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Abstract clearly and precisely defined; modular enough to change
A domain-specific language (DSL) is a framework incrementally; and amenable to formal reasoning. Differ-

which is designed to precisely meet the needs of a particd?nt tools exist that address these varied requirements, but

lar application. Domain-specific languages exist for a vari-€W make any attempt to address them all. Compiler gener-

ety of reasons. As productivity tools, they are used to mak@&rs provide efficient implementations, but they typically
application prototyping and development faster and mordave weak formal properties. We do not consider such sys-

robust in the presence of evolving requirements. FurthereM$ further in this paper. Semantic formalisms, such as

more, by bridging the “semantic gap” between an appnca_denotational semantics and structural operational seman-

tion domain and program code, DSLs increase the Oppmt_ics, have richly developed theories but are difficult to use

tunity to apply formal methods in proving properties of an &1d lack modularity.
application. The conceptual distance between the high-level language
In this paper, we contribute a synthesis of two existingand established semantic formalisms is huge. Writing such
systems that address the problem of providiogndse-  specifications is a tedious and difficult task. Natural con-
mantic descriptions ofealistic programming languages: cepts in the high-level language must be accurately simu-
action semantics and modular monadic semantics. Thited by constructs built from the small range of primitives
resulting synthesis, modular monadic action semantics, i# the semantic formalism. The probability of introducing
compatible with action semantics yet adds true modularityerrors is large, and the maintainability of the specification
and allows domain specific specifications to be made at & Poor.
variety of levels. Three attempts at solving the problem of providing
soundsemantic descriptions efalistic programming lan-
guages are presented here. The firsadtion seman-
tics[M0s92], a highly readable notation with formal foun-
“I'd rather write programs to write programs than dations in Peter. Mosses'’s upified algebra _and Plotkin’s
write programs.” (Programming proverb). structural pperanonal semantics [Plo83]. This sy_stem has
proven quite popular, and has been used to specify a num-
A domain-specific language (DSL) is a framework ber of existing and evolving languages.
which is designed to precisely meet the needs of a particu- The second is Hudak, Liang and Jonesiodular
lar application. Domain-specific languages exist for a vari-monadic semantich. H96]. Modular monadic semantics
ety of reasons. As productivity tools, they are used to makés a structured form of denotational semantics, embedded
application prototyping and development faster and morén the Haskell language. As a relatively new system it is
robust in the presence of evolving requirements. Furtheryet to gain widespread use, but it has a number of highly
more, by bridging the “semantic gap” between an applicaattractive features, foremost its excellent modularity prop-
tion domain and program code, DSLs increase the oppoferties.
tunity to.apply formal methods in proving properties of an  These two systems can be seen as competing for the
application. _ . _ . same market (Figure 1(c) and (d)): both are attempts to
~ Designing and implementing a domain specific languaggeduce the conceptual distance that must be bridged when
is, howeygr, pr_oblemat|c. Puttmg aside the requwemenforma”y specifying a high-level language (compare with
for an efficient implementation, the language needs to bel'zigure 1(a) and (b)). Both appear to do so successfully;
*This work was supported in part by a scholarship from the Universitythey are, however, different DSLs and are based in differ-
of Auckland. ent semantic formalisms.

1 Introduction




HLL HLL HLL HLL HLL The primary aim of action semantics is to al-

. ) S low usefulsemantic descriptions eéalistic pro-
l”g 1"8 g gramming languages. [M0s92, p. xv]
. g g AS ’
§ % AS MMS E It aims at being simultaneously formal and readable, and
g g S . MMES achieves this goal admirably. An action semantic descrip-
lg l g < tion is entirely formal, yet it can be intuitively understood
v v = 2 to a surprising degree by someone with no prior knowledge

g
SO A-calculus  SOS  A-calculus  SOS of the system.
However, action semantics has two significant limita-

(a) (b) () (d) (e) tions. Firstly, it is incomplete. Not all programming lan-
) o . guage concepts can be represented directly within action
Figure 1: Formal specification techniques. semantics—only those which Mosses has chosen to build

into the system. There is no provision for the extension

The third approach arises our observation that actioﬁnc action semantics. Secqqdly, -a.ct|on semantics thgory has
ot progressed very far: it is difficult to use an action se-

semantics and modular monadic semantics have much t&° P! .
offer each other. Action semantics provides a friendlymantlcs ofa Ianggage tq prove properties of that language
syntax to the language specifier, and encapsulates a su of programs wnttgn within it , .
stantial but fixed range of language concepts. Modular DESPite these disadvantages, action semantics has
monadic semantics, on the other hand, provides a rathd©ven quite popular and rather successful. = A num-
less friendly syntax, but with complete flexibility and ex- P€7 ©f compiler generators based on action semantics
tensibility afforded by its internal modularity. By combin- €XiSt [9rb94, BMW92, Pal92], along with at least one
ing these two systems, we obtain a tiered system containin{§©! [VDM96] for assistance in developing new action se-
two domain-specific semantic notations, featuring all themantic descriptions. Action semantic descriptions exist for
key features of action semantics along with the underlying:@)l number of real languages [Mos96,1], and others are
flexibility and extensibility of modular monadic semantics P€ing developed. An action semantics for an intermedi-
(Figure 1(e)). This system we caflodular monadic action 2t€ language for compilers, ANDF-FS [NT94, HT94], is
semanticMMAS). currently in use |n.the ‘real wc_)rld.’, by the Open softvyare
The user of modular monadic action semantics specifie§oundation. Work is progressing in a number of directions.
the high-level language using the rich set of primitives pro- N the following sections the essential features of ac-
vided by action semantics. If the language requires a confion semantics are briefly summarised. More detail can be
cept that is not present in action semantics, the specifidPund in Mosses’ book [Mos92], or his tutorial [Mos96b].

simply drops down one level, and uses the underlying mod-

ular monadic semantics to specify the new feature. If thisz 1 Structure of action semantics
is not sufficient, the modular monadic layer itself may be“"
modified or extended as required. All this takes place in 8y, 5ction semantic description (ASD) of a language spec-
highly modular fqghio_n, with little or no chgnge to existing ifies the semantics of the language by meanadaions
parts of the specification. Furthermotigoriesdeveloped  onresenting computations. The action corresponding to a
at each layer can also be developed in a modular fashionyen program phrase is built up from primitive actions and

New features can be introduced without undermining th&, .(ioncombinators Data referred to by the actions may be

validity of existing proofs. _ _ accessed by means yitlders and new types of data may
In the remainder of this paper we describe action semarny, readily defined in an algebraic fashion.

t'CS.’ modular mopadlc semantllcs, and modulgr monadic Action semantics divides program behaviour into a num-

action semantics in more detail, and we Investigate Somge, facets corresponding to the types of information

OI the applllcatttlgns OLMMAS' we clogp lude with atlook aealt with. Thebasicfacet refers to control flow. Thiginc-

g. some refaef WOrK, Sokme (|::Or|]|cg '”QI commends,l aNfonal facet refers to transient information, i.e., data passed

Irections for future work. ull details on modular Jbetween successive actions. Tdexlarativefacet refers to

mongdlc action semantics can be found in Wansbrough §coped information, i.e., bindings of tokens to data. The

thesis [Wang7]. imperativefacet refers to stable information, i.e., the stor-
age of data in cells. Finally, teommunicativéacet refers

2 Action semantics to permanent information, i.e., the communication of data
between distributed actions. Two further facets, réfec-

Action semantics [Mos92, Mos964a] is a notation devel-tive anddirectivefacets, refer to reflection and indirection.

oped over some years by Mosses at Aarhus University. Aé\ction semantics has these seven computational concepts

Mosses puts it, built in, and they can be used directly by specifications.



The primitive actions, yielders and data of action seman2.2 Semantics
tics are separated into these categories, and are intended to . L .
act on only one facet at a time. This automatically lends ction semantics is intended to be a formal notation, and

degree of modularity to an action semantic description: ac™” order to achieve this its own semantics must be precisely

tions involving only, say, basic and functional behaviour"’mOI formally defingd. MOSSE.ES chose to .dOthiS by providing
(such as expression evaluation) need not concern thenf: Iow-tl_evell defm't'?.n OEDZC“%T zimlgln%(;s] asss.triluc;usrlgl ht
selves with behaviour in other facets (such as the declafPerational seman IgSOS) [Plo81, Plo83], using '9

ative or imperative facets). The result is a readily maintain-varlatlon on Plotkin's original approach. . .
As an example, here are some of the equations describ-

able description: alterations to behaviour relating to on . .
b g eng the behaviour of ther combinator, used above to de-

facet do not affect unrelated code (as they inevitably dq. th i fthe ‘i’ statement. Th tions ar
when a monolithic approach is used, such as the conve Iné the semantics ot the - statement. 1he equations are

tional structural operational semantic or I(':lmbda—calculug;"’lken from [Mos92§C.3.3.2.1].
approaches). (1) stepped (A1, ) > (A}:Acting, I':local-info, uncommitted) ;

. L [A1 O A5 ]: [ Intermediate “or” Intermediate | =
very r I
A key advantage of action semantics is its very readable stepped ([ A1 O As [, Flocal-info)

notation. Action semaptics uses words rather than symbols, > (simplified [ A} O A ||, ', uncommitted) .
and.t.hese. are chosen ina way that a!lows even a reade_r UR  stepped (42, 1) > (AL:Acting, I'local-info, uncommitted) ;
familiar with action semantics to obtain a broad impression [A1 O A; ] : [ Intermediate “or” Intermediate | =

of the intended meaning of the description. This is par- stepped ([ A; O As ], l:local-info)

tially enabled by its flexible (albeit idiosyncratic) type sys- > (simplified [ A1 O A} ], I', uncommitted) .

tem, which permits definition of new types by extending or(©) stepped (A1, 1) > (A :Acting, I":local-info, ¢’':committing) ;
specialising existing ones and definition of abbreviations ~ [A: O A2 ] : [Intermediate “or” Intermediate ]| =

for commonly-occurring patterns of notation, and behaves  stepped ([ A1 O Az |, local-info) > (A3, ', ¢') .

much more like conventional set theory than do traditionali0) stepped (Az, ) > (Aj5:Acting, I':local-info, c':committing) ;
domains [A1 O As ] : [ Intermediate “or” Intermediate | =-

stepped ([ A1 O As ], l:local-info) > (AL, I, ¢').

'Asasimple gxample of 'the use of f';\ction semantics, con- Equations (7) and (8) handle uncommitted cases, and
S|de.rthe ft')llowmg'semantlcs forthe‘lf’ statement Ofacon'equations (9) and (10) committed cases (commitment is
ventional imperative language. In this exampgecute 130005 to the action of Prolog's ‘cut operator (!):
is a semantic function which gives the semantics of state; ommits to the chosen branch, prohibiting backtrack-
ments. The brackefs | enclose t.he abstract syntax_for.the ing). In both cases, the equations specify nondetermin-
statement, and the term to the right of the equals sign 'Sthﬁstic choice of one action to bstepped. Once this is

action representing the semantics of the statement. done, if the state remains uncommitted then equations (7)

execute [ “if’ E “then” S, “else” S, | = and (8) indicate a simplification is to be performed over the
evaluate E then whole phrase; if the state becomes committed then equa-
| check it and then execute S; tions (9) and (10) specify that the alternate branch is dis-
or carded. The result (in combination with the omitted defi-
| check not it and then execute Sa . nition of th65|mp||fy fUnCtion) is a nondeterministic back-

tracking choice with commitment.

The action corresponding to the phrdgé E “then” S;
“else” Ss begins by callingvaluate E, defined elsewhere.
The result of the expression is threaded bytte?n combi- 2.3 Problems
nator to the next action. This is ar, which nondeter- Action semantics provides an usable foundation on which
ministically executes one branch and backtracks on failto build specifications of programming languages. Refer-
ure. The actiorcheck, applied to the yieldeit, fails if  ring back to Figure 1, it bridges the gap between high-level
the yielded value is false and succeeds if it is true; the othelanguage and low-level formalism very effectively, provid-
branch has the complementary test. After the test, execung a language that already contains the features required
tion passes (viand then) to anexecute of the appropriate by the high-level language. In addition, it is highly read-
branch. able and ensures a degree of modularity in specifications.

This example shows the way in which action semantics However, the features supported by action semantics are
builds up actions from primitive actions, combinators, andfixed: the facets of action semantics are those defined by
yielders. Notice how easy the specification is to read, eveiMosses, and no mechanism is provided to modify or extend
without any familiarity with the notation. Also note that them. The facets provided are sufficient to describe many
there is no need to thread the store through this equatiomommon imperative languages; but there are language fea-
even though the evaluation & may access or modify it. tures (notably continuations, as popularised by Scheme for
The modularity of action semantics means we need nogéxample) that araot present in action semantics. The only
consider facets not directly referenced. way to specify languages containing such features is by



low-level simulation; resorting to this instantly loses all the used by the computation, and exposes operators allowing
advantages of action semantics. access to these features.

One of the reasons for the fixed nature of the facets in All monads have the two primitive operatowgurn and
action semantics is indicated in the diagram in Figure 1(c)>>= (pronounced “bind”). The expressioaturn x rep-
While the specification of the high-level language in actionresents the trivial computation with resultthe expression
semantics is done in a modular manner, Mosses’ definie; >>= v — ¢y represents the computation that com-
tion of action semantics in terms of structural operationaputesc;, binds the result te, then computes,.
semantics is done monolithically. This means that there In addition to these essential operators, monads encapsu-
is no real separation between facets at this level, and thiating semantic features provide operators to access them.
defining equations for each component must correctly hanFor example, an environment monad might providBnv
dle not only their own information but also the information andinEnv operators; a continuation monad would provide
from other, unrelated components. Without modularity wea callcc operator.
are back to the situation of Figure 1(a), where specification This abstraction allows the underlying monad (repre-
is tedious and error-prone, and maintainability is poor.  senting the required semantic features) to be modified with-

Another problem with action semantics lies in its theory.out altering the specification that uses it. Even if new fea-
One of the goals of a formal specification of a language, asures are added to the monad, the existing interface remains

articulated by Mosses [M0s92, p. 4], is to use it unchanged. Equations from one specification can be used
within another, as long as the features used in the one are
...as a basis fareasoningabout the correctness all found in the other.
of particular programs in relation to their speci- The abstraction also allows us to ignore irrelevant de-
fications, and for justifying program transforma- tails. As we manipulate the store, for example, we need not
tions. concern ourselves with preserving the environment—this is

An acti ticd inti fal cainl done transparently by theturn and>>= operators.
naction semantic description ot a 'anguage certainly pro= - pjone - this is not sufficient. Even though the specifi-

vides a formal s“pemflcanon, butiis it use_ful. Mosse_s him cation using the monad need not change as the feature set
self notes that “a decent theory for action semantics ha;

Pepresented changes, it is clear that the monad itself must
been slow to emerge” [Mos96%6]. Compilers incorporat- b ges,

. ) ; ) . change: it must incorporate new operators, and the be-
ing provably valid action transformations exist [Mos96a, g P P

: aviour of existing operators (especiatturn and>>=)
§6.2-3]; but th'e close§t approach to a general and tractgb ust change appropriately. For this reason, we introduce
theory for action equivalence still covers only the basic

; . s .~ "'monad transformers
functional and declarative facets of action semantics—

omitting the imperative and communicative facets essential A monad transformeiis an object that transforms a
to most real programming languages [Mos%&a4]. monad, modifying the behaviour of its existing operators
and adding new ones. In modular monadic semantics, we
. ) represent each desired semantic feature by a monad trans-
3 Modular monadic semantics former, and then apply them all to a trivial monad. The
) ) i resulting monad incorporates all of the features of the com-
Modular monadic semantics (MMS) [LHJ95, LH96] is & honent monad transformers, and is used for the semantic
structured fprm of denotational semantics deVE"?pEd_reépecification of the high-level language.
cently by Liang, Hudak, and Jones of Yale University ~ 1 great advantage of this system its flexibility. De-
based on the work of Moggi [Mog89a, Mog91a] and ES-anding on how much support is needed, any set of monad
pinosa [Esp93, Esp94]. It provides a very usable apyansformers representing any set of semantic features may
proach to denotational semantics with excellent flexibility o «ombined in a modular fashion to provide that support.
and modularity properties. MMS is presented in the syntax;onad transformers provide the power needed to encapsu-
of an existing functional language, thus permitting specifi- e high-level semantic features, but still allow access to
cations to be directly executed. the low-level semantic detail.

In the following sections we very briefly note the es-  the system is highly modular: the definition of each
sential features of modular monadic sematics; more detaillshonad transformer is independent of the others; one need

may be found in [LH96] and [LHJ9S]. not concern oneself with handling the details of unre-
lated semantic features. As well as simplifying the writ-
3.1 Structure of MMS ing of monad transformers, this also means that one may

construct modulaproofs within the system: as modular
Modular monadic semantics specifies the semantics of emonadic semantics is simply a structured form of denota-
language by a mapping from terms ¢computationgper-  tional semantics our normal proof methods still apply, but
formed within amonad The monad hides details of se- now we may deal with each semantic feature separately and
mantic features such as environments and stores that arely on the system to cleanly and safely combine them.



3.2 Example C>>=(gnorm) [ = Ap—cp>>=p dv— fup

As a simple example of the use of modular monadic se-  rdEnv gpyrm)y = Ap — return,, p
mantics, consider a specification for a small expression lan-
guage. The language is to support nested environments
and exceptions. These are common language features, and  lift gpyrmyc = Ap = c

from a standard library of monad transformers we select

ErrorT for supporting errors anBnv T for environments.  The first equation defines the new monad transformer
A monad for our expression language can be formed byZnvT as taking a monaeh defined over a result type

composing these monad transformers as foltows and turning it into a new monadinv T m, overa. An en-
coding in the lambda calculus is given for environments.

Next we define the operatorseturn gn,rm) and
type M = ErrorT (EnvT Id) >>=(gnoTm), IN terms of the operators of the lower
monadm.
Next, consider the equation for the addition operation:  \We define the operatord Env andinEnv next, thus per-
mitting access to the environment now being passed around
within the monad.

inEnv(Ean m)C = /\pl —cp

evaluate (Add e; e;) = Finally, we define an operatéif g, ,, Which is used
evaluate ey >>= vy — to transform computations in the lower monado compu-
evaluate ey >>= \vs — tations in the upper monakinvT m. This lifting operator

is used by the MMS system to lift the operatorsofo the
upper monad level, so they may still be used.

Here we simply evaluate the two subexpressions and In reality, the situation is a little more complex than
return the sum of the results. Errors and environmentdhis. For details, consult Liang, Hudak, and Jones’ pa-
are transparently passed around bythe= operator, and Per [LHJ95].
hence need not be considered at all by this equation.

The equation for a variable reference involves both enviy  Modular monadic action semantics
ronments and errors, and demonstrates the use of the oper-
ators provided by those monad transformers: We have seen that action semantics is an excellent nota-
tion for describing the semantics of real programming lan-
guages. However, we have also seen that certain constructs

return (v + vs2)

evaluate (Var z) = pose grave difficulties when the language specifier attempts
rdEnv >>= \p — to encode them in action semantics. These difficulties are
case lookup z p of due to the fixed nature of action semantics—certain notions

of computation are built into action semantics, and any that
are not must be tediously simulated. This situation is inad-
equate.
As we noted in Section 2.3, the fixed nature of action
emantics is in large part due to the monolithic nature of
its underlying semantic definition, written in a variant of

Justv — return v
Nothing — raise “unbound identifier”

HererdEnv andraise are operators provided by the en-
vironment and error monad transformers, respectively. Th
functionlookup is a helper function defined elsewhere. The Plotkin’s structural operational semantics
environment is accessed by means of the operatbnuv, P '

“read the value of the environment”, which uses the envi- Tgedrgcgnt tyvorl; on modtulgrt monadlcl i?m?n?ﬁs’ det;
ronment that is passed implicitly within the monad; it does>CPEC N SECtion o, suggested fo us a solution 1o the prob-

not need to appear explicitly as a parameteri@uate. lem. -Modgla_\r. monad!c semantics prowdeg a mode of Se-
mantic definition that is truly modular. Yet it is also suffi-

Underneath this example, of course, are the actuatiently low-level to be used for the specification of action
monad transformers involved. As mentioned before, anotation. A tiered system with action notation specified
monad transformer adds new operators to the monad, modby a modular monadic semantics would preserve the user-
ifies the existing ones, and alters the definitionsesfirn ~ friendliness of action notation, but permit the notation to

and >>=. The definition of EnvT, the environment be modified relatively easily to incorporate even quite ma-
monad transformer, is as follows: jor modifications or additions to the notions of computation
represented.
type EnvI’'ma = e—ma As an added bonus, modular monadic semantics de-
retU BroTm) = Ap = Telurng, v scends ultimately from denotational semantics, and so in-

herits its rich theory—yet without the customary tangle
11d is the trivial monad of unmaintainable equations. Hence, while providing a




clear operational interpretation of action notation, a mod- ‘ High-level language ‘

ular monadic semantics for action notation would also pro- AS
vide a sound basis for the development of theories of action ¢—‘—
semantics. Action

The result of these observations is MMAS—a mod- Notation
ular monadic action semantics. MMAS appears identi- KAN
cal to Mosses’ action semantics, but internally its seman-
tics is specified by means of a modular monadic seman- ‘ Kernel Action Notation ‘
tics in the style of Liang, Hudak, and Jones, rather than SOS

Mosses’ structural operational semantics. As a conse-
quence, MMAS is modular and extensible, and dialects of
MMAS can be created that incorporate new or modified
notions of computation.

‘ SOS Abstract Machine ‘

Figure 2(a): Mosses’ model action semantics system
4.1 Structure of MMAS

High-level language

In Figure 1 we have considered the structure of action se-
mantics as a formal specification technique, along with
other semantic formalisms. We now consider the structure Action notation
of systems thaimplementaction semantics, in order to in-
terpret or compile a language defined in it.

In Figure 2(a) we have Mosses’ definitive formal model,
as described in [M0s92]. The action-semantic interface of
the system is described by a kernel action notation (here
denoted ‘KAN’) and a layer of “sugar” reducing full action
notation to this kernel action notation. The kernel is de-
scribed in terms of a structural operational semantics (see
Section 2.2), and this structural operational semantics is ex-
ecuted by an abstract machine.

It is not practical to implement Mosses’ formal model Figure 2(b): An action semantics interpreter
directly. Instead such a system is simulated by some other
technique, and this shown formally or informally to be ,
equivalent to Mosses’ scheme. The architecture of an a@'€ coded in Haskell and the system depends on an under-
tion semantics interpreter of this nature is depicted in Fig/Ying Haskellinterpreter or compiler.
ure 2(b). Notice that the interpreter in this system is gen- 1n€ larger number of distinct layers in this scheme en-
erally more or less monolithic, and implemented in someSUres that flexibility and modularity is possible at each
low-level implementation language such as C. Ieyel. The modular s.tructure. of each layer is depicted in

An action compiler (or action semantics-based compilef 19Ure 3. Features in the high-level language are based

generator) is similar, except that actual code generation igPON notions of computation provided by modules in the
usually deferred to another compiler and hence the comaction notation layer, which are based in turn on those pro-

piler is really a translator between action notation and th ided by the monad transformers of the monad transformer

low-level implementation language. Figure 2(c) depicts ;yaegré aTﬁeSZr?:E:t(aAc:St f(reeat:ﬁgs g;ar.]gt?ng ;:f dh'%z'ltivﬁlelig'
this scenario. Again, the system is essentially monolithic3429€: hitectu WS existi u -
9 y y oved or modified and additional modules to be added,

the program implements the semantics of action notatior" ) ) )
but in an opaque manner that is not at all easy to modify. with a high-degree of independence from other modules in

In contrast to these techniques, consider the MMAS apJEhe system.

proach, as shown in Figure 2(d). Here the external ac-

tion semantic interface of the system is provided by theq 2 The base system

action notation layerwhich is coded in modular monadic

semantics. The action notation layer depends amaad Like Mosses’ action semantics, modular monadic action
transformer layerwhich defines and combines a series of semantics can be divided into facets. In general, each facet
monad tranformers representing features required by theonsists of an action notation module and a supporting
action notation layer. As there is some common code in thenonad transformer providing the notions of computation
monad transformer layer, this is abstracted outintgtite  on which it relies. However, this need not be true of all
eral monad transformer layeboth these latter two layers facets: action notation modules and monad transformers

AS

interpreter




High-level language

AS

Action notation
translator

Figure 2(c): An action semantics compiler

High-level language

AS

Action notation

MMS

Monad transformers

Haskell

General monad
transformers

Haskell

Haskell

Figure 2(d): The MMAS action semantics system

High-level language
Action Notation
Monad transformers

General monad transformers

Haskell

Figure 3: Detail of the MMAS action semantics system

are independent. Both an action notation module relying
only upon existing monad transformers and a monad trans-
former with no related action notation module are possible,
and indeed are present in base MMAS.

Base MMAS, the unmodified form of the MMAS sys-
tem, implements almost all of Mosses’ action semantics. It
contains six action notation modules: basic and functional,
declarative, imperative, reflective, directive, and commu-
nicative. These correspond directly to the seven facets of
Mosses’ action notation, except that the basic and func-
tional facets have been merged into one.

To support this action notation layer, base MMAS con-
tains eight monad transformers: one each for the basic and
functional, declarative, imperative, directive, and commu-
nicative facets (there is none for the reflective facet), along
with two others used to implement parallelism and non-
determinism (built into Mosses’ structural operational se-
mantics but not present in the lambda-calculus basis of
MMAS).

Code common to a humber of these monad transform-
ers suggested the extraction of two general monad trans-
formers, one for the representation of environments and the
other for the representation of state.

This base system implements almost all of Mosses’ ac-
tion semantics: in most cases existing action semantic de-
scriptions can be used with MMAS with very little modifi-
cation. Such ASDs can be interpreted in an MMAS system
based over a Haskell interpreter, or made into compilers
using an optimising Haskell compiler. Proofs of their prop-
erties may take advantage of the true modularity provided
by the modular monadic definition of action semantics (see
[LH96] for a discussion of proofs in a modular monadic
context).

4.3 Branching out

The key feature of modular monadic action semantics, ab-
sent in other implementations of action semanticexisn-
sibility. Modules can be modified, removed from or added
to the MMAS system.

Modification Any module of the MMAS system can be
modified internally without affecting any other portion of
the system, as long as its external interface is not changed.
In fact, new functionality may badded as long as existing
functionality is unaffected.

At the level of the action notation layer, new actions,
combinators, yielders or sorts may be added or the precise
behaviour of existing ones altered, simply by editing the
modular monadic semantics code that specifies them for
the facet concerned.

At the level of the monad transformer, new features may
be added or the implementation of existing ones may be
altered. New or altered features can then be used by the
action notation module or modules above it.



As long as modifications preserve or naturally extendandmonolithic i.e., all information relating to the program
existing functionality, changes are completely modular. Ifis contained in a single object, and all of it can potentially
this is not the case, changes are required only to the modifect the validity of the proof and must be taken into ac-
ules that depend on the module modified: in the case ofount by it. In both SOS anal-calculus we may take steps
changes to an action notation module, none (other thato alleviate this to some extent, but it remains a fundamen-
existing ASDs); in the case of changes to a monad trangal problem.
former, only the action notation module(s) on which it de- In fig. 1 (c), Mosses’ action semantiggodularproofs
pends. are possible at the action semantic level. This means that

we may prove a property about, say, the functional be-
Removal Naturally, modules which are not required may .haviour.of an expression w.itho.ut concerning ourselveg with
be removed from the MMAS system entirely. This is mteraquonsfrom communication or from the store. Given
of course not strictly necessary—optimisations will re-2an action theory describing the semantics of actions at the

move reference to the unused module anyway, and proo%ction semantics level, facet by facet, we can construct our

are modular and will not be affected by an unreferencedroofs facet by facet also. _ .
module—but may be desired for neatness or security. However, the assumption here is that such an action the-

ory exists. Certainly thishouldbe the case, but in gen-

eral it is not. Certain properties about actions are known,
. . . and are listed in [M0s92] and elsewhere; but no general
modules. Itis clear that modifying existing facets or mOOI'action theory yet exists (see Section 2.3). Because of this

ugeds IS nottglvlvays SL;ﬁ'Ct'em; N Cifta'” ]E:ases O?Ei.w'spetsr]t?ack, proofs about high-level language properties must usu-
addan entirely new feature or notion of computation to eaIIy begin by constructing the action theory they need: and
system. The procedure for doing so in MMAS (in contrast

to that f it " i ‘ i< straiahtf this construction of action theory must be performed at the
vSarda or existing action semantics systems) is straig o'50s level, which as we saw above is monolithic rather

First dt ¢ t be defined Th,than modular, and hence difficult. In practice, proofs about
Irsl, a hew monad transformer must be cefined. I§1igh—level languages using action semantics are almost as
transformer is written in Haskell, possibly with the aid of

- hard as those using a structural operational semantics di-
the existing general monad transformers and support COd?ectIy

and encapsulates the behaviour of the new feature. A typi- The scenario in fig. 1 (d), however, is different. As in
cal monad transformer can be defined in around 40 lines cﬁg. 1 (c), we may construct modular proofs of high-level

code. . .
. . . . language properties based on the modularity of modular
Next, a new module in the action notation layer is de'monadic semantics. But with modular monadic seman-

fmedt: Thlsfquulte |tshwr|tten usm% ;nodt;lar monaglc Se'Iics, the theory we construct to support this may also be
mantics, reterring to the new monad transiormer and possiy o c1eq modularly: our interaction with the lambda-
bly others. It defines the new action notation to be used t

h v-defined feat D di h Qalculus is structured in such a way that proofs involving
access the newly-getined feature. bepending on NOW many,  \,4na4 transformer cannot be affected by properties of

actions, combinators and yielders are to be defined the co Sher unrelated monad transformers. Hence we are able

required varies, but a typical size would be around 30 Ilne% realise the promise of relatively easy modular proofs of

of code. high-level language properties, even in practice when this

f Togethdedr,trt]hlsd mc.)dléle andf 'ti Suptpotrr:lng';\/ln'\)&rgad tr:’ms'requires the construction of new modular monadic seman-
ormer a € desired new teature 1o the Sys emtictheory, since this construction is also modular.

The system can now be used in exactly the same manner 8Sp< has already been explained, the intention of modu-

Bﬁ?v&ire%);ltsr?ggl:\wsg Zt\tljvigfbnl}'lcnnue?/vtgc\?i/g;ksléjrir:rﬁii”sy,de!-ar mongdic gction semantics (fig. 1(c)) is to provide aption
semantics with the true modularity of modular monadic se-
mantics. To prove high-level language properties in this
system, we use action theory. But, instead of construct-
4.4 Reasoning in MMAS ing this theory directly and monolithically from the SOS,
we construct it in terms of the relatively high-level modu-

Consider again Figure 1, and the problem of reasoning seqry provided by modular monadic semantidis
about the correctness of a program or a transformation i eory, in turn, is constructed, again modularly, from the

the high-level language by means of the formal semanticsyymna_calculus properties involved in each monad trans-
In fig. 1 (a), a proof of a property of the high-level lan- ¢, mer  The result is a fully-modular, tiered system, in
guage is essentially a proof about states of the abstract Mgz ich one need only consider the features that are directly

chine upon which SOS is based. Similarly, in fig. 1 (b) a,gjevant to the property one wishes to prove—unrelated
proof concerns elements of the various domains over whicl, 41 res may safely be ignored.

the relevant semantic equations are defined. In both cases,
the representations we must deal with are very low-level, Work so far on modular monadic action semantics has

Addition  Of greater significance is the addition of new

scriptions may use the feature as desired.



concentrated rather on the pragmatics of the system than aling) exceedingly difficult to specify. Now, with MMAS
the theory, but the theoretical basis is clear. Liang and Huproviding the full power of denotational semantics, contin-
dak [LH96] give a discussion of proofs in modular monadic uations can be implemented with relative ease.

semantics corresponding to the two arrows in that we used Figure 4 shows the definition of the new monad trans-
in fig. 1 (c) of Figure 1; these are essentially the lower twoformer, ContT (some details have been omitted). This
of the three arrows in fig. 1 (e), modular monadic actionmonad transformer modifieseturn and >>= to use
semantics. continuation-passing style, and defines an operatdtc K

to perform the call-with-current-continuation operation.
By adding this monad transformer to the monad transform-
ers of base MMAS, all existing code will be transparently

Modular monadic action semantics is not completely idenconverted to use a continuation-passing semantics rather
tical to Mosses’ action semantics. MMAS implements onlythan a direct semantics. All existing monad operators are
a small part of Mosses’ communicative facet. Mosses’ verconverted to behave appropriately, and the neflecK op-

sion of this facet supports general message-passing corfifator is added.

munication between multiple parallel agents. A system Recall that at this point, the modularity of the sys-
of this nature is of necessity quite complex, involving nottem ensures that (as long as certain proof obligations
merely communication but also the creation and manageare satisfied regarding the behaviourrefurn contr m),
ment of the parallel processes themselves. As the Whole>=(contT m),» @NALift (consT m)) the behaviour of all ex-
area of parallelism in denotational semantics is currentlysting action notation module code remains identical, and
rather turbulent [Abr96], it was felt safest to take a con-that all proofs of properties of the base MMAS system still
servative approach and implement only a restricted form ofemain valid for the new systerlo existing codeeed be
process—user interaction, for a single process only. Para@ltered to support the use of this new notion of computa-
lelism within a process is supported. tion.

The type system used by modular monadic action se- In order to use this new feature, however, new action
mantics is essentially that of the underlying Haskell systempotation must be provided. Figure 5 shows a portion of
overlaid with Liang, Hudak, and Jones’ extensible unionthe code for the new action notation module: the defini-
types [LHJ95]. Compared with the unified algebras usedion of the combinator WithCC (for which the concrete
by Mosses, this system is quite restricted: typstsin  Syntax iswith the current continuation in _do _). In ad-
Mosses’ terminology) are not first-class, and the only typedition to this combinator (and omitted from the figure), two
operations permitted are injection, projection and disjointhew actions are providegump to _andjump to _ with _.
union. This means that those operators in action semanticBhe actions permit a continuation to be invoked, optionally
dependent upon first-class sorts (such as the nondetermipassing it a value; the combinator binds the current continu-
istic choice operatochoose) have of necessity had their ation to a token in the environment and performs a block of
semantics altered. Luckily there are few of these: Mossesode (the call-with-current-continuation operation, action-
writes [M0s92, p. 36] “action notation does not dependsemantics style).
much on the unorthodox features of our algebraic speci- The precise semantics of the combinator can be seen by
fication framework.” inspecting the modular monadic semantic code in Figure 5.

As well as being impacted by the lack of first-class sortsThe token yielder is evaluated, and then the:t 7' opera-
(and hence unbounded nondeterminism), the nondetermiiter callccK is used to capture the current continuation. The
ism of modular monadic action semantics is restricted byfoken is bound to a code fragment that obtains the current
its nature as an executable system. Itis constrained to ‘givésansient, passes it to the continuation, obtains the return
an answer’, and hence in the end joseof the many pos- value and provides it as the transient result. Then the code
sible (nondeterministic) behaviours must be exhibited, unenclosed bydo _ is performed, the resulting transient ob-
like action semantics which merely returns the sort of alltained and returned. Finally, the result @fllccK is ob-
possible behaviours. tained and returned as a transient to the caller.

4.5 Limitations

With the addition of the monad transformer of Figure 4
5 An example and the action notation module of Figure 5 are added,
MMAS is extended to include continuations. ASDs can
The notion of computation that is most obviously missingnow be written that refer to continuations—see the exam-
from Mosses’ action semanticsfisst-class continuations ple in the appendix.
(noted in [M0s92, p. 211] and [Doh984.1], amongst oth- But unlike the other systems depicted in Figure 1, the
ers). For various reasons, Mosses found continuations diextension of MMAS has not changed the behaviour or in-
ficult and messy to add to action semantics, and so chogerface of the system with respect to existing features. All
to omit them. Unfortunately, this makes a number of lan-existing ASDs will behave just as they did before, and code
guage constructs (including some forms of exception hanfrom them may be used within new ASDs without modifi-



type ContT ans ma = (a— m ans) — m ans
return(contTm) v = Ak — kv
m >>=contrm) f = Ak —m(da— fak)
calleccK (coptrmy f = Ae— f(Xa = (MK = ka))k
lift(Contrmym = Ak —=m>>=p k

Figure 4: Continuations: monad transformer

cWithCC ytok a =

ytok >>= A tok —

calleccK (\k —
getE >>= e —
setE (overlay e
(bindTo tok
(abstractAct
(getB >>= A\(Trt) —
kt>>=At'—
doB (Trt"))))) >=A()—
a>>= () —
getB >>= \b —
return (case bof
Trt—t
- —=tndd))  >>= At —

getB >>= \b —

case b of
Tr_ — doB (Trt)
- —return ()

Figure 5: Continuations: action notation module portion

work [Ste94] on pseudomonads provided an early proto-
type of a system very similar to MMAS. Espinosa [Esp95]
and Liang, Hudak, and Jones [LHJ95, LH96] provided the
details of the implementation of Moggi’s ideas in a work-
ing system; MMAS is directly based on the work of Liang,
Hudak and Jones (the term ‘modular monadic semantics’ is
due to Liang and Hudak [LH96]). It is interesting that both
Espinosa and Liang, Hudak, and Jones credit Mosses with
inspiring their research. This present paper exhibits a more
concrete connection between the two groups.

A number of researchers have developed action in-
terpreters or action compilers [Mou96, @rb94, BMW92,
Pal92], which appear similar to MMAS in that they im-
plement action semantics; but in general these are based
on Mosses’ structural operational semantics and are con-
structed monolithically (see Figures 2(a), 2(b) and 2(c)).

Lassen[Las95] and Doh and Schmidt[DS94], like
MMAS, replace Mosses’ structural operational semantics
with an alternative (a reduction semantics and a natural se-
mantics, respectively) and use it to reason about action no-
tation. Neither theory is intended to be executable, how-
ever, and neither is particularly modular.

7 Conclusions

In conclusion, then, action semantics is both an excellent
system for the specification of domain-specific languages
and a fascinating DSL in its own right. However, action
semantics has significant limitations. It is incomplete and
does not permit extension, and proving results within it is
difficult. The solution to this problem is provided by mod-
ular monadic action semantics, a tiered system consisting
of an action notation layer defined in terms of a modular
monadic semantics, which is in turn modularly defined in
terms of a functional programming language.

We have seen that modular monadic action semantics
enhances action semantics, making it more useful and ex-

cation. Even more significantly, the modular proofs thattending its range of applicability. Through its modularity
applied to the old ASD and the old version of MMAS will and extensibility, new features can be added to the base ac-
apply equally well to the new extended version! No ex-tion semantics, enabling the description of languages using
tra work is required—everything required is encapsulatedhese features to be done without resorting to tedious simu-
within the new monad transformer, action notation moduldation. By replacing Mosses’ structural operational seman-
and proof obligations. tics with a modular monadic one, we have in fact achieved
The full code for the continuation facet of MMAS and What Mosses hints at in [Mos96¢8], where he notes that
for all facets of base MMAS is given in Wansbrough's the- “the current structural operational semantics of action no-
sis [Wan97]. tation is not so easy to modify; alternative forms ... might
be preferable in that respect.” We have demonstrated the
utility of this by adding continuations to action semantics,
in Section 5, something that has been until now quite im-
practical to achieve.
The work described here owes a great debt to the work of In addition, the use of anodular underlying seman-
Mosses and others [Mos92, Mos96a] on action semanticstics which is directly based on denotational semantics
Modular monadic semantics derives ultimately from theshould make action semantic theory much easier to de-
work of Moggi [Mog89a, Mog89b, Mog91b, Mog91a] on velop. Proofs will be modular, and can make use of the
monads for programming language semantics. Steelesesults and techniques that have been developed in the field

6 Related work



of denotational semantics. Of course, as Mosses notes [Esp93]
[Mos96a,§1.3], there are certain technical difficulties with
implementingall of action semantics in denotational se-
mantics (and hence modular monadic semantics); howevéFsp94]
MMAS demonstrates that a substantial and useful portion
of it canbe so implemented. As further developments oc-
cur in denotational semantics, these may be brought into
the MMAS framework and used to increase its scope.

The MMAS system demonstrates the utility of Liang, [ESP95]
Hudak, and Jones’ modular monadic semantics as a lower-
level semantic framework. Our implementation consists of
around 1200 lines of code, and so is a significantly-sized
example of its use. We found that the system worked ex-
tremely well, although our experience did suggest some mi-
nor alterations to their approach. [FHK84]

Modular monadic action semantics is a flexible, modu-
lar, extensible version of Mosses’ action semantics. It al-
lows new features to be readily added to the semantics in a
modular fashion, and promises to make the semantic the-
ory more manageable. As such, we believe it offers an
excellent extension to action semantics for specifying the
semantics of domain-specific languages.

[HT94]
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ence pages 1-15, Edinburgh, U.K., April 1994. andangel, with the following behaviour. The computation
Springer-Verlag. has the goal of finishing despite the existence of devils.



Whenever a devil is encountered, control is sent back to with the current continuation in “k” do

the last milestone. If another devil (or the same one again) | push-cont ( “future”, the data bound to “k”)
is encountered, control is sent back to the milestone before and

that one, and so on. If no milestones remain, the devil does | pop-cont “past” and regive

nothing. then

Whenever an angel is encountered, control is sent for- jump to the given continuation#1
ward to where the computation last met a devil. If another with the given datum#2 .
angel is encountered, control is sent further forward to the

devil before that one, and so on. Again, if no devils have® angel =

been encountered the angel does nothing. | pop-cont “future” and regive
The milestone appears as an action that simply passes a then

transient straight through, likegive. The value passed to ‘ jump to the given continuation#1
a devil, however, is given to what follows the appropriate with the given datum#2 .
milestone; the value passed to an angel is given to what

follows the appropriate devil milestone simply obtains the current continuation and

. _ . _ pushes it onto th&past” stack, and then passes through the
Continuations provide an excellent means of implementya|ye passed to it.

ing the above problem. We maintain two stacks of continu-  devil obtains the current continuation, pushes it onto the
ations: one opastcontinuations (pushed byilestones  “fyture” stack, and then passes the value passed it to the
and popped bydevils), and one ofuture continuations  continuation popped off the top of tifpast” stack (note
(pushed bydevils and popped bgingels). This is achieved  hat if the stack is empty, we are given the identity abstrac-

by the following actions: tion abstraction of regive, so we get the correct behaviour
even in this case).
(1) pop-cont S:Token = angel simply passes the value it is passed directly to
give the data stored in the continuation popped from the top of ttiature” stack.
the cell bound to S then Again, if it is empty it uses the identity abstraction.
check Fhe count of it We conclude with code for a short example due to Carls-
is greater than 0 and then son:

| give the first of it
and
store the rest of it in
the cell bound to S

(6) supernatural =

allocate a cell then bind “past” to it moreover
| allocate a cell then bind “future” to it
hence

store () in the cell bound to “past” and

| store () in the cell bound to “future”

or
check the count of it is equal to 0 then
| give the abstraction of regive .

. s _ then
@ push-con.t ( S:Token, Y:Yielder ) = give 1 then
| giveY | h
and milestone then

check it is equal to 1 then
give 2 then

devil then

| give the sum of (it, 100 )

give the data stored in
the cell bound to S

then

| store it in the cell bound to S . or

check it is not equal to 1 and then

Note that the continuations are stored in a tuple stored in give the sum of (3, it ) then

a named cell. We use cells nanipast” and“future”.

angel .
We can now define the required primitivesilestone, | 219
devil andangel, as follows: After allocating cells for the two stacks and initialising
them, this code passes 1 to the first milestone; if it returns 1
3 milestone = then it passes 2 to a devil and gives a final result of whatever
with the current continuation in “k” do the devil returns plus 100. If the milestone doesn’t return
| push-cont ( “past”, the data bound to “k”) 1 then the code adds 3 to whatever the milestone did return
and and passes the result to an angel.
| regive . Execution proceeds as follows: 1 is passed to the mile-

stone, and 1 is returned. 2 is passed to the devil, which
4 devil= jumps back to the milestone and returns 2 from it. 3 is



added to 2 to get 5, which is passed to the angel. The an-
gel jumps forward to the devil, which now returns 5; 100 is
added to this to get 105, which is returned from the com-
putation as the final result.



