monad transformer providing the notions of computation
on which it relies. However, this need not be true of all
facets: action notation modules and monad transformers
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are independent. Both an action notation module relying
only upon existing monad transformers and a monad trans-
former with no related action notation module are possible,
and indeed are present in base MMAS.

Base MMAS, the unmodified form of the MMAS sys-
tem, implements almost all of Mosses’ action semantics. It
contains six action notation modules: basic and functional,
declarative, imperative, reflective, directive, and commu-
nicative. These correspond directly to the seven facets of
Mosses’ action notation, except that the basic and func-
tional facets have been merged into one.

To support this action notation layer, base MMAS con-
tains eight monad transformers: one each for the basic and
functional, declarative, imperative, directive, and commu-
nicative facets (there is none for the reflective facet), along
with two others used to implement parallelism and non-
determinism (built into Mosses’ structural operational se-
mantics but not present in the lambda-calculus basis of
MMAS).

Code common to a number of these monad transform-
ers suggested the extraction of two general monad trans-
formers, one for the representation of environments and the
other for the representation of state.

This base system implements almost all of Mosses’ ac-
tion semantics: in most cases existing action semantic de-
scriptions can be used with MMAS with very little modifi-
cation. Such ASDs can be interpreted in an MMAS system
based over a Haskell interpreter, or made into compilers
using an optimising Haskell compiler. Proofs of their prop-
erties may take advantage of the true modularity provided
by the modular monadic definition of action semantics (see
[LH96] for a discussion of proofs in a modular monadic
context).

4.3 Branching out

The key feature of modular monadic action semantics, ab-
sent in other implementations of action semantics, isexten-
sibility. Modules can be modified, removed from or added
to the MMAS system.

Modification Any module of the MMAS system can be
modified internally without affecting any other portion of
the system, as long as its external interface is not changed.
In fact, new functionality may beadded, as long as existing
functionality is unaffected.

At the level of the action notation layer, new actions,
combinators, yielders or sorts may be added or the precise
behaviour of existing ones altered, simply by editing the
modular monadic semantics code that specifies them for
the facet concerned.

At the level of the monad transformer, new features may
be added or the implementation of existing ones may be
altered. New or altered features can then be used by the
action notation module or modules above it.



As long as modifications preserve or naturally extend
existing functionality, changes are completely modular. If
this is not the case, changes are required only to the mod-
ules that depend on the module modified: in the case of
changes to an action notation module, none (other than
existing ASDs); in the case of changes to a monad trans-
former, only the action notation module(s) on which it de-
pends.

Removal Naturally, modules which are not required may
be removed from the MMAS system entirely. This is
of course not strictly necessary—optimisations will re-
move reference to the unused module anyway, and proofs
are modular and will not be affected by an unreferenced
module—but may be desired for neatness or security.

Addition Of greater significance is the addition of new
modules. It is clear that modifying existing facets or mod-
ules is not always sufficient; in certain cases one wishes to
add an entirely new feature or notion of computation to the
system. The procedure for doing so in MMAS (in contrast
to that for existing action semantics systems) is straightfor-
ward.

First, a new monad transformer must be defined. This
transformer is written in Haskell, possibly with the aid of
the existing general monad transformers and support code,
and encapsulates the behaviour of the new feature. A typi-
cal monad transformer can be defined in around 40 lines of
code.

Next, a new module in the action notation layer is de-
fined. This module is written using modular monadic se-
mantics, referring to the new monad transformer and possi-
bly others. It defines the new action notation to be used to
access the newly-defined feature. Depending on how many
actions, combinators and yielders are to be defined the code
required varies, but a typical size would be around 30 lines
of code.

Together, this module and its supporting monad trans-
former add the desired new feature to the MMAS system.
The system can now be used in exactly the same manner as
before—existing ASDs will continue to work identically,
unaware of the new feature—but new action semantics de-
scriptions may use the feature as desired.

4.4 Reasoning in MMAS

Consider again Figure 1, and the problem of reasoning
about the correctness of a program or a transformation in
the high-level language by means of the formal semantics.

In fig. 1 (a), a proof of a property of the high-level lan-
guage is essentially a proof about states of the abstract ma-
chine upon which SOS is based. Similarly, in fig. 1 (b) a
proof concerns elements of the various domains over which
the relevant semantic equations are defined. In both cases,
the representations we must deal with are very low-level,

andmonolithic: i.e., all information relating to the program
is contained in a single object, and all of it can potentially
affect the validity of the proof and must be taken into ac-
count by it. In both SOS and�-calculus we may take steps
to alleviate this to some extent, but it remains a fundamen-
tal problem.

In fig. 1 (c), Mosses’ action semantics,modularproofs
are possible at the action semantic level. This means that
we may prove a property about, say, the functional be-
haviour of an expression without concerning ourselves with
interactions from communication or from the store. Given
an action theory describing the semantics of actions at the
action semantics level, facet by facet, we can construct our
proofs facet by facet also.

However, the assumption here is that such an action the-
ory exists. Certainly thisshouldbe the case, but in gen-
eral it is not. Certain properties about actions are known,
and are listed in [Mos92] and elsewhere; but no general
action theory yet exists (see Section 2.3). Because of this
lack, proofs about high-level language properties must usu-
ally begin by constructing the action theory they need: and
this construction of action theory must be performed at the
SOS level, which as we saw above is monolithic rather
than modular, and hence difficult. In practice, proofs about
high-level languages using action semantics are almost as
hard as those using a structural operational semantics di-
rectly.

The scenario in fig. 1 (d), however, is different. As in
fig. 1 (c), we may construct modular proofs of high-level
language properties based on the modularity of modular
monadic semantics. But with modular monadic seman-
tics, the theory we construct to support this may also be
constructed modularly: our interaction with the lambda-
calculus is structured in such a way that proofs involving
one monad transformer cannot be affected by properties of
other unrelated monad transformers. Hence we are able
to realise the promise of relatively easy modular proofs of
high-level language properties, even in practice when this
requires the construction of new modular monadic seman-
tic theory, since this construction is also modular.

As has already been explained, the intention of modu-
lar monadic action semantics (fig. 1(c)) is to provide action
semantics with the true modularity of modular monadic se-
mantics. To prove high-level language properties in this
system, we use action theory. But, instead of construct-
ing this theory directly and monolithically from the SOS,
we construct it in terms of the relatively high-level modu-
lar theory provided by modular monadic semantics.This
theory, in turn, is constructed, again modularly, from the
lamba-calculus properties involved in each monad trans-
former. The result is a fully-modular, tiered system, in
which one need only consider the features that are directly
relevant to the property one wishes to prove—unrelated
features may safely be ignored.

Work so far on modular monadic action semantics has



concentrated rather on the pragmatics of the system than on
the theory, but the theoretical basis is clear. Liang and Hu-
dak [LH96] give a discussion of proofs in modular monadic
semantics corresponding to the two arrows in that we used
in fig. 1 (c) of Figure 1; these are essentially the lower two
of the three arrows in fig. 1 (e), modular monadic action
semantics.

4.5 Limitations

Modular monadic action semantics is not completely iden-
tical to Mosses’ action semantics. MMAS implements only
a small part of Mosses’ communicative facet. Mosses’ ver-
sion of this facet supports general message-passing com-
munication between multiple parallel agents. A system
of this nature is of necessity quite complex, involving not
merely communication but also the creation and manage-
ment of the parallel processes themselves. As the whole
area of parallelism in denotational semantics is currently
rather turbulent [Abr96], it was felt safest to take a con-
servative approach and implement only a restricted form of
process–user interaction, for a single process only. Paral-
lelism within a process is supported.

The type system used by modular monadic action se-
mantics is essentially that of the underlying Haskell system,
overlaid with Liang, Hudak, and Jones’ extensible union
types [LHJ95]. Compared with the unified algebras used
by Mosses, this system is quite restricted: types (sorts in
Mosses’ terminology) are not first-class, and the only type
operations permitted are injection, projection and disjoint
union. This means that those operators in action semantics
dependent upon first-class sorts (such as the nondetermin-
istic choice operatorchoose) have of necessity had their
semantics altered. Luckily there are few of these: Mosses
writes [Mos92, p. 36] “action notation does not depend
much on the unorthodox features of our algebraic speci-
fication framework.”

As well as being impacted by the lack of first-class sorts
(and hence unbounded nondeterminism), the nondetermin-
ism of modular monadic action semantics is restricted by
its nature as an executable system. It is constrained to ‘give
an answer’, and hence in the end justoneof the many pos-
sible (nondeterministic) behaviours must be exhibited, un-
like action semantics which merely returns the sort of all
possible behaviours.

5 An example

The notion of computation that is most obviously missing
from Mosses’ action semantics isfirst-class continuations
(noted in [Mos92, p. 211] and [Doh93,x4.1], amongst oth-
ers). For various reasons, Mosses found continuations dif-
ficult and messy to add to action semantics, and so chose
to omit them. Unfortunately, this makes a number of lan-
guage constructs (including some forms of exception han-

dling) exceedingly difficult to specify. Now, with MMAS
providing the full power of denotational semantics, contin-
uations can be implemented with relative ease.

Figure 4 shows the definition of the new monad trans-
former, ContT (some details have been omitted). This
monad transformer modifiesreturn and >>= to use
continuation-passing style, and defines an operatorcallccK

to perform the call-with-current-continuation operation.
By adding this monad transformer to the monad transform-
ers of base MMAS, all existing code will be transparently
converted to use a continuation-passing semantics rather
than a direct semantics. All existing monad operators are
converted to behave appropriately, and the newcallccK op-
erator is added.

Recall that at this point, the modularity of the sys-
tem ensures that (as long as certain proof obligations
are satisfied regarding the behaviour ofreturn(ContT m),
>>=(ContT m), andlift (ContT m)) the behaviour of all ex-
isting action notation module code remains identical, and
that all proofs of properties of the base MMAS system still
remain valid for the new system.No existing codeneed be
altered to support the use of this new notion of computa-
tion.

In order to use this new feature, however, new action
notation must be provided. Figure 5 shows a portion of
the code for the new action notation module: the defini-
tion of the combinatorcWithCC (for which the concrete
syntax iswith the current continuation in do ). In ad-
dition to this combinator (and omitted from the figure), two
new actions are provided:jump to andjump to with .
The actions permit a continuation to be invoked, optionally
passing it a value; the combinator binds the current continu-
ation to a token in the environment and performs a block of
code (the call-with-current-continuation operation, action-
semantics style).

The precise semantics of the combinator can be seen by
inspecting the modular monadic semantic code in Figure 5.
The token yielder is evaluated, and then theContT opera-
tor callccK is used to capture the current continuation. The
token is bound to a code fragment that obtains the current
transient, passes it to the continuation, obtains the return
value and provides it as the transient result. Then the code
enclosed bydo is performed, the resulting transient ob-
tained and returned. Finally, the result ofcallccK is ob-
tained and returned as a transient to the caller.

With the addition of the monad transformer of Figure 4
and the action notation module of Figure 5 are added,
MMAS is extended to include continuations. ASDs can
now be written that refer to continuations—see the exam-
ple in the appendix.

But unlike the other systems depicted in Figure 1, the
extension of MMAS has not changed the behaviour or in-
terface of the system with respect to existing features. All
existing ASDs will behave just as they did before, and code
from them may be used within new ASDs without modifi-



typeContT ans m a = (a! m ans) ! m ans

return(ContT m) v = �k ! k v

m >>=(ContT m) f = �k ! m (�a ! f a k)

callccK (ContT m) f = �k ! f (�a ! (�k0
! k a)) k

lift (ContT m)m = �k ! m >>=m k

Figure 4: Continuations: monad transformer

cWithCC ytok a =

ytok >>= � tok !

callccK (�k !

getE >>= �e !

setE (overlay e
(bindTo tok

(abstractAct
(getB >>= �(Tr t) !
k t >>= �t0 !

doB (Tr t0))))) >>= �() !

a >>= �() !

getB >>= �b!

return (case bof
Tr t! t

! tnil)) >>= �t!

getB >>= �b!

case bof

Tr ! doB (Tr t)
! return ()

Figure 5: Continuations: action notation module portion

cation. Even more significantly, the modular proofs that
applied to the old ASD and the old version of MMAS will
apply equally well to the new extended version! No ex-
tra work is required—everything required is encapsulated
within the new monad transformer, action notation module
and proof obligations.

The full code for the continuation facet of MMAS and
for all facets of base MMAS is given in Wansbrough’s the-
sis [Wan97].

6 Related work

The work described here owes a great debt to the work of
Mosses and others [Mos92, Mos96a] on action semantics.

Modular monadic semantics derives ultimately from the
work of Moggi [Mog89a, Mog89b, Mog91b, Mog91a] on
monads for programming language semantics. Steele’s

work [Ste94] on pseudomonads provided an early proto-
type of a system very similar to MMAS. Espinosa [Esp95]
and Liang, Hudak, and Jones [LHJ95, LH96] provided the
details of the implementation of Moggi’s ideas in a work-
ing system; MMAS is directly based on the work of Liang,
Hudak and Jones (the term ‘modular monadic semantics’ is
due to Liang and Hudak [LH96]). It is interesting that both
Espinosa and Liang, Hudak, and Jones credit Mosses with
inspiring their research. This present paper exhibits a more
concrete connection between the two groups.

A number of researchers have developed action in-
terpreters or action compilers [Mou96, Ørb94, BMW92,
Pal92], which appear similar to MMAS in that they im-
plement action semantics; but in general these are based
on Mosses’ structural operational semantics and are con-
structed monolithically (see Figures 2(a), 2(b) and 2(c)).

Lassen[Las95] and Doh and Schmidt[DS94], like
MMAS, replace Mosses’ structural operational semantics
with an alternative (a reduction semantics and a natural se-
mantics, respectively) and use it to reason about action no-
tation. Neither theory is intended to be executable, how-
ever, and neither is particularly modular.

7 Conclusions

In conclusion, then, action semantics is both an excellent
system for the specification of domain-specific languages
and a fascinating DSL in its own right. However, action
semantics has significant limitations. It is incomplete and
does not permit extension, and proving results within it is
difficult. The solution to this problem is provided by mod-
ular monadic action semantics, a tiered system consisting
of an action notation layer defined in terms of a modular
monadic semantics, which is in turn modularly defined in
terms of a functional programming language.

We have seen that modular monadic action semantics
enhances action semantics, making it more useful and ex-
tending its range of applicability. Through its modularity
and extensibility, new features can be added to the base ac-
tion semantics, enabling the description of languages using
these features to be done without resorting to tedious simu-
lation. By replacing Mosses’ structural operational seman-
tics with a modular monadic one, we have in fact achieved
what Mosses hints at in [Mos96a,x8], where he notes that
“the current structural operational semantics of action no-
tation is not so easy to modify; alternative forms . . . might
be preferable in that respect.” We have demonstrated the
utility of this by adding continuations to action semantics,
in Section 5, something that has been until now quite im-
practical to achieve.

In addition, the use of amodular underlying seman-
tics which is directly based on denotational semantics
should make action semantic theory much easier to de-
velop. Proofs will be modular, and can make use of the
results and techniques that have been developed in the field



of denotational semantics. Of course, as Mosses notes in
[Mos96a,x1.3], there are certain technical difficulties with
implementingall of action semantics in denotational se-
mantics (and hence modular monadic semantics); however
MMAS demonstrates that a substantial and useful portion
of it canbe so implemented. As further developments oc-
cur in denotational semantics, these may be brought into
the MMAS framework and used to increase its scope.

The MMAS system demonstrates the utility of Liang,
Hudak, and Jones’ modular monadic semantics as a lower-
level semantic framework. Our implementation consists of
around 1200 lines of code, and so is a significantly-sized
example of its use. We found that the system worked ex-
tremely well, although our experience did suggest some mi-
nor alterations to their approach.

Modular monadic action semantics is a flexible, modu-
lar, extensible version of Mosses’ action semantics. It al-
lows new features to be readily added to the semantics in a
modular fashion, and promises to make the semantic the-
ory more manageable. As such, we believe it offers an
excellent extension to action semantics for specifying the
semantics of domain-specific languages.
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A Devils and Angels

This is a problem from [FHK84]. Carlsson uses it as
an example in his Advanced Functional Programming
course at Chalmers. His solution code (in Haskell, using a
primitive version of [LHJ95]’s monad transformer system)
can be found athttp://www.cs.chalmers.se/
˜magnus/afp/problems/devils-n-angels/ ;
this code follows Friedman, Haynes and Kohlbecker’s
Scheme code in [FHK84].

The problem is to define three actions,milestone, devil
andangel, with the following behaviour. The computation
has the goal of finishing despite the existence of devils.



Whenever a devil is encountered, control is sent back to
the last milestone. If another devil (or the same one again)
is encountered, control is sent back to the milestone before
that one, and so on. If no milestones remain, the devil does
nothing.

Whenever an angel is encountered, control is sent for-
ward to where the computation last met a devil. If another
angel is encountered, control is sent further forward to the
devil before that one, and so on. Again, if no devils have
been encountered the angel does nothing.

The milestone appears as an action that simply passes a
transient straight through, likeregive. The value passed to
a devil, however, is given to what follows the appropriate
milestone; the value passed to an angel is given to what
follows the appropriate devil.

Continuations provide an excellent means of implement-
ing the above problem. We maintain two stacks of continu-
ations: one ofpastcontinuations (pushed bymilestones
and popped bydevils), and one offuture continuations
(pushed bydevils and popped byangels). This is achieved
by the following actions:

(1) pop-cont S:Token =
give the data stored in

the cell bound to S then
check the count of it

is greater than 0 and then
give the first of it

and
store the rest of it in

the cell bound to S

or
check the count of it is equal to 0 then

give the abstraction of regive .

(2) push-cont ( S:Token, Y :Yielder ) =
give Y

and
give the data stored in

the cell bound to S

then
store it in the cell bound to S .

Note that the continuations are stored in a tuple stored in
a named cell. We use cells named“past” and“future”.

We can now define the required primitives,milestone,
devil andangel, as follows:

(3) milestone =
with the current continuation in “k” do

push-cont ( “past”, the data bound to “k” )
and

regive .

(4) devil =

with the current continuation in “k” do
push-cont ( “future”, the data bound to “k” )

and
pop-cont “past” and regive

then
jump to the given continuation#1

with the given datum#2 .

(5) angel =
pop-cont “future” and regive

then
jump to the given continuation#1

with the given datum#2 .

milestone simply obtains the current continuation and
pushes it onto the“past” stack, and then passes through the
value passed to it.

devil obtains the current continuation, pushes it onto the
“future” stack, and then passes the value passed it to the
continuation popped off the top of the“past” stack (note
that if the stack is empty, we are given the identity abstrac-
tion abstraction of regive, so we get the correct behaviour
even in this case).

angel simply passes the value it is passed directly to
the continuation popped from the top of the“future” stack.
Again, if it is empty it uses the identity abstraction.

We conclude with code for a short example due to Carls-
son:

(6) supernatural =
allocate a cell then bind “past” to it moreover

allocate a cell then bind “future” to it
hence

store () in the cell bound to “past” and
store () in the cell bound to “future”

then
give 1 then

milestone then
check it is equal to 1 then

give 2 then
devil then

give the sum of ( it, 100 )
or

check it is not equal to 1 and then
give the sum of ( 3, it ) then

angel .

After allocating cells for the two stacks and initialising
them, this code passes 1 to the first milestone; if it returns 1
then it passes 2 to a devil and gives a final result of whatever
the devil returns plus 100. If the milestone doesn’t return
1 then the code adds 3 to whatever the milestone did return
and passes the result to an angel.

Execution proceeds as follows: 1 is passed to the mile-
stone, and 1 is returned. 2 is passed to the devil, which
jumps back to the milestone and returns 2 from it. 3 is



added to 2 to get 5, which is passed to the angel. The an-
gel jumps forward to the devil, which now returns 5; 100 is
added to this to get 105, which is returned from the com-
putation as the final result.


