Proceedings of DSL'99: Thé&Zonference on Domain-Specific Languages

Austin, Texas, USA, October 3—6, 1999

AN ANNOTATION LANGUAGE FOR
OPTIMIZING SOFTWARE LIBRARIES

Samuel Z. Guyer and Calvin Lin

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WhttZ// www. usenix.org

Rights to individual papers remain with the author or the author's employer.
Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

An Annotation Language for Optimizing Software Libraries *

Samuel Z. Guyer
The University of Texas at Austin
sammy@cs.utexas.edu, http://www.cs.utexas.edu/users/sammy

Calvin Lin
The University of Texas at Austin
lin@cs.utexas.edu, http://www.cs.utexas.edu/users/lin

Abstract e Compilers have limited ability to improve per-
formance. Compilers cannot exploit the domain-

specific information that is only implicitly encoded

This paper introduces an annotation language and a
compiler that together can customize a library imple-
mentation for specific application needs. Our approach
is distinguished by its ability to exploit high level,
domain-specific information in the customization pro-
cess. In particular, the annotations provide semantic in-
formation that enables our compiler to analyze and op-
timize library operations as if they were primitives of

a domain-specific language. Thus, our approach yields

e Performance

in a library’s implementation. Thus, many oppor-
tunities for optimization are lost. Since library
code is written, compiled and optimized in isola-
tion, such optimizations are important as a means
of customizing a library implementation for differ-
ent application needs.

improvements are exposed
through the interface. The only way to offer

both generality and performance is to provide wide
interfaces with specialized routines for different
contexts. Unfortunately, these specialized routines
are typically more difficult to use correctly. More-
over, the specialized routines typically improve
performance by exposing implementation deci-
sions. Thus, they intertwine the interface and the
implementation, which inhibits code reuse in the
long run.

many of the performance benefits of domain-specific
languages, without the effort of developing a new com-
piler for each domain.

This paper presents the annotation language, describes
its role in optimization, and illustrates the benefits of the
overall approach. Using a partially implemented com-
piler, we show how our system can significantly improve
the performance of two applications written using the
PLAPACK parallel linear algebra library.

Our approach to mitigating these problems is to give
libraries some of the compiler support enjoyed by
domain-specific languages. The key is an annotation
language that captures expert knowledge about libraries
and enables our compiler to customize library imple-
mentations for different situations. Library users can

. . . . _then focus on application design, relying on our com-
Software libraries are a common mechanism for re-using . ON app 9 ying

: . o . . iler to optimize performance.
code. Like a domain-specific language, libraries cal

provide high-level abstractions that empower the pro-_. .
S . . . Figure 1 shows the overall architecture of our system.
grammer and hide implementation details. Unlike a

domain-specific language, libraries do notintroduce newThe annotations are supplied by a library expertin

: . . separate specification file that accompanies the usual
syntax and receive no direct support from the compiler. i .
. i header files and source code. The annotations convey
These differences have two consequences:

two kinds of information about library routines: (1)
*This work was supported in part by an NSF Research Im‘rastruc-baSIC dataflow information, which is sometimes diffi-

ture Award CDA-9624082, NSF grant CCR-9707056, and ONR grantCUlt to obtain through static analysis, and (2) high level
N00014-99-1-0402. domain-specific information. Our compiler, which we

1 Introduction

Library
(Annotations) (_Header files) (_Source code)

T
Application . i
Broadway Compiler el s

Figure 1: Architecture of the Broadway Compiler system

have named the Broadway compiler, reads the annota- reuse and maintenance. Our annotations instead
tions and applies a series of source-to-source transfor- provide a clean separation of the optimization in-
mations to both the library and application source. The formation from the basic implementation.

result is an integrated system of library and application

code, which is ready to be compiled and linked using

conventional tools.

Our system offers many practical benefits. First, the an- ¢ The explicit representation of semantic information
notations are specified in a separate file from the library allows it to be checked for correctness. This is an
source, so our approach applies to existing libraries and open issue which we leave as future work.

existing applications. Second, the annotations describe

the library, not the application, so the application pro-

grammer does nothing more than use the Broadway

Compiler in place of a standard C compiler. Finally, the
non-trivial cost of writing the library annotations can be

amortized over many applications. The performance improvements mentioned above can-

not be obtained with conventional compiler technology

: ot because the optimizations require semantic information
When applied to a Cholesky factorization program that . .
uses the PLAPACK parallel linear algebra library [25], about the PLAPACK implementation that cannot be de-

: rived automatically. For example, one transformation re-
our system improves performance by 26% for large ma- " T L
trices and 195% for small matrices. Both the library andduIres knawledge of a PLAPACK object's data distribu-

application are written in ANSI C, and neither has beent'on' This information is implicitly represented in the

modified to facilitate our results. This paper will explain vall_Jesl of f(T)urfotijhect attrlbl:_test and ttr:e Val;i:;igllf t_)al
how our solution is able to obtain these results. While?a'@0'€. 10 furthér complicate matters, IS

these same optimizations could be performed manuallwr'tten in C and is difficult to analyze because of its

by using a wider interface and expert knowledge of th ervasivg u.se.of poiljters. In agdition, certain deffuse
PLAPACK implementation, our approach offers signifi- information is impossible to obtain because PLAPACK
cant advantages: ' makes calls to the sequential BLAS library [11], whose

source code is unavailable.

« Both approaches require semantic expertise aboyt "€ Primary contributions of this paper are (1) the
the PLAPACK implementation, but manual opti- introduction of a new technique for optimizing soft-

mization embeds this knowledge implicitly in the Ware libraries, (2) the demonstration that this tech-
optimized program, while our annotations encap-Nidue provides performance benefits when applied to a

sulate such knowledge for use in optimizing Otherproduction-quality library, and (3) an evaluation of our
PLAPACK applications. annotation language based on experiments with PLA-

PACK applications.

e Manual optimization is feasible only for PLAPACK
experts. By contrast, once an expert has provided his paper is organized as follows. Section 2 contrasts
annotationS, even casual users can Optimize theijgur work with related efforts. Section 3 describes our
PLAPACK applications by invoking our compiler. annotation language and its design philosophy. Section 4
explains our compilation strategy, and Section 5 offers
e Manual optimization directly modifies the source an empirical evaluation of our language. Finally, we and
code, which complicates subsequent modificationdraw conclusions and discuss future work.

2 Related Work phisticated transformations of high level language con-
structs, they typically manipulate programs only at the
syntactic level. Semantic properties, such as those re-

Our work builds upon the tremendous amount of pre_sulting from dataflow analysis, are either awkward to ex-

vious research in program analysis and program trang2r€SS or completely unavailable. Our approach instead
formations. In particular, we attempt to extend classi-focuses on the exploitation of semantic, rather than syn-

cal analyses and transformations to semantically highet2Ctic information.
level operations that are encapsulated in library func-

tions. For example, one of our annotations annotatioﬁrhere has been considerable work in formal semantics

specifies an abstract interpration [9, 17] and anothefd formal specifications. - In particular, Vandevoorde
draws from the pointer analysis work of Wilson and US€S powerful analysis and inference capabilities to spe-
Lam [28] cialize procedure implementations [26]. However, com-

plete axiomatic theories are difficult to write and do not

Compilers have long used hints and pragmas to guid&Xist for ma;}ny domains. In adg!t'ﬁn' this approach d?l-
optimizations such as register allocation and inlin-P€Nds on theorem provers, which are computationally

ing, and to summarize procedure information such adteénsive and only partially automated. Our work dif-
whether a function has side effects. More recently, ani€'S from these primarily in the scope and completeness
notations have been used to guide dynamic compila®f Our annotations, which describe only specific imple-
tion [13]. While annotations are not new, our use of Mentation properties instead of complete behaviors.
them is new. First, our annotations describe function

implementations, rather than call site-specific informa-OP€n and extensible compilers give the programmer

tion. This means that application programs do not re_complete access to the internal representation of the pro-

quire annotations, so our annotations are hidden frondram [16, 12]. While these systems are quite general,
the everyday user. Second, and more fundamentally, of'€Y ImpOse a considerable burden. To use them, the

advanced annotations can convey domain-specific infof2ro9rammer needs to understand (1) general compiler

mation that other languages cannot. For example, arfPlementation techniques, (2) how to configure the

notators can define concepts, such as data distributioiP€CIfic compiler they are using, and (3) how to express
that extend beyond those of the base language. Hovﬁnd execute thelr optlr_mz_atlons. S|m|la_rly, meta—objt_act
ever, unlike most hints and pragmas, the incorrect use o?l‘OtOCOlS provide sophisticated mechanisms for modify-

our annotations can lead to transformations that do nof'd the compilation of object oriented programs [8, 19],
preserve the library’s semantics. but they can be difficult to use. Our compiler limits con-

figurability to a small but powerful set of capabilities,

Our work is closely related to partial evaluation [5, 6, @nd provides a simple way to access them.

10], which improves performance by specializing rou- _) .

tines for specific inputs. Partial evaluation combinesnally, we note that our system is an instance of aspect-

inlining, constant propagation and constant folding to°fented programming [18]. In our case, the cross-

evaluate as much of the program as possible at compilgUtting aspectis performance improvement, and our an-

time. Recent work in program specialization has gener-no'["_jltlon Iangu_age a_nd compiler are specific mechanisms

alized partial evaluation to the notion of staged optimiza-©" Implementing this aspect. An important feature of
aspects is that they be separated from the rest of the code,

tions, which can take place at compile time, link time or 1 e X ,
runtime [13, 14], and which can be applied to class ji.and in our case this is achieved by placing the annota-
tions in a separate file.

braries in object oriented programs [27]. All of these

approaches specialize based on values of variables that

are constant for some duration of the program. By con-

trast, our approach can specialize based on other crite-

ria: For example, specialization can occur at a particulad Annotation Language

program point when the program moves into a particular

program state. Our approach also can perform optimiza-

tions such as loop-invariant code motion that cannot b& he goal of the annotation language is to convey library-

expressed using partial evaluation. specific information to the compiler in a simple declar-
ative manner. While it's clear that more sophisticated

Software generators [23, 24] and program transformaspecifications could support more sophisticated opti-

tion systems [22] are compilers for domain-specific pro-mizations, our goal is to show that a few simple annota-

gramming languages. While these systems provide saions can enable many useful optimizations. Simplicity

is important because we expect our language users to likat logically divides a matrix into four smaller ones:
library experts who do not necessarily have expertise in
compilers or formal specifications.

A11 A12
In designing the language, we studied several librarieg split
to determine the most useful ways of optimizing them. A
We noticed that library operations could easily be inte- A A
grated into many traditional optimizations, such as dead 2 2
code elimination, copy propagation and loop-invariant

code motion. These optimizations are effective and well
understood, and they require only minimal information

to enable. For example, to enable loop invariant codeA typical algorithm starts with an entire object, likk

motion, the annotations need to indicate which library d splits it into manageable pieces. It computes directly

. a

Fnrg%e/dliLi)r;Sryh2;(2cr:fci)csfpi;rififzegttizn\s/v?eillzcé: t;szgvrfedrgl]%ﬂ A1, A1> @nd4z;, and then continues recursively by
N) - “splitting the large remaining piecdy,, until the entire

purpose library call with a more specific one that takes P g 9 g pieces

. . . .“data set has been visited.
advantage of information about the calling context. This

form of speC|aI|zat|o_n_ not only Improves perfornja}nce, Often, a view captures part of a matrix or vector that has
it often creates additional opportunities for traditional

. special properties. Understanding and exploiting these
?Jroperties can lead to significant performance improve-
ments. For example, a view can select a region that re-
sides entirely on one processor. Any computations on
the data within thigocal view can be performed locally,

. . .. without involving other processors. In the figure above,
We present the annotation language by first descrlblnghe four-way split yields one local viewd§,), onecol-

the target library: the PLAPACK parallel linear algebra umn panel(4s;), which resides on a column of proces-

library [25]. The remainder of the section then descrlbessors, onerow panel(4,5), which resides on a row of

tgf A?)R%J;ge co?st'Fructs in detail, usmfg a fragrrentﬁz th%rocessors, and a large fully-distributed matritg£). A
annotations as a source of examples. 1hesg;q might also specify a region that is in tridiagonal

annotations capture the information used to produce th‘faorm allowing the use of specialized compute functions.
results in Section 5. A complete grammar is presented
in the appendix.

of two classes of annotationbasic annotationgor en-
abling traditional optimizations, anadvanced annota-
tionsfor specifying library-specific specialization.

Our goal is to identify the library-specific properties that

are relevant to optimization, and track them through the

] application program. For example, if an application

3.1 The PLAPACK library splits a local view into two pieces, we can infer that the
two new views are also local. The result of this anal-
ysis describes how the application manipulates objects

PLAPACK is a production-quality library for coding with respect to library-specific properties such as distri-

parallel linear algebra algorithms in C. It consists of ap-bution or data content. We can use this information to

proximately 40,000 lines of C code and provides par-customize the library, or to select library routines that

allel versions of the same kernel routines found in theare better suited to the application.

BLAS [11] and LAPACK [2]. At the highest level, it

provides an interface that hides much of the parallelisnFigure 2 shows a fragment of the annotations for PLA-

from the programmer. PACK. It specifies the two properties described above
(distribution and data content) and gives the semantics

A PLAPACK application operates on linear algebra ob-of three PLAPACK routines:PLA Matrix _create

jects, such as matrices and vectors, that are partitioneghich creates a new matriRLA_ Obj _vert _split _2

and distributed over the processors of the target comwhich splits a view into left and right pieces, and

puter. The application manipulates these objects indiPLA_Gemmwhich multiplies matrices.

rectly though handles calladews A view specifies an

index range that selects some or all of a distributed ob-

Ject ,for subsequent computatlo_ns. . PLAPACK C_ont,amb Lin this figure, thePLA_Gemninterface has been simplified in in-

routines to create new views, shift views, and split viewsgjgnificant ways to clarify the presentation. The actual routine accepts

into pieces. The following figure shows a four-way split seven arguments instead of three.

%{

#include "PLA.h"
1) %}

// --- Special case matrix distributions

property Distribution = { General = none , ColPanel, RowPanel,
2) Local, Empty };

// --- Special case properties of the data

property Contents ={Dense = none , Zero, ldentity, Upper, Lower };

// --- Procedure: Create a new distributed matrix

procedure PLA_Matrix_create (datatype, length, width, template,
align_row, align_col, new_matrix)

on_exit { new_matrix --> view_1,

3) DATA of view_1-->data 1}
access { datatype, length, width, template, align_row, align_col }
modify { new_matrix }

analyze Distribution view{1 = General; }

// --- Procedure: Split a matrix logically into two pieces
procedure PLA_ODbj_vert_split_2(obj, length, left, right)
{

on_entry {obj -->view_1, DATA view_lef>data_1}
() on_exit {left -->view_L, DATA view_L ef data_1,
right --> view_R, DATA view_Rof-> data_1}
access {view_1, length}

analyze Distribution {

(view_1 == General) => view_L = ColPanel, view_R = General;
(view_1 == ColPanel) view> L = ColPanel, view_R = Empty;
(5) (view_1 == RowPanel) view_L = Local, view_R = RowPanel;
specialize
(view_1 Distribution == ColPanel) =>replace "PLA_Copy_view(obj, view_L)";

}

// --- Procedure: Compute C <-A *B

procedure PLA_Gemm(A, B, C)

{on_entry {A-->view_A, DATA viewofA --> data_A,
B --> view_B, DATA viewoB --> data_B,
C -->view_C, DATA viewofC --> data_C }
access {data_A, data_B}
modify {data_C}

analyze Contents {
((data_A == Upper) && (data_B == Upper)) => data_C == Upper;

((data_A == Zero) || (data_B == Zero)) => data_C == Zero;

specialize {
((view_A Distribution == Empty) ||
(view_B Distribution == Empty)) => remove;
((view_A Distribution == Local) &&
(view_B Distribution == Local)) => replace "PLA_Local_gemm(A, B, C)";
(view_A Contents == Upper) => replace "PLA_Trmm(A, B, C)";

}

}

Figure 2: Part of the annotations for the PLAPACK parallel linear algebra library. (1) The header provides access to
definitions in the library header files. (2) Tipeoperty = annotations define abstract object states which are used

for analysis and specialization. (3) Each library procedure has its own set of annotations. (4) The basic annotations
summarize the dataflow and pointer behavior of the procedure. (5) The advanced annotations specify analysis rules
for abstract interpretation and specialization rules that use the resulting information.

3.2 Basic annotations trary and is bound to actual objects at each procedure
call site. The behavior of the procedure is summarized
by showing the configuration before and after execution.

Each library procedure can have a set of basic annota-
tions that provides the information needed to support thdhe--> operator indicates that the operand on the left
Broadway compiler’s dataflow analysis framework. This Points to the operand on the right. For example, in PLA-
information allows the compiler to properly interpret li- PACK, each matrix parameter is passed as a pointer to
brary calls, and to integrate them into traditional opti- & View structure, which in turn points to the underlying
mization passes such as code motion, copy propagatiohdta. We can label an edge by providing an additional
and redundancy elimination. identifier followed by thef keyword. In the example,
we label each edge from a view to its data with the label
A library procedure has access to many different datd?ATA This distinguishes it from any other things that a
objects in the application program, including the argu-Vview might point to. Figure 3 depicts the pointer struc-
ments passed into it, and possibly global objects as wellture given by the annotations label@y in Figure 2.
In addition, many libraries create and manage complex
pointer-based data-structures that are built up from many (_ °bj) (obj) (left) (right)
objects. We have found that in order to correctly an-
alyze library calls, it is essential to accurately model)
these data-structures. Thus, the basic annotations pro—@@
vide two kinds of information: (1) a list of the objects
that are accessible to the procedure and describe their Y
structure, and (2) a list of those objects whose contents (data_1)

are accessed or modified by the procedure (the “uses” _
and “defs”). on_entry on_exit

The information is specified using a technique similar toFigure 3: The effect of split on PLAPACK data struc-
interval analysis [20]. Interval analysis concisely sum-tUres.
marizes the effects of a procedure, so that the .c:omplle\rNe can use the keywomill on the right side to indi-
can analyze any code that calls the procedure without re-

. . cate the removal of an edge.
analyzing the procedure itself. Our language allows the
library annotator to explicitly summarize the dataflow The data structures described in these annotations need

and pointer effects for each library procedure [28]. In A
) . S not correspond exactly to the underlying implementa-
some cases, a modern compiler could derive this infor;

mation automatically from the library source. However tion. In fact, it is often useful to make explicit some
wicatly . y's0 " ._ ' of the relationships that are only represented implicitly
there are conditions under which this is infeasible or im-

ossible. Many libraries encapsulate functionalit forIn the implementation, Many libraries contain objects
pos ' y . cap Y 10T hat behave logically like pointers, such as handles, ref-
which no source code is available, such as low-level I/O ;
o . : : . erences and descriptors. We can oseentry and
or communication routines. Even if source is available, .
. on_exit to model all of these structures.
it may be simpler to provide the information declara-

tively, especially if it is well known. In addition to establishing new data structures, the

on_exit annotation can declare that an objectis a copy
of another object, using theopyof keyword. We can

3.2.1 on_entry and on_exit exploit this information to perform high-level copy prop-
agation on library objects.

Theon_entry andon_exit annotations specify the
effects of a library procedure on objects that are orga- .
nized into data structures. We model data structureg 22 access and modify
by adding edges between the objects. The edges are

directed and can be roughly interpreted as “points to”.The access andmodify annotations list the objects
Each identifier in these annotations is either an input tahat are accessed or modified by the library procedure.
the procedure (a formal parameter), or gives a name td he lists may contain formal parameters from the pro-
an object that is reachable by following edges from ancedure input list, or object names introduced by the

input. Like the formal parameters, each name is arbi-on_entry andon_exit annotations.

3.2.3 global T

Theglobal annotation declares global variables that /\

can be analyzed along with the procedure parameters. col Panel RowPanel Local Enpt y
These annotations simply provide a list of names that

can be used to track global state information, and are W
not associated with a specific procedure. Like the

on_entry andon_exit annotations, they need not | eneral = none

correspond to actual global variables in the implemen-

tation. It is often useful to define global variables thatrigure 4: Latticed defined by thBistribution
model system states not explicitly represented by Vafiproperty.

ables in the program. As examples, a global variable an-

notation can be used to track whether a library is prop-

erly initialized, or to maintain a record of outstanding 3-3-2 analyze

asynchronous operations.

Each library procedure can have a setofilyze an-
notations that describe how that procedure affects the
3.3 Advanced annotations properties of the objects it manipulates. Collectively,
these annotations compose the dataflow transfer func-
tion for each abstract interpretation. Each statement in

The advanced annotations define library-specific analt-hIS annotation behaves as a logical implication: if the

yses and optimizations. The annotations are used t80l’ldltl0nS on the left of the> operator are true, then we

define a dataflow analysis problem consisting of a Sef;onclude that the facts on the right are true. Each term

of abstract object states and the effects of each library" the condltlon_ is limited to tespng the current property
alue of an object, or comparing to a constant. Each

procedure on those states. The abstract states forma =~ .~ ° . :
condition is a logic expression made up of these terms.

as dataflow transfer functions. The analyzer propagr:lt((jsr,1 the absence of tie> operator, the facts are assumed

this information through the program to derive the ab—W'thOUt condition.
stract states of the actual program variables. A separatF
set of annotations uses this information to trigger library
procedure specializations. Each specialization tests th
abstract states of its input parameters to determine if th
library call can be replaced by code that takes advantag
of the context.

he PLAPACK annotations in Figure 2 show several ex-
amples of thanalyze annotation. The part labelé8)
escribes the effect of a vertical split on the distribution
f various input view types. The matrix multiply proce-
ure,PLA_Gemmanalyzes the contents of the matrices
involved. For example, it expresses the fact that mul-
tiplying two upper-triangular matrices yields an upper-
triangular matrix as a result.
3.3.1 property When more than one analysis statement applies, the
most specific one is chosen: the statement with the great-
Eachproperty annotation defines an abstract inter- est number of conditic_)nsthat are true, minu; any that are
pretation over objects in the program. The set of abf@/Se. Forexample, given @amalyze annotation of the

stract values given in the curly braces form a two-levelfollow form:
dataflow lattice. Figure 4 shows the lattice specified by

theDistribution property given in Figure 2. analyze Foo {

A => C1,
Because the lattices are only two levels high, whenever EA) && B) => C2:
two program paths disagree on the state of an object the (A || B) => C3: ’

resultingmeetresults in lattice valueL. We are con- }

sidering ways to allow more complex lattices, such as

multiple level lattices or infinite lattices, while still en-

suring convergence. The keywondne allows a sym- If only Alis true, then we would concludgl. If both A
bolic name to be assigned to the value andB are true, then we choose eith@? or C3. Ties are

broken by preferring the statement that occurs earlier in
the annotation.

3.3.3 specialize

Each procedure can specify a set of specializations that
is triggered by the properties assigned to the input ob-
jects. The specializations modify the call site in the ap-
plication code. Like theanalyze annotations, each
specialization is guarded by a condition, but these con-

structures manipulated by the library calls. Our
pointer analysis algorithm builds a flow-sensitive
“points-to” graph using the strategy described by
Chase, et al [7].

Abstract interpretation. The second phase solves the

analysis problems specified by theperty an-
notations. The analysis framework assigns an ab-
stract state to each object in the program and uses
theanalyze annotations to propagate this infor-
mation through the program.

ditions are evaluated after abstract interpretation is comEnabling transformations. Dataflow analysis often

plete. Unlike theanalyze annotations, these condi-
tions can refer to any combination of properties, and thus
must provide the specific property name. The right side
of the=> specifies either a literal code replacement, indi-
cated by theeplace keyword, or that the library call
should simply be removed as indicated by teenove
keyword.

The PLAPACK annotations in Figure 2 show three spe-
cializations for the matrix multiply procedure. The first
causes the call to be removed whenever either of the in-
putsA or B refers to empty views. The second replaces
the parallel matrix multiply routine with a local version
if both A andB refer to local views. Finally, if the data
indexed byA is upper-triangular, we can replace the gen-
eral matrix multiply call with a call to a special triangu-
lar form that requires half the number of floating point
operations.

4 The Broadway Compiler

Traditional optimizations. Specialization

This section describes the compiler’'s overall optimiza-
tion strategy. The compiler consists mostly of traditional
analysis and optimization algorithms, extended to use
information from our annotation language. The individ-
ual transformations are straightforward and are not dis-
cussed. During a particular pass, the compiler refers to
the annotations to find the information needed. Figure 5
shows the internal structure of the compiler and how the
annotations are incorporated. We use a particular order-
ing of the passes that provides the most information for
specialization, and then cleans up the customized code
using traditional optimizations.

Pointer analysis. The first phase of the compiler per-
forms pointer analysis. It not only tracks pointersin
the application code, but also uses tine entry
andon_exit annotations to determine the data

loses interesting information because it acts conser-
vatively with respect to control flow. For example,

if a library procedure is used in two different ways,
the analyzer will attempt to unify the information
from both contexts. Thus, in the third phase the
compiler uses any loss of information as a heuris-
tic to drive enabling transformations, such as pro-
cedure integration, procedure cloning, loop peeling
and node splitting. Since the properties are used to
trigger specializations, using them to trigger these
transformations is likely to enable many more spe-
cializations.

Specialization. In the fourth phase, the compiler uses

the results of analysis along wittpecialize
annotations to perform code customization. At
each call site, the compiler looks for a specializa-
tion that matches the state of the variables. If a
match is found, the call site is replaced. We have
found that after specialization, it is often beneficial
to repeat the abstract interpretation phase because
the program modifications reveal new opportunities
for optimization.

often
enables many opportunities for traditional opti-
mizations. When a general library call is replaced
by a special-case call, any arguments that are no
longer used become candidates for dead-code
elimination. Similarly, inlining a library proce-
dure often reveals redundant computations and
unnecessary copies of objects. Thus, in the final
phase, we iterate over a small group of traditional
optimization passes until no more improvements
can be made.

The traditional optimization passes are extended to
include library procedures. The basic annotations
make this possible by providing the necessary in-
formation. During copy propagation, tlvtepyof
terms tell the compiler when copies of objects are
created, and thmodify annotation tells the com-
piler when those copies become invalid. Similarly,

Broadway Compiler Copy propagatio
Code motion
Pointer | | Abstract | | Enablerd _ | Specialization__ | Dead-code
analysis > interpretation > Lo > elimination
~_ ~_ yi 7

<
~
~
~ s
~ ~ .,

~ / z
= /
yi
on_entry property - access
[on_exit] analyze][spemahze] modify] |

Annotations

Figure 5: Annotations are incorporated into each phase of the compilation process.

the basic annotations indicate the lifetimes of theture [3].

objects, allowing the dead-code elimination pass to

properly identify dead library calls. Our annotations mimicked the hand optimizations by
defining an abstract interpretation for describing the dis-
tribution of PLAPACK objects, leading to optimizations
like those described in Section 3.1. (Unlike the example

: in Figure 2, we did not define théontents property.)
5 Results with PLAPACK The basic idea is that while most PLAPACK procedures

are designed to accept any type of view, the actual pa-

: . _ . i) rameters often have special distributions. When this
This section describes our experiences in applying OU[,¢ormation is propagated into the procedure, it yields

system to portions of two PLAPACK applications, a g yariety of specialization opportunities. Uncovering

Cholesky factorization program and a code for solvingyhese opportunities requires the compiler to analyze mul-

Lyapunov equations [4]. tiple layers of nested procedure calls. It is the encapsula-
tion of these layered routines that makes the unoptimized

For these experiments, our compiler performs all anal'routines both general and inefficient.

ysis automatically. Except for inlining, we perform the
transformations manually according to the strategy de-
scribed in Section 4. While our compiler is not yet g
complete, the individual transformations are all well-
understood. Since the analysis and the overall compila-

.1 Performance Evaluation

tion strategy are the enabling technologies behind these Cholesky 3072x3072 matrix, Cray T3E
results, our manual transformations should not affectthe 3000

results. The PLAPACK annotations were written by a 2500 -+
person who is not a member of the PLAPACK imple- st

mentation team. For purposes of comparison, the base- 2000
line programs were supplied by the PLAPACK group
and written using the cleanest PLAPACK interface. The
hand-optimized programs were written by PLAPACK 1000

1500

MFLOPS

experts. All results were obtained on a 40 node Cray /

T3E. 0T/ Ot cptimized -
baseline ---x---
N S |

o .
To gather these results we annotated 29 of PLAPACK’s °© 5 10 15P 20 30 340

113 externally visible routines, yielding an annotation rocessars

file that was 323 lines. Our Broadway-optimized re-

sults focused on customizing one PLAPACK routine, Figure 8: Scalability of the Cholesky programs as the
the PLA.Trsm() routine, which is common to both nhumber of processors grows.

the Cholesky and Lyapunov applications. The hand-

optimized Lyapunov program did not limit itself to this Figure 6 shows the performance improvement of the
same scope. Details concerning the hand-optimized veSholesky and Lyapunov programs. For fairly large ma-
sion of the Cholesky program can be found in the litera-trices (144 x 6144), the Broadway-optimized Cholesky

Cholesky factorization, Cray T3E 36 processors Lyapunov equation, Cray T3E 36 processors

250

160

140 . P
/ 200 “
L 120 = -
o ol * o
? ?
g 100 " 8 150
£ 80 - c
S 72 S e
£ o0 vars & 00 vl
| - -] %
o < il L _=
= 40 B 2. = _z 7
Z o 50 o
0w Broadway optimized —— o Broadway optimized ——
20 e hand optimized --x-- [= hand optimized --»--
y/fﬁf?(’ baseline ---x--- ¥ baseline ---x---
0 =R T B I | 0 I T T T T
0 1000 2000 3000 4000 5000 6000 7000 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

Matrix Size Matrix Size

Figure 6: Performance comparison of hand-optimized and Broadway-optimized PLAPACK applications.

PLA Trsm kernel, Cray T3E 36 processors

300

L

250

o

200

150

100 o ol

MFLOPS/Processor

A
s e
500

<~
*

rbadway optimized ——

hand optimized --»--
baseline ---x---
T T T

50

_ I T
000 1500 2000 2500 3000 3500 4000 4500 5000
Matrix Size

0
0

Figure 7: Performance comparison of hand-customized and Broadway-customize@r§hf function for the
Cholesky program. For the Lyapunov program, the hand-customized @ () function matched the performance
of the Broadway-customized version.

program is 26% faster than the baseline and the handsince our experiment focuses on the benefits of special-
optimized program is 22% faster than the baseline. Foizing the PLA Trsm() routine, Figure 7 shows the perfor-
the Lyapunov program, the Broadway system does nomance difference between the generic PL&AmM() rou-
perform as well as the manual approach, improving pertine and the version that was customized for Cholesky
formance by 9.5% compared to the hand-optimized im-by our compiler. Notice that we observe similar results
provement of 21.5% foR50 x 250 matrices, and im- for different numbers of processors. Figure 8 shows how
proving performance by 5.8% compared to 6.1% forthe performance of the various Cholesky programs scale
2000 x 2000 matrices.The two approaches obtain iden- with the number of processors.

tical performance on thé’LA Trsm() kernel, but the

hand-optimized program performs a few additional op- The results reveal several interesting points.

timizations to other parts of the code.

Note that there is considerable room for further improv-
ing the Lyapunov program, sin€LA Trsm() only ac-
counts for 11.6% of the execution time for 26250 ma-
trices, and only 5.8% of the time f@000 x 2000 ma-
trices. When our compiler is complete, we will apply
our optimizations to all parts of the PLAPACK library,
including the PLA_.Gemm() routine, where Lyapunov
spends a majority of its time.

e A small effort yields a large benefit because the
annotations only contain library knowledge, while
all compilation expertise resides in the Broadway
Compiler. The library annotator supplies the small
but critical bits of information—such as specify-
ing the conditions required to substitute a specific
PLAPACK routine in place of a more general one—
while the compiler analyzes the program, identifies
opportunities for transformations, and manages a

number of optimization passes. This separation ofwhere static analysis fails. For example, a static analysis
concerns is beneficial because the performance imtool could guide the annotation by identifying routines
provements shown in Figure 7 come from the re-that must be manually annotated.

peated application of a small number of transfor-

mations.

« Automation is desirable. Both the Cholesky and S€Paration of Concerns. Our annotation language
Lyapunov programs specialize the same PLAPACKClea!”y separates the optimization mforma.tlo.n fr_om the
routine, but they do so in slightly different ways basic algo'rllthm. By contrast manual optimization di-
because they invoke it in different contexts. rectly modifies the application source code, which com-

plicates subsequent modification, reuse and mainte-

e An automated approach can apply all optimizationsnance. Moreover, we attempt to separate domain-
uniformly. There is no fundamental reason why the specific information, which we place in the annotations,
hand-optimized Cholesky factorization is not as ef-from compilation-specific information, which is embed-
ficient as ours, but the manual approach, which isded in the compiler. This separation of concerns simpli-
quite invasive, did not employ one transformation fies both the library implementation and the specification
that it could have. of the annotations.

e The effect of customization is more important for

small matrices. For example, foil824 x 1024 ma- . .
Generality. Our experiments show that our annota-

trix, the Broadway-optimized Cholesky factoriza- . . .
tion is 2.95 times faster than the base, and the hanc{—;\c;n language is effective when applied to PLAPACK.

optimized is 2.47 times faster than the base. When tﬁ bell'lte)ve .thatbthe Iangt:ra]\ge. V}"" als:? be effectlvu:j f(t))r
matrices are small the improvements are larger bef’h ebr It rarlest ﬁcaus.e f edm orrrtlal |tontk::onve)1e) yf
cause there is more overhead relative to matrix op- N a?tl\fv anno adlt?rr:s 'Sd un arcr;en a tot' € ana ys'f’ Ob
erations. Because dense linear algebra problems tny stq ¢ are,ta? S ::117vanc}?]<_e hf?””o a; |(|)fns supdpci_r ap-
not typically involve huge matrices, the small ma- Z ractin erprgf_a '.O?[' t'], w IIC IS ?selu ormho € 'Tg
trix cases is important for scaling to larger numbers .""T‘a'”'sf?f' ICn I(?l:r)ma '?r?'t n pa.rdlcu ar, Syﬁ. aga y-
of processors, and for supporting sparse matrix op-S.IS IS Uselulto any ibrary that provides specialized rou-
- tines that are tailored for specific contexts. For example,
erations. i _
the Open GL graphics standard [21] can customize var-

ious matrix transformations to exploit particular prop-

Closer examination of the Cholesky results reveal thaf'i€S Of matrices and matrix operations. In operating
specialization and dead code elimination account for alSYStems, specialized file system 1/0 routines can be pro-

most all of the performance benefits, while high level duced that are optimized for specific system states [10]:

copy propagation (where the copy operations are libranf SPecialized read routine can be created for the com-
routines) contributes insignificantly. mon situation in which the file is known to be open and

the file position is correctly positioned to the next un-
read byte. As a final example, most layered systems can
benefit from passing state information across layers [1],
providing contextual information that can trigger the use
of specialized routines.

5.2 Language Evaluation

Simplicity. Our annotation language is small and sim-
ple. There are 15 keywords and a small number of sim-
ple concepts. The basic annotations require a knowlExpressiveness. Because we have traded off general-
edge of C and the library’s data structures. The advanceitly for simplicity, our language is limited in the types
annotations require a deeper knowledge of the library’of abstract interpretation that are supported. For exam-
implementation. Anecdotal evidence suggests that thele, ourproperty annotations only allow enumerated
language is intuitive. When shown the advanced annotdists of values, which correspond to finite lattices. In
tions for PLAPACK, the head of the PLAPACK project addition, our lattices have a fixed height of two. These
claimed that they seemed “very natural.” restrictions ensure that our dataflow framework will con-
verge, at the same time hiding the lattice-theoretic foun-
While our language is quite simple, we believe that wedation of dataflow analysis from the annotator. We an-
can simplify theuse of the language. Eventually, we ticipate supporting more complex lattices, including in-
imagine that basic annotations will only be specifiedteger ranges and restricted classes of infinite lattices. We

will enforce termination by putting bounds on the num- Acknowledgments. We thank Robert van de Geijn for

ber of iterations of our dataflow analysis. many insightful discussions about PLAPACK. We thank
E Christopher Lewis and Yannis Smaragdakis for valu-

Our language is also restricted in the sense that there ble comments on preliminary versions of this paper.

no way to create dependences between different abstract

interpretations.

References

6 Conclusions and Future Work [1] Mark B. Abbott and Larry L. Peterson. Increas-
ing network throughput by integrating protocol
layers. IEEE/ACM Transactions on Networking

We have introduced a system that allows libraries to 1(5):600-610, October 1993.

be both general and efficient. Applications can use a[z] E. Anderson, Z. Bai, C. Bischof, J. Dem-

brary's most general interface, and our compiler can ™% o) 5 “pongarra, J. Du Croz, A. Greenbaum,
customize the fibrary Impiementation 10 erent ap- S. Hammarling, A. McKenney, S. Ostrouchov, and

e o o nen 2 o a7 D. Sorensen. LAPACK Users Guide: SAM,
: guag vey IN-Specilic | ! Philadelphia, second edition, 1995.

to the Broadway Compiler. The cost is that of annotat-
ing libraries, but the benefits are many: (1) Our com- [3] G. Baker, J. Gunnels, G. Morrow, B. Riviere, and
piler can perform domain-specific optimizations that are R. van de Geijn. PLAPACK: high performance
not possible without annotations; (2) our approach sup- through high level abstractions. Rroceedings of
ports the use of cleaner, simpler interfaces, which leads the International Conference on Parallel Process-
to application code that is easier to maintain; (3) our ap- ing, 1998.

proach provides a clear separation of concerns, as opti-
mization information is encapsulated in the annotations
rather than embedded in the application source code. In
effect, the annotation language allows our compiler to

[4] P. Benner and E.S. Quintana-Orti. Parallel dis-
tributed solvers for large stable generalized Lya-
punov equations. IiParallel Processing Letters

treat libraries as semantically-rich but syntactically poor 1998 (to appear).

languages. [5] A. Berlin. Partial evaluation applied to numeri-
cal computation. IProceedings of the 1990 ACM

We have tested our technique by applying it to two pro- Conference on Lisp and Functional Programming

grams written using the PLAPACK library. Our expe- Nice, France, 1990.

rience shows that (1) pointer-based C code can be an-)) - o
alyzed with the help of our annotations, (2) our tech- [6] A. Berlinand D. Weise. Compiling scientific pro-
nique can produce significant performance improve- ~ 9rams using partial evaluationlEEE Computer
ments, even for a library that has already been carefully ~ 23(12):23-37, December 1990.

designed to achieve good performance, (3) a small NUM-17] David R. Chase, Mark Wegman, and F. Kenneth
ber of simple annotations can be effective, and (4) the Zadeck. Analysis of pointers and structur&&€M
same set of annotations can be used to optimize multiple gigpLAN Notices25(6):296-310, June 1990.
applications.

[8] S. Chiba. A metaobject protocol for C++. In
This work can be extended in many directions. When Proceedings of the Conference on Object Oriented
our compiler implementation is complete we will apply Programming Systems, Languages and Applica-
our transformations uniformly to a wider body of PLA- tions pages 285-299, October 1995.
PACK routines and a larger number of PLAPACK appli- 9]
cations. We also plan to annotate other libraries, such as[
the standard math library, the MPICH [15] implementa-
tion of the Message Passing Interface, and perhaps Open
GL [21]. More fundamentally, we are developing com- [10] Crispin Cowan, Tito Autrey, Charles Krasic, Cal-

Patrick Cousot and Radhia Cousot. Abstract inter-
pretation frameworksJournal of Logic and Com-
putation 2(4):511-547, August 1992.

pilation strategies that allow us to optimize across mul- ton Pu, and Jonathan Walpole. Fast concurrent
tiple layers of libraries, and we are also exploring ways dynamic linking for an adaptive operating system.
to extend our annotation language to support machine- In Proceedings of the International Conference on

specific customization. Configurable Distributed Systeiday 1996.

[11] J.J. Dongarra, I. Duff, J. DuCroz, and S. Hammar-[22] J. N. Neighbors. Draco: A Method for Engineer-

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

ling. A set of level 3 basic linear algebra subpro-
grams. ACM Transactions on Mathematical Soft-
ware 16(1):1-28, 1990.

Dawson R. Engler. Incorporating application se-
mantics and control into compilation. IRro-
ceedings of the Conference on Domain-Specific
Languages (DSL-97)pages 103-118, Berkeley,
October15-17 1997. USENIX Association.

[24]

B. Grant, M. Mock, M. Philipose, C. Chambers,
and S.J. Eggers. DyC: An expressive annotation-
directed dynamic compiler for @heoretical Com-
puter Sciencgo appear.

[25]

B. Grant, M. Philipose, M. Mock, C. Chambers,
and S.J. Eggers. An evaluation of staged run-time
optimizations in DyC. IrSIGPLAN Conference on
Programming Language Design and Implementa-
tion, pages 223-233, 1999.

William Gropp, Ewing Lusk, Nathan Doss, and

Anthony Skjellum. A high performance, portable [27]

implementation of the MPl message passing inter-
face standardParallel Computing22(6):789-828,
1996.

M. W. Hall, J. M. Anderson, S. P. Amarasinghe,
B. R. Murphy, S.-W. Liao, E. Bugnion, and M. S.
Lam. Maximizing multiprocessor performance
with the SUIF compiler]EEE ComputerDecem-
ber 1996.

Neil D. Jones and Flemming Nielson. Abstract in-
terpretation: a semantics-based tool for program
analysis. InHandbook of Logic in Computer Sci-
ence Oxford University Press, 1994. 527—-629.

Gregor Kiczales, John Lamping, Anurag Mend-
hekar, Chris Maeda, Cristina Videira Lopes, Jean-
Marc Loingtier, and John Irwin. Aspect-oriented
programming. IrEuropean Conference on Object-
Oriented Programming (ECOOP)une 1999. Fin-
land, Springer-Verlag LNCS 1241.

John Lamping, Gregor Kiczales, Luis H. Ro-
driguez Jr., and Erik Ruf. An architecture for an
open compiler. InProceedings of the IMSA'92
Workshop on Reflection and Meta-level Architec-
tures 1992.

Steven S. Muchnick Advanced Compiler Design
and ImplementatiorMorgan Kauffman, San Fran-
cico, CA, 1997.

Jackie Neider, Tom Davies, and Mason Wapen
GL Programming GuideAddison-Wesley, 1996.

(23]

ing Reusable Software Systems. In T. J. Biggerstaff
and C. Richter, editorSoftware Reusabilityol-
ume | — Concepts and Models, chapter 12, pages
295-319. ACM press, 1989.

Y. Smaragdakis and D. Batory. Application gener-
ators. Encyclopedia of Electrical and Electronics
Engineeringto appear.

Yannis Smaragdakis and Don Batory. DiSs-
TiL: a transformation library for data structures.
In USENIX Conference on Domain-Specific Lan-
guages (DSL-97)0ctober 1997.

Robert van de GeijnUsing PLAPACK — Parallel
Linear Algebra PackageThe MIT Press, 1997.

6] Mark T. VandevoordeExploiting Specifications to

Improve Program PerformancePhD thesis, MIT,
Department of Electrical Engineering and Com-
puter Science (also MIT/LCS/TR-598), 1994.

Eugen N. Volanschi, Charles Consel, and Crispin
Cowan. Declarative specialization of object-
oriented programs.SIGPLAN Notices, Proceed-
ings of the ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages and
Applications (OOPSLA-97389(1):286-300, Octo-
ber 1997.

] Robert P. Wilson and Monica S. Lam. Efficient

context-sensitive pointer analysis for C programs.
In Proceedings of the ACM SIGPLAN’95 Confer-
ence on Programming Language Design and Im-
plementation (PLDI)pages 1-12, La Jolla, Cali-
fornia, 18-21 June 1995.

A Annotation language grammar

A.4 Object structure

Structureann —

This appendix presents the complete grammar for the |
annotation language. We use the following type

face conventionsitalic font for non-terminalsbold
for literal terminals including
keywords, andsMALL CAPS for the lexicographic ter-
minals such as identifiers and C code fragments.
addition, we use the square brackets to represent OP5ource
tional components, and the star to represent repetition

typewriter font

of a component.

A.1 Overall format

Annotations — Header
Annotationx

Header - %
C-CobE

%
Annotation — Propertyann

| GlobalLann
| Procedure

A.2 Globals and properties

Globalann ~ — global { Identifiers}

Propertyann — property

Properties — Property[, Properties]

Property — IDENTIFIER[

A.3 Procedures

Procedure — procedure IDENTIFIER(identifiers)

{ Proc.annx }

Procann — Structureann
| Defuseann
| Analyzeann
| Specializeann

{ Properties}

Structures —

Structure —

In |

Target —

on_entry { Structures}
on_exit { Structures}

Structure[, Structureq

Source--> Target
IDENTIFIER copyof IDENTIFIER

[IDENTIFIER Of] IDENTIFIER

IDENTIFIER
null

A.5 Definitions and uses

Defuseann —

Identifiers —

A.6 Analyze

Analyzeann —

Rule —
Condition —

|

|

|

|
Results —
Result —

A.7 Specialize

Specialize —
Spec —

Replacement —

access { ldentifiers}
modify { Identifiers}

IDENTIFIER[, ldentifiers]

analyze IDENTIFIER { Rulex }

[Condition=>] Consequence

IDENTIFIER[IDENTIFIER] == IDENTIFIER
IDENTIFIER[IDENTIFIER] == CONSTANT
(Condition)

Condition&& Condition

Condition|| Condition
Resultf , Resulty

IDENTIFIER = IDENTIFIER

specialize { Specx }
Condition=> Replacement

remove
replace C-CoDE

