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Abstract

Integrated information systems are often realized as

data-intensive Web sites, which integrate data from

multiple data sources. We present a system, called

Strudel, for specifying and generating data-intensive

Web sites. Strudel separates the tasks of accessing and

integrating a site's data sources, building its structure,

and generating its HTML representation. Strudel's

declarative query language, called StruQL, supports

the �rst two tasks. Unlike ad-hoc database queries, a

StruQL query is a software artifact that must be extensi-

ble and reusable. To support more modular and reusable

site-de�nition queries, we extend StruQL with functions

and describe how the new language, FunStruQL, better

supports common site-engineering tasks, such as choos-

ing a strategy for generating the site's pages dynamically

and/or statically. To substantiate Strudel's bene�ts,

we describe the re-engineering of a production Web site

using FunStruQL and show that the new site is smaller,

more reusable, and unlike the original site, can be ana-

lyzed and optimized.

1 Introduction

In large corporations, high-speed intranets and Web
browsers have increased the demand for integrated
information systems. Before intranets, access to
geographically dispersed information systems was
usually limited to those people who administered
the systems locally. In this environment, data in-
tegration, the task of integrating information from
multiple data sources, was di�cult, if not impossi-
ble. An AT&T customer, for example, may have
multiple accounts, e.g., long distance and wireless,
stored in separate account-management systems.
An integrated \view" of customers' accounts is vi-
tal to many business processes, such as targeting
new services to appropriate customers. Because of
their value to diverse groups, integrated information
systems must be easily accessible and therefore, are
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usually realized as Web sites. These systems, which
we call data-intensive Web sites, integrate informa-
tion from multiple data sources, often have complex
structure, and present increasingly detailed views
of data, from a summary perspective at a top-level
page to a detailed perspective at a lower-level page.

In previous work [9], we argued that building data-
intensive Web sites is a data-management problem,
whose solution consists of three main programming
tasks: accessing and integrating the data available
in the site, building the site's structure, i.e., speci-
fying the data in each page and the links between
pages, and generating the HTML representation of
pages. To better support these tasks, we developed
the Strudel system, which applies concepts from
database-management systems to Web-site creation
and management. Strudel's key idea is separating
the management of a Web site's data, the speci�ca-
tions of its structure, and the HTML representation
of its pages. Strudel provides a declarative query
language, StruQL, for specifying the content and the
structure of a Web site, and a simple template lan-
guage, for specifying a site's HTML representation.
Strudel's query interpretor automatically derives
the site from a StruQL query. Strudel has many
bene�ts: explicit separation of the three program-
ming tasks allows multiple versions of a site to be
derived from one speci�cation [9], and StruQL's se-
mantics supports veri�cation of integrity constraints
on a site's structure [10].

In this paper, we argue that building data-intensive
Web sites is also an important software-engineering
problem, and that a site's implementation, like
other valuable software systems, should be exten-
sible, reusable, and optimizable. For example, it
should be easy for a site developer to integrate new
data sources into a site and to derive a new site from
an existing one. It should also be possible for the
site developer to optimize overall site performance,
for example, by using page-access patterns culled
from a Web server to drive static and/or dynamic
generation of the site's pages, or by identifying au-



tomatically pages that contain data from the same
sources and by caching shared data when it is expen-
sive to compute. Site reuse is greatly simpli�ed if
the implementation clearly separates the de�nition
of the site's content, structure, and presentation.
Both the site-generation and data-caching problems
are examples of site optimizations and are orthogo-
nal to the site's de�nition. For example, choosing a
site-generation strategy is analogous to optimizing
a program given an execution pro�le.

In current practice, most data-intensive Web sites
are implemented by loosely related programs writ-
ten in imperative scripting languages, such as Perl.
Scripting languages are well-suited for \gluing" to-
gether other software components [15], which makes
them popular for constructing Web sites. The
scripts for many site implementations, however, in-
terleave the code for data access and integration,
page construction, and HTML generation. Even
when these tasks are separated, it is di�cult to infer
automatically the semantics of the script code. In-
terleaving of these tasks limits reuse of any one com-
ponent and prevents analysis of the site implementa-
tion as a cohesive unit. Finally, the site-generation
and data-caching strategies are usually encoded ex-
plicitly in the implementation, making it di�cult to
experiment with alternative policies.

In this paper, we show that StruQL is more ef-
fective than general-purpose scripting languages for
implementing data-intensive Web sites. StruQL is
an example of a declarative query language, and al-
though it is not Turing complete, it has been used
to implement several Web sites1. Unlike higher-
level programming languages, declarative query lan-
guages (e.g., SQL, OQL) usually express short, ad-
hoc queries. They lack features, such as functions
and modules, that support development of large
software systems, which must be modular, exten-
sible, and reusable. Strudel's application requires
both the declarativeness of query languages and the
functional constructs of higher-level programming
languages. The main contribution of this paper is
the integration of these features in one language. In
particular, we extend StruQL with functions to im-
prove the modularity and re-usability of site de�ni-
tions and with forms to support dynamically bound
inputs. We describe how the new language, called
FunStruQL, supports 
exible site-generation strate-
gies and how forms can be speci�ed declaratively.

1We encourage the reader to visit the Strudel-generated
sites at http://www.research.att.com/~mff,~suciu and
http://www.research.att.com/conf/sigmod99.

We support these claims through a case study of an
internal AT&T Web site that is used in a produc-
tion setting. We compare the site's original imple-
mentation with its complete re-implementation in
Strudel and show that the new implementation is
much smaller, more reusable, and unlike the original
site, can be analyzed and optimized.

1.1 Case Study

To motivate Strudel's design, we �rst describe an
internal AT&T Web site, called \hightoll noti�er"
(HTN), which identi�es business-customer accounts
that appear to be high risk, i.e., ones whose bills
may go unpaid. Statistically, customers that have
a signi�cant increase in their telephone usage over
a short period of time are more likely to not pay
their bills than those customers that have constant
daily usage. Other high-risk indicators include the
customer's credit record and their ability to pay pre-
vious bills on time.

The data in the HTN site must be current to within
one day or even a few hours, so that account rep-
resentatives can identify and contact high-risk ac-
counts before the account further increases its us-
age or goes into arrears at billing time. Before
the HTN site existed, account representatives might
have waited several weeks before they had su�cient
information to identify high-risk accounts. The
HTN site is a tremendous success, because it pro-
vides in real time an integrated view of high-risk
accounts.

HTN is a good example of a data-intensive Web site:
it integrates data from multiple sources and allows
the site user to \drill down" from the high-level,
summary perspective to the low-level source data.
HTN computes usage statistics on approximately
250 million phone calls daily and integrates informa-
tion from several sources: phone-call records, long-
term account information, and credit records. Of
the 1.7 million business accounts tracked, approxi-
mately 6000 are identi�ed as potential risks. The
site has �ve levels: each subsequent level provides a
more detailed view of the high-risk accounts. The
root page allows an account representative to select
the types of high-risk accounts to track, e.g., a par-
ticular market segment. The hot list page lists the
set of accounts in the chosen segment and orders
them by a risk metric. The hot-list page points
to account pages, which displays a summary of an
account's usage in textual and graphical form. A
report page is accessible from several pages in the
site and presents the account's risk metrics and al-



lows the account rep to view and record interactions
with the customer. The most detailed page presents
the original phone-call records from which the usage
summary is computed.

The �rst HTN site was implemented using scripting
languages, e.g., Korn shell and Perl, and common
Unix command-line tools, e.g., awk, sed, and grep.
The scripts process user inputs, invoke Unix tools to
handle simple data-management tasks, and format
and emit HTML pages. Several C programs imple-
ment rudimentary database operations. Although
some scripts di�erentiated the three site-creation
tasks, most scripts interleaved them. The result is
a loosely related set of scripts that implement the
required functionality, but that have the character-
istics of a poorly implemented software system: the
code is hard to understand and extend, because the
program's tasks are undi�erentiated. These prob-
lems complicated extension and prevented reuse of
HTN's �rst implementation.

Given these limitations, the site was re-engineered
using Strudel [9] and the Daytona relational
database management system [13]. The short-term
goal was for the new implementation to simplify
maintenance and extension of the site. The long-
term goal was to show that declarative speci�ca-
tion supports site reuse and 
exible site-generation
strategies. Overall, the Strudel implementation is
1.6 times smaller than the original implementation,
but if we compare only the code that de�nes the
site's content and structure, i.e., the code that a de-
veloper must understand to reuse or extend the site,
it is more than 4 times smaller. Section 6 presents
an evaluation of this re-engineering e�ort.

2 Strudel Overview

We �rst describe Strudel's architecture, depicted
in Figure 1, before focusing on its query language.
Rectangles depict processes and emboldened terms
specify the inputs and outputs of the processes.

Strudel supports two common types of Web-site
data: semistructured data and tuple-stream data
(bottom of Fig. 1). Semistructured data is char-
acterized as having few type constraints, irregular
structure, and rapidly evolving or loosely de�ned
schema [1]. Web sites and XML data [7] are good ex-
amples of semistructured data. For example, XML
elements can have missing attributes or attributes
whose value is not strictly typed (e.g., a name at-
tribute may have an atomic value in one element
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Figure 1: Strudel Architecture

and a complex value, (lastname, firstname), in
another element.).

As in related systems [8], Strudel represents
semistructured data as a collection of objects, in
which each object is either complex or atomic. A
complex object is a set of (attribute, object) pairs,
and an atomic object is an atomic value (e.g., int,
string, video). Hence, data is a graph, with edges
labeled by attributes and leaves labeled with atomic
values. Internal nodes have unique object identi-
�ers, called OIDs, and data can be exchanged in a
text representation. For example, Fig. 2 contains a
fragment of an address database in XML. The com-
plex objects addresses and entry have object iden-
ti�ers (the id attribute). In semistructured data,
the names, types, and cardinality of attributes may
vary. For example, the �rst entry element has two
street attributes, but the second has only one; the
second has a postalcode attribute, but the �rst has
a zip attribute. By default, the root XML node
(e.g., the addresses element) is contained in the
Strudel collection XMLRoot. We use the terms
nodes and objects interchangeably, but note that
object does not denote a strictly typed value as it
does in an object-oriented language or database.

Strudel was initially designed to query and man-
age only semistructured data. Most Web sites,
however, integrate information from well-structured
data sources, such as relational databases, 
at �les,
or the output of ad-hoc shell commands. Strudel,
therefore, also supports tuple-stream data, i.e., any
data source that can be modeled by a �nite stream
of �xed-width records.

A StruQL query (middle of Fig. 1) is applied to
semistructured and/or tuple-stream data sources,
and its result is a site graph, which represents the
site's content and structure and is completely in-



<! Postal addresses in XML>

<addresses id="alladdrs">

<entry id="addr1">

<name>AT&T Research</name>

<address>

<street>180 Park Ave.</street>

<street>Bldg. 103</street>

<city>Florham Park</city>

<state>NJ</state>

<zip>07932</zip>

</address>

</entry>

<entry id="addr2">

<name>INRIA Rodin</name>

<address>

<street>BP.105 Rocquencourt<street>

<city>Le Chesnay</city>

<postalcode>cedex 78153</postalcode>

<country>France</country>

</address>

</entry>

</addresses>

Figure 2: Example of semistructured data

dependent of the output language. StruQL queries
are compositional: a site graph is another example
of semistructured data and can be queried by an-
other StruQL query. A site graph is externalized on
disk as an XML document.

To produce a browsable Web site, an HTML tem-
plate is associated with each object in the site graph.
Objects in a site graph may represent complete
pages or page components. Usually, a template is
associated with a collection of related objects, e.g.,
all account-page nodes. A template interleaves plain
HTML text with Strudel-speci�c tagged expres-
sions that access an object's attributes and format
attributes' values. The template language is similar
to other languages that separate presentation from
content [5]. This technique simpli�es the site pro-
grammer's task: he writes plain HTML extended
with simple programmatic constructs, instead of
a more complex scripting program that generates
HTML. Strudel's generator (top of Fig. 1) evalu-
ates the appropriate template for every object in a
site graph. The resulting pages are the browsable
Web site. Section 5 describes the template language
in more detail.

2.1 Related Systems

Many commercial systems exist for designing and
implementing Web sites. They include WYSI-

WYG HTML editors, tools for integrating database
queries in individual Web pages, and model-driven,
Web-site design systems. We focus on research sys-
tems and refer the reader to thorough reviews of
site-development tools [11, 12]. Most of the prob-
lems associated with designing a Web site, such
as modeling the site's content, specifying naviga-
tional structure, and customizing visual presenta-
tion, have been studied in the context of hypermedia
systems, and many of the solutions for hypermedia
systems are transferrable to Web-site design. The
Autoweb [16], OOHDM [17], and Araneus [6] sys-
tems ascribe to a formal methodology of Web-site
design, whose purpose is to isolate the various tasks
of site design. Each system provides di�erent tools,
with varying levels of automation, to implement a
design. Because their primary purpose is site de-
sign, neither Autoweb nor OOHDM-Web support
querying or data integration. Like Strudel, Ara-
neus separates data integration, site de�nition, and
visual presentation, but it has two data models (one
relational and one strictly typed graph) and two
query languages, which cannot be composed nat-
urally. We note that as an implementation tool,
Strudel is complementary to site-design tools, be-
cause StruQL is well-suited to automatic generation
and could be used as an implementation language
for a variety of design systems.

Mawl [5] is a device-independent language for pro-
gramming form-based services, which can be real-
ized as Web applications or as interactive voice-
response systems. Although Strudel's application
is di�erent, its separation of application logic from
presentation and its template language are both in-
spired by Mawl.

The Document Object Model (DOM) [3] is a
language-independent API for accessing HTML and
XML documents, and the Extensible Stylesheet
Language (XSL) [14] is a rule-based language for
rendering a document in a markup language. These
emerging standards are document centric, but may
in
uence Strudel; e.g., a site graph could im-
plement the DOM interface and possibly be ren-
dered using XSL instead of Strudel's template lan-
guage.

3 StruQL Query Language

We describe StruQL's core syntax by example, give
an informal semantics, and describe query evalua-
tion. In Sec. 4, we extend the StruQL with func-
tions and forms. We illustrate StruQL's features



1 // Link root page to page of all accounts

2 link Root() -> "Accounts" -> AccountsPage()

3 // AccountsPage refers to each account in account database and its associated page

4 { where (acct, name, street, city, state, zip) in SQL.query("AccountDB", "select acct ...")

5 link AccountsPage() -> "Info" -> Info(acct),

6 Info(acct) -> { "Acct" acct, "Name" name, "Street" street,

7 "City" city, "State" state, "Zip" zip,

8 "AcctPage" AcctPage(acct) },

9 AcctPage(acct) -> "Info" -> Info(acct)

10
11 // AcctPage refers to non-zero usage records in the usage database.

12 { where (date, dom is int, intl is int) in SQL.query("UsageDB", "select date ...", acct)

13 dom + intl > 0

14 link AcctPage(acct) -> "UsageData" -> UsageData(acct),

15 UsageData(acct) -> "Entry" -> UsageEntry(acct, date),

16 UsageEntry(acct, date) -> { "Date" date, "Total" (dom + intl) }

17 }

18 // Query postal database to determine possible aliases for account

19 { where XMLRoot{root}, root -> "addresses"."entry" -> addr,

20 addr -> { "name" alias, "address"."street" street1, "address"."zip" zip },

21 street1 = street

22 link Info(acct) -> "Alias" -> alias

23 }

24 }

Figure 3: Fragment of site-de�nition query for AcctPage in HTN site

using the query in Fig. 3, which de�nes the account
page in the HTN site. The site's data sources are
two relational databases, of accounts and phone-call
records, and one semistructured source of addresses.
We focus on StruQL's declarativeness, i.e., a query
speci�es what the site's content and structure is, not
how it is computed; its support for multiple data
sources; and its controlled use of a general-purpose
programming language (Java).

A StruQL query is a function that maps input-graph
nodes and atomic values to a graph. A query's body
is de�ned by the �rst EBNF grammar rule2 in Fig. 4.
The where clause is a conjunctive predicate expres-
sion. The link expressions link new nodes in the site
graph, and collect expressions put nodes in the site
graph's collections. Node constructors denote the
OIDs of new nodes in the site graph. A predicate is
a collection expression, a regular-path expression, an
atomic predicate, or an external-source expression.

The query in Fig. 3 illustrates most of StruQL's
features. The �rst clause on line 2 has an empty
where clause, which is always true, so its associ-
ated link expression is always evaluated. Root is
a node constructor that creates new object OIDs.
By de�nition, a node constructor when applied to

2
�	

delimit sequences,
�
� separate alternatives, and

��
de-

limit optional constructs

the same tuple of values always produces the same
OID, so this expression creates two unique nodes,
named Root() and AccountsPage(), and a link la-
beled "Accounts" between them.

The second clause (lines 4{9) contains an external-
source expression. This expression binds the vari-
ables acct, name, etc. to the stream of tuples pro-
duced by the SQL query applied to the accounts
database, AccountDB. For each binding of acct,
the link expression on line 5 creates a new object,
Info(acct), and links AccountsPage to it. The
expression on lines 6{8 copies all of acct's attributes
and values into the new Info object and links Info
to its associated AcctPage object. Cycles between
objects are permitted: line 9 links AcctPage(acct)
back to its associated Info object. The nested
clause (lines 12{17) is similar; it queries the usage
database, which produces the domestic and interna-
tional phone-call usage records for each acct. The
where clause is satis�ed when the sum of dom and
intl is non-zero. The associated link clause groups
usage entries by date in UsageEntry(date, acct)

and stores the sum of dom and intl.

The last clause (lines 18{22) contains a collection
expression, which binds a variable to every node
in the speci�ed collection, and regular-path expres-
sions, which match arbitrary paths in an input
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�
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�
collect

�
CollectionNamefNodeConstructorg

	�

�
fBodyg

	

Predicate : � CollectionNamefV arg�
� V ar ! RegularPathExpr ! Term
�
� AtomicPredicate
�
� (

�
V ar

	
) in ExtSourceExpr

Figure 4: StruQL's EBNF grammar rules.

graph, e.g., an XML document. This clause is satis-
�ed when there exists an object addr that is reach-
able from any member of the XMLRoot collection by
a sequence of edges labeled "addresses"."entry";
addr must also have outgoing edges labeled name

address.street, and address.zip. In general, a
condition of the form x! R! y means that there
exists a path from node x to node y that matches
the regular-path expression R. In addition to the
concatenation (.) operator, R may contain the al-
ternation (|) and (*) Kleene star operators.

The where clause on lines 19{22 is only satis�ed
when the values of addr's address.street and
address.zip attributes equal the values of street
and zip bound in the �rst clause. In database
parlance, this expression is a join on street and
street1, or in logic-programming parlance, street
and street1 are uni�ed. The two interpretations
are equivalent. An explicit condition is not neces-
sary: the join on zip is implicit, because it appears
as the target of address.zip.

Figure 5 depicts a fragment of the site graph pro-
duced by the query in Fig. 3 applied to the sam-
ple relational data in Fig. 5 and the XML data in
Fig. 2. The graph encodes the site's content and
structure; e.g., the Info objects have links to ac-
count names and to account pages. The choice to
realize objects as pages or as page components is
delayed until HTML generation; our choice of node-
constructor names (e.g., AcctPage) hints that some
objects will be realized as pages, but this is not a
requirement.

StruQL accesses user-de�ned methods using the
Java re
ection mechanism [4]. Any static Java class
that implements StruQL's predicate, expression, or
external-source interfaces is permissible. For exam-
ple, StruQL provides the package SQL for accessing
JDBC-compliant databases; it also provides a tuple-
stream interface for 
at �les and shell commands
and an interface to a Perl library for regular expres-

sion string matching.

StruQL supports the atomic types integer, 
oat,
string, date, and mime-content types such as URL,
image, html, and postscript. By default, all values
are interpreted as strings, but any variable can be
annotated with an optional type, such as the dom

and intl variables in Fig. 3(line 12). The query
interpretor attempts to coerce values to the appro-
priate type at runtime. Although static typing is
preferable, dynamic typing is necessary for StruQL,
because the types of atomic values in data sources
are usually unknown until query-evaluation time.

3.1 Semantics and Query Evaluation

A StruQL where clause is a conjuctive query .
Conjunctive queries [2] are an important class of
database queries, because they have several desir-
able properties. First, whenever the domain of a
conjunctive query is �nite, its range is also �nite,
which means that an evaluation of the query is guar-
anteed to terminate. Second, the query equivalence
and query containment problems are decidable for
conjunctive queries. Formally, given two queries
Q1 and Q2, query equivalence decides for all in-
puts I, Q1(I) = Q2(I), i.e., Q1 and Q2 compute
the same result; query containment decides for all
I, Q1(I) � Q2(I). Query optimizers may rely on
query equivalences and containments to eliminate
redundant computations.

StruQL has an active-domain semantics, which
means that the domain of a query, D, is the union
of the �nite domains of the query's input graphs
(i.e., object OIDs and atomic values), of its exter-
nal sources, and of the set of constants that occur
in the query. StruQL's semantics can be described
informally in two stages. The query stage depends
only on the where clause and produces all possi-
ble bindings of variables to values in D that satisfy
all conditions in the clause. Its result is a relation
R with one attribute for each variable; each tuple t
in R satis�es the conditions. The construction stage



UsageData(1001)

"Entry" "Entry"

Entry("3/2", 1001) Entry("3/3", 1001)

"Date" "Date""Total" "Total"

3/2/99 1000 3/3/99 1200

"Info"

∋ (1001, "AT&T Labs", "180 Park Ave", "Florham Park", NJ, 07932)
=

AcctPage(1001)

{(3/2/99, 1000, 100), (3/3/99, 1200, 50)}
AccountDB()
UsageDB(1001)

"Usage"
"AcctPage"

Info(1001)

Sample Data:

"AT&T Research"

"180 Park Ave"

. . .

"AT&T Labs"

1001 "Street"
"Alias""Name"

"Acct"

Figure 5: Fragment of site graph generated by query in Fig. 3

constructs the site graph by evaluating each link and
collect expression once for every tuple t in R. The
node constructor N (v1 : : : vn) denotes the object in
the site graph whose OID is the value N (�v1:::vn(t)),
i.e., the value of variables v1 : : : vn in t. Each link

expression, N (v) ! A ! N (w) creates an edge
labeled A from N (�v(t)) to the node denoted by
N (�w(t)). Each collect expression CfN (v)g adds
the node N (�v(t)) to the collection C.

A StruQL query is evaluated by interpreting a
physical-operation tree. Strudel's query-plan gen-
erator, like traditional query processors, translates
a StruQL query into a physical-operation tree.
Query-plan generation is similar to code generation
in a compiler. The details of query-plan generation
and strategies for e�cient evaluation and optimiza-
tion of StruQL are described elsewhere [9].

An important implication of StruQL's semantics is
that a site graph is �nite. In Strudel's �rst imple-
mentation, queries were evaluated completely and
therefore materialized the entire site graph. We
call this an eager evaluation strategy, which pro-
duces a static site graph. Eager evaluation is not
always feasible or appropriate. For example, the
query may range over gigabyte-sized data sources
and therefore produce very large site graphs, or the
site may depend on dynamically bound variables,
e.g., inputs derived from a form. In addition to
eager evaluation, Strudel now supports lazy eval-
uation, in which part of a site query is evaluated
dynamically, e.g., at \click time"; a lazily evaluated
query produces a dynamic site graph. Next, we in-
troduce StruQL's functions, which modularize site-
de�nition queries and are the minimal unit of query
evaluation, and forms, which support dynamic bind-
ing of variables. After describing their semantics, we
describe how 
exible site-generation strategies can

be implemented by combining eager and lazy eval-
uation of functions to produce sites that have both
static and dynamic parts.

4 Extending StruQL with Functions

Our �rst applications of Strudel were small Web
sites, like personal home pages, designed and main-
tained by one person. The HTN site was Strudel's
�rst production application, and its site de�nition
must be understandable and possibly extended by
multiple people. HTN has several types of pages
and several data sources, which made its de�nition
in StruQL long and unwieldy.

To address these issues, we extended StruQL with
functions. Functions are unusual in query lan-
guages3, and adding them to StruQL is novel.
StruQL's functions also di�er from functions in
general-purpose programming languages.

A StruQL function maps values in D (i.e., atomic
values and input object OIDs) to a unique object
(node) in the site graph and de�nes the entire sub-
graph accessible from that object. A function is
de�ned by the EBNF grammar rule:

Function : � fun ID (
�
V ar

	
)fBodyg

A function has a name (ID) and formal arguments
(V ar's), and its body consists of a StruQL query.
The meaning of a function is that it constructs a
subgraph and returns a reference to the graph's
root. In the function body, the reserved node
constructor Result() denotes the subgraph's
root. There are two kinds of function calls, eager
(!f(x,y,...)) and lazy (?f(x,y,...)), which
we describe below. A function call is like a a

3While SQL de�nes stored procedures, these are not
queries per se, but form a di�erent language.



node constructor, i.e., it can occur in a collect ex-
pression, or as the target of a link expression:
link AcctEntry(acct) -> "AcctPage" ->

?acctPage(acct) // line 12 in Fig. 6

Here, AcctEntry is a node constructor and
acctPage is a function call.

The subgraph returned by a function is disjoint from
the graph constructed by the rest of the query and
is connected to the rest only by edges to its root;
e.g., the link expression above, constructs an edge
"AcctPage" to the root of the subgraph returned
by acctPage(acct). Node constructors are locally
scoped in a function's body, which guarantees that
the nodes it constructs are disjoint from all others.
For example, the body of the function acctPage

in Fig. 6 contains the node constructors Result,

UsageData, and UsageEntry, and these names are
local to the function acctPage. Otherwise, func-
tion calls behave like node constructors, i.e., multi-
ple calls to acctPage(a) with the same value for a
produces exactly the same subgraph.

The !(?) pre�x is a function-evaluation directive
that speci�es a callee function should be evaluated
eagerly (lazily) when its caller function is evaluated.
In Fig. 6, acctInfo is always evaluated eagerly;
reportPage is evaluated lazily when called from
hotList, but eagerly when called from acctPage.
The user chooses a lazy or eager strategy based on
e�ciency considerations; the strategies' semantics
are equivalent, i.e., both produce the same graph.
We plan to generate strategies automatically and
are experimenting with an engine that treats direc-
tives as \hints" that can be overridden. For exam-
ple, an alternative strategy might evaluate all calls
to reportPage lazily, because the page is accessed
infrequently or because it is expensive to compute.
In Sec. 4.2, we describe how one query can be eval-
uated using di�erent site-generation strategies.

When a function is evaluated, a call to a lazily eval-
uated callee is replaced by a closure node, which
encapsulates the information necessary to evaluate
the callee. Calls to eagerly evaluated callees are
replaced by the callee's result node. The HTML
generator (Sec. 5) emits the appropriate HTML for
either case.

Given FunStruQL's declarative semantics, functions
di�er fundamentally from those in other program-
ming languages. All FunStruQL functions can be
inlined, while preserving the query's semantics; in
programming languages like C++ or ML, only non-
recursive functions can be inlined. For example, the

FunStruQL function:

fun f(x) { link Result() -> "self" -> !f(x)}

returns a node with a link to itself and is guaranteed
to terminate. A call to f:

link Node(y) -> "call" -> !f(z)

would be inlined as:

link Node(y) -> "call" -> f_Result(z),

f_Result(z) -> "self" -> f_Result(z)

Of course, inlining does not preserve the operational
semantics of lazy functions, so our interpretor does
not inline lazy function calls. In FunStruQL, func-
tion call arguments may be variables and constants,
but not arbitrary expressions; this prevents an ea-
ger evaluation from resulting in a non-terminating
computation, as it would in:

fun f(x) { link Result() -> "self" -> !f(x+1) }

Figure 6 contains the query for the HTN site. The
function hotList (line 8) de�nes the top-level page
that contains a list of those accounts in the HotList
database that also occur in the account database,
AccountDB. The wildcard ignores the value pro-
duced by an external source; in this case, acctmust
have some value in AccountDB, but the value itself
is ignored. For each such account, a link is cre-
ated to the corresponding reportPage, acctPage,
and acctInfo nodes. The function acctInfo (line
17) computes general account information that is
shared among several nodes and appears on multi-
ple pages in the site. The acctPage function (line
23) links its result to the corresponding reportPage
and accesses all the non-zero usage records from the
UsageDB. It groups them by date and sums the dom
(domestic) and intl (international) usage values.
The reportPage function (line 33) lists all the re-
ports known for the given account by querying an
external reports database.

From a software-engineering perspective, this query
has several desirable properties. Each function iden-
ti�es the sources on which it depends, which makes
it possible to reuse and modify the de�nition easily.
A function also encapsulates a page, several pages,
or a page component, making it possible to reuse
parts of the site in di�erent contexts; e.g., acctInfo
is a page component contained in acctPage and
reportPage.



1 // Root contains form to select hotList and one to select a specific account

2 { where accttype in { "SmallBiz", "MiddleMarket", "ISP" }

3 link Root() -> { (age, type) from HotListForm -> ?hotList(type, age),

4 (acct) from AcctForm -> ?acctPage(acct) },

5 Root() -> "AcctType" -> accttype

6 }

7 // hotList lists those accounts in HotList database that also occur in Account database

8 fun hotList(type, age) {

9 where (acct, rank) IN HotList(type, age), (_, _, _, _, _) IN AccountDB(acct)

10 link Result() -> "Entry" -> AcctEntry(acct),

11 AcctEntry(acct) -> { "ReportPage" ?reportPage(acct),

12 "AcctPage" ?acctPage(acct),

13 "Info" !acctInfo(acct),

14 "Rank" rank }

15 }

16 // General account information is used in hotList, acctPage and reportPage

17 fun acctInfo(acct) {

18 where (name, street, city, state, zip) IN AccountDB(acct)

19 link Result() -> { "Acct" acct, "Name" name, "Street" street,

20 "City" city, "State" state, "Zip" zip, "AcctPage" ?acctPage(acct)} }

21 // acctPage links to the acct's reportPage and to non-zero usage records

22 // in the usage database.

23 fun acctPage(acct) {

24 link Result() -> { "Info" !acctInfo(acct),

25 "ReportPage" !reportPage(acct) }

26 { where (date, dom, intl) IN UsageDB(acct), dom + intl > 0

27 link Result() -> "UsageData" -> UsageData(),

28 UsageData() -> "Entry" -> UsageEntry(date),

29 UsageEntry(date) -> { "Date" date, "Total" (dom + intl) } }

30 }

31 // reportPage lists all the reports known for the account by querying

32 // an external reports database

33 fun reportPage(acct) {

34 link Result() -> "Info" -> !acctInfo(acct),

35 { where (exec, date, comments) IN ReportsDB(acct)

36 link Result() -> "Entry" -> ReportEntry(exec, date)

37 ReportEntry(exec, date) -> { "AcctExec" exec,

38 "Date" date,

39 "Comments" comments } }

40 }

Figure 6: Site-de�nition query for HTN site



4.1 Forms

Forms are an important feature of Web sites that
cannot be expressed easily in a declarative query
language, because they model sequential operations:
get values from the user, then consume the values
by constructing new graph nodes (i.e., pages). A
FunStruQL form has the syntax:

Form : � (
�
V ar

	
) from ID

A form may only occur on an edge in a link ex-
pression. Its e�ect is that, on traversing that edge,
the user is prompted for the form variables' values,
then the destination node is constructed; the latter
must be a lazily evaluated function, because its ar-
guments are not bound until runtime. For example:

link Root() -> (acct) from AcctForm ->

?acctPage(acct) // Fig. 6, line 4

de�nes the form AcctForm in the Root node. The
HTML page for Root() must contain a form that
binds AcctForm's variables; this requirement is en-
forced by the HTML generator. Submission of the
form's inputs by the user corresponds to a traversal
of the edge AcctForm in the site graph; this binds
the variable acct to the input value, and then the
function acctPage(acct) is evaluated.

Conceptually, a query with forms de�nes an in�nite
graph, because the form's range of values can be
in�nite. This is not a problem, however, because
only a �nite portion of the site graph is ever ex-
panded. Even though FunStruQL cannot restrict
the set of values produced by a form to D, the
query's domain, we can check declaratively the va-
lidity of user's inputs. For example, the type of
the HotListForm on line 3 should be restricted to
one of the AcctType values. We could enforce that
restriction in hotList:

fun hotList(type, age) {

{where type in {"SmallBiz",

"MiddleMarket", "ISP"},

(acct, rank) IN HotList(type, age),

(_, _, _, _, _) IN AccountDB(acct)

link // . . . from hotList in Fig. 5

}

{ // Error clause

where not(type in {"SmallBiz",

"MiddleMarket","ISP"})

collect ErrorPage{Result()}

link Result() -> "BadArgument" -> "type",

Result() -> "BadValue" -> type }

}

The second where clause produces a node in
the ErrorPage collection, which when realized in
HTML, reports the invalid input to the user. It
would be useful to have these declarative error
clauses generated automatically given the range of
an input variable.

4.2 Site-generation Strategies

The ability to support multiple site-generation
strategies is especially important for data-intensive
Web sites, in which the time to produce pages is
non-uniform; e.g., some functions may submit ex-
pensive queries to an external source. In current
practice, however, it is di�cult for a site developer
to support more than one site-generation strategy.
So by default, most sites are generated either dy-
namically or statically.

Strudel already supports site-generation strate-
gies de�ned explicitly in the query, but we would
also like to support those de�ned automatically by
a pro�le-driven site optimizer. For example, when
account reps begin work each day, they scan the hot
lists for new accounts in their market segments. The
�rst pages accessed in the site can be identi�ed by
examining the HTTP-server trace logs, because the
CGI-bin calls encode the names of the FunStruQL
functions and their argument values. Frequently ac-
cessed pages can be precomputed by simply adding
clauses to the anonymous function; for example, this
clause precomputes all new, ISP accounts and can
easily be generated automatically:

link // Precompute new, ISP accounts.

Precompute() ->"HotList"->!hotList("ISP","new")

The precomputed pages are cached and immediately
available when the user requests them.

Some strategies, however, cannot be inferred auto-
matically. For example, after accessing the appro-
priate hot list, an account rep scans through the
reports for 10-20 of the highest risk accounts, i.e.,
those with low rank. We could express this strategy
by the clause:

// Site-generation strategy: precompute

// reports of "new", "ISP" accounts with low rank

where (acct, rank) IN HotList("ISP", "new"),

(_, _, _, _, _) IN AccountDB(acct),

rank < 20

link

Precompute() -> "ReportPage" -> !reportPage(acct)

We cannot infer this clause automatically from



server logs, because the logs encode the account
numbers of the selected accounts, and on any par-
ticular day, a di�erent set of accounts has the low-
est rank. In this case, the strategy might have to
be speci�ed by the site developer. Note that Fun-
StruQL's declarativeness makes it easy for a site op-
timizer or a developer to specify strategies.

Functions help modularize a query, but they also
can introduce redundant computations. Fun-
StruQL's semantics, however, makes it possible to
identify and eliminate these computations automat-
ically. For example, the hotList function (Fig. 6,
line 9) checks that every account in the hot list exists
in the account database and then calls acctInfo,
which queries the same source. When called from
hotList, acctInfo's query is redundant, but it is
not redundant when called from other functions.
We can prove that when called from hotList, the
result of acctInfo's where clause is contained in
hotList's result, and we could optimize hotList by
inlining acctInfo and eliminating the extra query
to AccountDB:

// Optimization: avoid recomputation of acctInfo

fun hotList(type, age) {

where (acct, rank) IN HotList(type, age),

(name, street, city, state, zip)

IN AccountDB(acct)

link Result() -> "Entry" -> AcctEntry(acct),

AcctEntry(acct) ->

{ "ReportPage" -> ?reportPage(acct),

"AcctPage" -> ?acctPage(acct),

"Info" -> AcctInfo(acct),

"Rank" -> rank },

AcctInfo(acct) ->

{ "Acct" acct, "Name" name,

"Street" street, "City" city,

"State" state, "Zip" zip } }

As with any program optimization, an important
problem is deciding where to apply optimizations.
Although we do not address this problem here, we
note that FunStruQL's declarative semantics sim-
plify implementation of query optimizations.

5 Template Language

One premise of Strudel's design is that a site's
HTML rendering is separable from the site's con-
tent and structure. Strudel's template language
allows the user to specify a site's HTML render-
ing. A template is a function that maps an ob-
ject in a site graph to an HTML value. The tem-
plate's expressions produce HTML values, which
are concatenated to produce its result, and are de-

�ned by the EBNF rules in Fig. 7. Plain HTML
text, the format expression (sfmt), conditional ex-
pression (sif), enumeration expression (sfor), and
form expression (sform) are su�cient for emitting a
site graph in HTML. An attribute expression, e.g.,
Info.Acct, denotes the set of objects reachable by
edges labeled with the given attributes. An at-
tribute expression implicitly refers to the template's
object argument, named this, but can refer explic-
itly to any object variable, e.g., @this.Info.Acct.
Sometimes more general computation is necessary
during HTML generation; the sjava construct pro-
vides an \escape" into Java, which permits the eval-
uation of arbitrary Java code.

For each object in a site graph, Strudel's genera-
tor applies the appropriate template to the object
to produce its HTML value. Each object in a site
graph has a user-speci�ed generation mode: page or
page component ; all leaf objects, i.e., atomic val-
ues, are page components. Figure 8 contains frag-
ments of the templates for the Root, acctInfo, and
acctPage objects in the HTN site. The Root and
all acctPage and reportPage objects are realized
as pages, and all acctInfo objects as page compo-
nents.

The format expression maps an object to an HTML
value. In the acctInfo template (Fig.8),
<sfmt Name>, refers to the atomic value reachable
by the attribute expression @this.Name, and is re-
placed by its HTML value, a string. Format expres-
sions are concise, because the generator uses type-
speci�c rules to determine an object's HTML value.
For most atomic values, the object's HTML value is
converted to a string. For some atomic values, e.g.,
those with type PostScript, the generator produces
a link to its value.

An internal object's generation mode determines
how it is formatted. In acctPage's template,
<sfmt Info>, always refers to an acctInfo

object a, which is a page component, so it is
replaced by a's HTML value, but the expression
<sfmt ReportPage link="All Reports"> refers
to a reportPage object, which is a page, so it is
replaced by a link to the appropriate page; the
link directive speci�es the link's tag text.

Some internal objects are closures, which represent
lazily evaluated functions. In acctInfo's template,
<sfmt AcctPage link=Acct>, refers to a closure
for the lazily evaluated function acctPage (as de-
�ned in the query in Fig. 6). Its result is a page
object, so the generator emits a link that contains a



Template : �
�
Body

	

Body : � PlainHTMLText�
� <sfmt AttrExpr

�
link= AttrExpr

�
�String

�
>

�
� <sif CondExpr>Body</sif>
�
� <sfor ID in AttrExpr

�
order = (ascend

�
�descend) key = AttrExpr

�
>Body</sfor>

�
� <sform AttrExpr>Body</sform>
�
� <sjava>JavaCode</sjava>

AttrExpr : �
�
@V ar.

�
Attribute

�
.Attribute

	

Figure 7: EBNF Rules for the HTML templates.

Root template:

<sform HotListForm>

Choose account age and type:

Age: <sinput type="text" name="age" value="old">

Account type: <sinput type="select" name="type">

<select>

<sfor t in AcctType>

<option value="<sfmt @t>"><sfmt @t>

</sfor>

</select>

</sform>

acctInfo template:

<h1>Account #<sfmt AcctPage link=Acct></h1>

<sfmt Name>: <sfmt Street>, <sfmt City>

<sif PostalCode><sfmt PostalCode>

<selse><sfmt Zip>

</sif>

acctPage template:

<html><sfmt Info><hr>

<sfmt ReportPage link="All Reports">

<table><tr><td>Date</td><td>Total</td></tr>

<sfor e in UsageData.Entry

order=descend key=Date>

<tr><td><sfmt @e.Date></td>

<td><sfmt @e.Total></td></tr>

</sfor>

</table>

</html>

Figure 8: Templates for Root, acctInfo, and
acctPage objects of HTN site

Strudel-speci�c, CGI-bin expression that encodes
the closure function's name and its argument val-
ues. When the link is selected at runtime, Strudel
evaluates the appropriate function and produces the
result page. If a closure object produces a page com-
ponent, the generator applies the closure to produce
the object then applies its template to produce its
HTML. Note that template expressions are indepen-
dent of the site-generation strategy, which means
the template writer does not have to know how an
object is produced. The generator emits the appro-
priate HTML code whether an object is the result
of an eagerly or a lazily evaluated function.

The sif expression evaluates a conditional expres-
sion and then evaluates the appropriate branch. For
example, in the acctInfo template:

<sif PostalCode> <sfmt PostalCode>

<selse> <sfmt Zip> </sif>

tests for a PostalCode attribute and emits its
value if it exists, otherwise it emits the Zip

attribute's value.

Objects can have multiple instances of the same
attribute, e.g., acctPage objects have multiple
UsageData.Entry attributes. The sfor expression
binds an object variable to each object denoted by
its attribute expression and evaluates its body for
each binding. In the acctPage template,

<sfor e in UsageData.Entry order=descend key=Date>

<sfmt @e.Date> <sfmt @e.Total>

</sfor>

binds e to each value of the attribute expres-
sion UsageData.Entry and emits e's Date and
Total values. The order directive sorts objects
in either lexicographically increasing or decreasing
order; if the objects are internal, the optional key



value speci�es the attribute that should be used as
the sort key. The sfor expression above orders the
UsageData.Entry objects in descending order by
their Date attribute.

The attribute expression of a sform must refer to
a form object. A form object has free variables,
and, like a closure, a target function and some
bound variables. In the Root template, for example,
the <sform HotListForm> expression refers to the
HotListForm object. All of a form's free variables
must be bound by sinput expressions within the
body of the sform. In this example, HotListForm's
variables age and type are bound; the possible op-
tions for type's value are enumerated by the sfor

expression. As with closures, the template writer
need not know how the target function is evaluated.
The generator emits the appropriate \action" value
for the HTML form, which includes the target func-
tion and its bound variables. Currently, the check
that a form's free variables are bound is done dy-
namically during HTML generation.

Although HTML is the standard output language
for a site graph, it is not the only one. Strudel

can emit a site graph in XML and fewer than 100
lines of Strudel's generator are HTML-speci�c, so
other markup languages could be supported with
minimal changes to the generator.

6 Evaluation and Discussion

As described in Sec. 1.1, the original HTN site
was completely re-implemented using Strudel and
Daytona, a relational database management system.
We compare the total number of �les and total num-
ber of non-empty, non-comment lines of code for
each implementation. Reducing the total line count
is not a de�nitive measure of improvement, but it
does indicate the relative e�ort required for each
implementation. Table 1 compares the two imple-
mentations. Each source-code �le was categorized
as primarily site-de�nition code, HTML-template
code, or general-purpose Java code. In the Strudel
implementation, 66% of the code is devoted to page
presentation, but less than 30% is required to de-
�ne the site. This is encouraging, because the site-
de�nition query contains the potentially reusable
part of the speci�cation and is the �rst and only
component that a user would read to understand
the site's de�nition.

In the original implementation, 75% of the code is
devoted to site de�nition, but more importantly, the

Implementations
Strudel Original

Type of code # lines # �les # lines # �les

Site de�nition 291 1 1198 23
Templates 673 11 42 1
Java code 41 392 1

Total 1005 12 1632 26

Table 1: Comparison of HTN site implementations

code to access data, to de�ne site structure, and to
emit HTML code is interleaved, making it di�cult
to modify or extend. Overall, the Strudel imple-
mentation is 1.6 times smaller than the original
implementation, but if we compare only the code
for site-de�nition, it is more than 4 times smaller.
Also, the Strudel de�nition is encapsulated in one
�le, whereas the original de�nition was distributed
over 23 �les.

Unlike the original implementation, the Strudel

implementation supports 
exible site-generation
strategies. For example, we implemented by hand
some simple strategies, similar to those in Sec. 4.2:
precompute frequently accessed hot lists and re-
port pages. These added less than 10 lines to
the anonymous function, and in the best cases, re-
duced page-generation time from 12 seconds to less
than 2 seconds. The strategies extend the origi-
nal query with hand-coded optimization rules. Our
next challenge is to generate these strategies auto-
matically. HTTP-server trace logs and Strudel

pro�ling statistics can provide useful optimization
information.

Our general design strategy was to focus on the
hardest problems of creating data-intensive Web
sites: accessing and integrating data and build-
ing the site's content and structure. Our �rst in-
sight was that these problems are best solved by
a declarative query language. Our second insight
was that unlike ad-hoc queries in traditional query
languages, a StruQL query is also a software arti-
fact, which must be extensible and reusable. We
extended StruQL with functions in a way that pre-
served the simple semantics of StruQL, but that bet-
ter enabled Strudel to support dynamic sites and

exible site-generation strategies.

Overall, FunStruQL's simple, declarative semantics
make the language easy to understand and more im-
portantly, easy to analyze. We have already men-
tioned some unexpected bene�ts, e.g., declarative
speci�cation of error clauses. An important prob-



lem we have not addressed yet is extending Fun-
StruQL with an update semantics, i.e., a formalism
for specifying updates to a query's domain, and a
syntax for specifying updates. Given an update se-
mantics, Strudel could support incremental up-
date of a site, i.e., identify those parts of the site
graph e�ected by an update and recompute auto-
matically the pages e�ected.

One common criticism of FunStruQL in particular,
and other domain-speci�c languages in general, is
they perpetuate the \Tower of Babel", requiring the
user to learn a new language when well-known pro-
gramming languages can solve the problem at hand.
Our response is that FunStruQL's long-term bene-
�ts should outweigh the short-term cost of learning
the language. Site de�nitions in FunStruQL are self-
documenting and shorter than the equivalent script-
ing code, making it easier to modify and reuse them
immediately. The HTN site substantiates many of
FunStruQL's bene�ts, but we expect that applying
it to other sites will reveal other opportunities for
improvement.

Remarks. Strudel is available from
http://www.research.att.com/sw/tools/strudel.
We thank Sandra Sudarsky for her contributions to
Strudel's implementation.
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