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Abstract

In this paper, we discuss various performance
overheads in MATLAB codes and propose different
program transformation strategies to overcome
them. In particular, we demonstrate that high-level
source-to-source transformations of MATLAB
programs are effective in obtaining substantial per-
formance gains regardless of whether programs are
interpreted or later compiled into C or FORTRAN.
We argue that automating such transformations
provides a promising area of future research.

1 Introduction

MATLAB is a programming language and develop-
ment environment which is popular in many appli-
cation domains like signal processing and compu-
tational finance that involve matrix computations.
There are many reasons for its popularity. First,
MATLAB is a relatively high-level, untyped lan-
guage in which matrices are a built-in data type
with a rich set of primitive operations. Second,
MATLAB programs are interpreted, making MAT-
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LAB well-suited for prototyping code. (A compiler
that translates MATLAB code to C is available from
MathWorks.) Third, the mez-file facility makes it
easy to invoke compiled C or FORTRAN functions
from the MATLAB interpreter. Finally, a full set of
numerical and graphics libraries for many applica-
tions domains like computational finance and signal
processing is available.

In general, there are overheads in the interpreta-
tion of programs in high-level untyped languages
like MATLAB that are not there in executing code
compiled from more conventional general-purpose
languages like C or FORTRAN. The most impor-
tant of these overheads in MATLAB are the follow-
ing.

e Type and shape checking/dispatch: A variable
can be introduced in MATLAB programs with-
out declaring its type or shape. Therefore, ex-
ecution of the MATLAB statement C = A*B;
can require a computation as simple as the
product of two doubles or as complicated as
the product of two matrices A and B containing
complex entries. The interpreter must check
types and shapes of operands in expressions for
compatibility, and dispatch to the right rou-
tine for carrying out the appropriate opera-
tion. In traditional compiled languages, by con-
trast, the types and shapes of matrices would
be known to the compiler, so at runtime it



i1s only necessary to check that the number of
columns of A is equal to the number of rows of
B.

o Dynamic resizing: Since matrix sizes are not
declared by the programmer, the MATLAB in-
terpreter allocates storage for a matrix on de-
mand. If x is a vector and an attempt is made
to write to element x(i) where i is outside the
current bounds of the vector, MATLAB allo-
cates new storage for a larger vector and copies
over elements from the old vector into the new
storage. In FORTRAN or C, it is the respon-
sibility of the programmer to allocate a large
enough matrix, and any attempt to write into
a location outside the index space of the matrix
is an error.

e Array bounds checking: The interpreter must
check indexed accesses of array elements to en-
sure that the access is within array bounds. In
conventional languages, static analysis can use
array declarations to eliminate bounds checks
in many cases.

Techniques for reducing such interpretive overheads
may be useful not only for MATLAB programs
but for programs in other domain-specific languages
many of which are also high-level, untyped, inter-
preted languages.

One approach is to translate MATLAB programs
into programs in a conventional language like C or
FORTRAN, and attempt to eliminate these over-
heads when compiling the C/FORTRAN code down
to machine code. Several projects in both academia
and industry have taken this approach [2, 4, 5, 9, 13,
18, 19, 20]. The mex-file interface described earlier
can be used to invoke compiled routines from the in-
terpreter, permitting the programmer to use the fa-
miliar MATLAB execution environment when run-
ning compiled code. However, as MATLAB lacks
variable declarations, generation of efficient C or
FORTRAN requires inference of types, shapes, and
sizes. Unfortunately, compiler techniques to auto-
matically inference these properties without addi-
tional user input have had limited success, as we
discuss later in this paper.

In this paper, we will make the case for a very
different approach to reducing these overheads —
by using source-level transformations of MATLAB
code. The MATLAB community has developed a
number of programmer tricks [12] to enhance per-

formance of MATLAB codes. Surprisingly, these
ideas have never been studied in the context of com-
pilation. The conventional compiler approach, de-
scribed above, replaces matrix operations with loops
and indexed array accesses which are then optimized
using standard compiler technology. The source-
level approach advocated in this paper has the op-
posite effect since it replaces loops and indexed
accesses by high-level matrix operations! This is
somewhat counter-intuitive because type and shape
checks, dynamic resizing and array bounds checks
are not explicit in high-level matrix programs, so it
is not obvious how these overheads are reduced by
source-level transformations. Nevertheless, we show
that such source-level transformations are beneficial
regardless of whether the transformed code is exe-
cuted by the MATLAB interpreter or compiled to
C or FORTRAN.

The rest of this paper is organized as follows. A
more detailed discussion of the overheads of inter-
preting MATLAB programs is given in Section 2.
Section 3 discusses how the MCC MATLAB to C
compiler attempts to eliminate these overheads. We
also show the effect of using various compiler flags in
MCC such as the -1 flag to eliminate array bounds
checks. Section 4 describes the source-level transfor-
mations of interest to us and evaluates their effect
on performance if the resulting code is interpreted
by the MATLAB interpreter. Section 5 argues that
source-level transformations are useful even if the
transformed code is compiled to native code by the
MCC compiler. Section 6 compares our work with
previous work. Section 7 gives a sketch of how these
transformations can be performed automatically by
a restructuring compiler; details of an implementa-
tion can be found in a companion paper [14].

2 Interpretation Cost of MATLAB
programs

Our work-load in this paper is the FALCON bench-
mark set from the University of Illinois, Urbana [3].
This is a set of 12 programs from the problem do-
main of computational science, and it contains it-
erative linear solvers (CG,QMR), finite-difference
solvers for pdes (CN,SOR), preconditioner compu-
tation for iterative linear solvers (IC), etc. These
benchmarks are described in Table 1. In terms
of MATLAB behavior, De Rose [3] groups the

programs into three separate categories. Library-



intensive programs (CG, Mei, QMR, SOR) oper-
ate upon entire matrices via high-level operations
or routines. These codes contain few, if any, in-
dexed accesses into arrays. FElementary-operation-
intensive programs (CN, Di, FD, Ga, IC) operate
upon elements of matrices via loops. Virtually the
entire execution time is spent within loop nests op-
erating on array elements. Memory-intensive pro-
grams (AQ, EC, RK) require considerable memory
management overhead in the form of dynamic resiz-
ing.

To measure the overhead of MATLAB interpreta-
tion, we would have liked to execute our benchmark
suite on a suitably instrumented MATLAB inter-
preter. Unfortunately, the MathWorks interpreter
is proprietary code, so we did not have access to
the source. We considered using publicly available
MATLAB-like interpreters and even instrumented
one of them (Octave [6]), but we found that they
were sufficiently different from the MathWorks in-
terpreter that we could not draw meaningful con-
clusions about the performance of the MathWorks
interpreter from experiments on other interpreters.
For example, Octave is written in C++ and it uses
the type-dispatch mechanism of C++ to implement
the type checking and type dispatch required to ex-
ecute MATLAB matrix operations, so there is no
direct way to measure this overhead. Therefore, we
had to make do with measuring the effect of pro-
gram transformations on overall performance. In
this section, we describe the interpretive overheads
in more detail.

2.1 Type and Shape Checking

Unlike in C or FORTRAN, array variables in MAT-
LAB programs can be introduced without type dec-
larations. Furthermore, a single variable can name
matrices of different types, shapes and sizes in differ-
ent parts of the program. The complexity that this
introduces in the interpreter can be appreciated by
considering the assignment C = A*B. The type and
shape of A and B determine what computation is
performed, so A*B may refer to scalar-scalar mul-
tiplication, scalar-matrix multiplication, or matrix-
matrix multiplication where neither, either, or both
of the arguments are complex. Each possible com-
bination specifies a different kind of computation.
Furthermore, the interpreter may also test for spe-
cial cases where, for example, one of the arguments
is a row or column vector. While a vector could

be treated just as any other matrix, more efficient
underlying implementations exist for multiplying a
matrix with a vector. Finally, the interpreter may
also have to test for legality; in the case of matrix-
matrix multiplication, the second dimension of A
and the first dimension of B must conform.

The MATLAB interpreter tests for all of the above
possibilities each time it encounters the * operator.
However, examining the context in which the ex-
pression occurs may reveal that the tests are redun-
dant or even completely unnecessary. Consider, for
example, the * operator in the code:

for i = 1:n
y =y + akx(i);
end

In this case, the cost of the checks is magnified in
the interpreter as they are performed in each iter-
ation of the loop. However, note that x(i) must
be scalar, so no test is needed for it. Without ad-
ditional information, the type and shape of a must
be checked, but since a is not modified within the
loop, these properties need to be tested just once,
before the loop 1s executed.

2.2 Dynamic Resizing

In C or FORTRAN, storage for an array is allocated
before its elements are computed. Since there are
no variable declarations in MATLAB, storage for
matrices and vectors is allocated incrementally dur-
ing program execution. An attempt to write into
a matrix element outside the bounds of the matrix
causes the system to reallocate storage for the entire
matrix, copying over all elements from the old stor-
age to the newly allocated space. In loops, such
memory management overheads can become pro-
hibitively expensive. Consider the following code:

for i =1 : 10000
x(i)= 1i;
end

If x is initially undefined, the interpreter “grows”
the vector incrementally during loop execution. On
a Sparc 20, the MATLAB interpreter requires 14.2
seconds to execute this loop. However, it is clear
before the execution of the loop that x will grow to



| Benchmark | Flops | Lines of Code |
AQ Adaptive Quadrature Using Simpson’s Rule 3.6 x 10° 87
CG Conjugate Gradient method 3.7 x 107 36
CN Crank-Nicholson solution to the heat equation 2.2 x 10° 29
Di Dirichlet solution to Laplace’s equation 1.9 x 10° 39
FD Finite Difference solution to the wave equation 2.3 x 10° 28
Ga Galerkin method to solve the Poisson equation 1.3 x 10° 48
IC Incomplete Cholesky Factorization 7.6 x 10° 33
Mei Generation of 3D-surface 1.7 x 107 28
EC Two body problem using Euler-Cromer method | 3.3 x 10° 26
RK Two body problem using 4th order Runge-Kutta | 4.4 x 10° 66
QMR Quasi-Minimal Residual method 1.2 x 108 91
SOR  Successive Over-relaxation method 8.9 x 107 29

Table 1: Falcon Benchmark Suite

10,000 elements. If a vector x of this length is pre-
allocated before the loop begins, the loop executes
in 0.37 seconds. In other words, repeated realloca-
tion in the loop slows the loop down by a factor of
40 in this case. Note that the MATLAB interpreter
only allocates the minimal amount of memory each
time. That is, if the vector is not preallocated be-
fore the loop, then, on each iteration, the vector is
reallocated into a memory block one element larger.

Interestingly, this overhead in the MATLAB inter-
preter is not nearly as significant for two dimen-
sional arrays. Consider:

for i =1 : 100
=1 : 100
=1i;

for j
y(i,j)
end
end

Again, we have an array eventually resized to hold
10,000 elements. However, in this case, reallocation
is not done on each iteration. In the first iteration
of the i loop, each iteration of the j loop resizes y
by an additional column. In subsequent iterations
of the i loop, only the first iteration of the j loop
causes resizing. That iteration resizes y to an 7 x 100
array. No other iteration triggers resizing. When y
is initially undefined, the interpreter requires 0.67
seconds to execute the above loop. With y already
allocated, the interpreter requires 0.48 seconds.

While it 1s clear that the two dimensional case re-
quires fewer memory reallocations, it is also true
that it requires less data copying. In the one di-
mensional case, iteration i requires copying of ¢ — 1
data elements. An entire n? element vector (where

n =100 in our example) requires O(n*) copies. On
the other hand, for an equivalent size n x n ar-
ray, O(n?) copies are required for the first row, and
(1 — 1) * n copies are required for each subsequent
row i. Thus, the total number copies for the two
dimensional array is O(n®), asymptotically smaller
than the one dimensional case.

We conclude that the overhead of dynamic resizing
is most important when vectors are resized within
loops.

2.3 Array Bounds Checking

Indexed accesses into arrays are another source of
run-time checks in MATLAB. Consider the follow-
ing code:

x(1) = y(i);

The index i is checked to see if it is within the
bounds of x and y. If it is not within the bounds of
X, 1t triggers resizing as explained above. If it is not
within the bounds of y, an error is reported.

As with type and shape checks, array bounds checks
are often redundant, as in the code:

for i = 2:n-1
x(1) = x(i-1)+x(i+1);
end

As before, the loop magnifies the overhead in the
interpreter since three checks are performed in each



iteration. Clearly, the three checks performed on
the inner statement are redundant and can be col-
lapsed to one. The array x must contain at least
i+1 elements for the statement to be legally exe-
cuted. The other two checks are subsumed by this
check. Furthermore, this remaining check need not
be performed each iteration. If x does not contain
at least n elements, it is clear that the loop cannot
execute correctly.

3 Conventional Compilation

In this section, we examine the standard approach
to compiling away the interpretive overheads of
MATLAB programs. The key idea is to trans-
late MATLAB code into C or FORTRAN pro-
grams, making type checking, dynamic resizing, etc.
explicit and therefore amenable to optimization.
We describe how the commercial MathWorks MCC
compiler removes these overheads and quantify its
effectiveness.

3.1 Type Inference

The MCC compiler attempts to eliminate type and
shape checks through the use of type and shape in-
ference. The most sophisticated type inference al-
gorithm in the literature is the one in the FALCON
compiler of De Rose et al. [3, 4]. The algorithm used
in MCC is unpublished, but it appears to be similar.
The high level idea is to generate a system of type
equations relating the types and shapes of different
variables and solve this system to determine what
these types and shapes can be. In particular, type
and shape information of inputs to expressions can
be used to determine type and shape information of
outputs.

MCC operates at the level of single MATLAB func-
tions, or m-files. When MCC performs inference on
a function, the result is a forward propagation al-
gorithm in which the types and shapes of param-
eters and initialized local variables in a program
are used to determine the types of intermediate and
output variables. This, however, requires that type
and shape information be known for parameter vari-
ables; this is very difficult to infer automatically.
MCC’s strategy is to generate two versions of com-
piled code for each function: one that assumes that

all inputs are real and one that assumes all are com-
plex. The compiler then inserts an initial run-time
test at the beginning of execution to determine if
in fact, all inputs are real.

Figure la demonstrates the effectiveness of the
MCC compiler on the Falcon benchmarks on a Sun
Sparc 20 machine. For this set of measurements,
no additional compile-time flags were used; we will
consider the effect of the two available optimization
flags below. Note that the compiler 1s most effective
on loop-nest intensive codes. On codes that are not
loop intensive and predominantly utilize high-level
operations, such as CG, QMR and SOR, the com-
piler shows no performance benefit. Surprisingly,
the compiled code actually shows a slight slowdown
in two of these cases. In these cases, type checking
and type dispatch overhead is relatively insignificant
compared to the time taken by the actual computa-
tion.

Users may obtain better performance from MCC
by directing it to perform additional optimizations
through the use of compilation flags. These opti-
mizations, unlike the default ones, are potentially
unsafe since they may by illegal for some programs.
One unsafe optimization, triggered by a -r option to
the compiler, eliminates all tests for complex types
and as a result, generates code that assume all com-
putation is on real numbers. Obviously, this will not
produce correct results for programs operating on
complex numbers. In the Falcon benchmarks, how-
ever, this optimization is applicable on all but one
of the benchmarks (Mei). Figure 1b illustrates the
effect of this optimization on the remaining eleven
benchmarks.

There are noticeable performance gains in only three
benchmarks (Di, IC, RK). As mentioned above, the
default behavior of MCC is to generate two versions
of compiled code in which one version assumes that
all parameters are real. In this version, the com-
piler is usually able to determine that all interme-
diate and output variables are real as well. If this
is the case, the compiler will eliminate all checks
for complex values. The only additional advantage
brought by the —r option is to eliminate the initial
test on input values which, as seen in Figure 1b, is
negligible. However, real input variables may not
necessarily imply real intermediate or output vari-
ables. Certain operations, such as a square root,
may produce complex values from real ones. In the
presence of such operations, type inference will fail
to eliminate all type checks. For example, in the In-
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Figure 1: MCC Compilation

complete Cholesky benchmark, each column of the
matrix is scaled by the square root of the diago-
nal element. Even though the input matrix is real,
MCC is unable to infer that the result matrix will
also be real. In these cases, the -r option, if appli-
cable, can noticeably enhance performance.

3.2 Array Bounds Optimization

The MCC compiler does not optimize away any ar-
ray bounds checks. However, the programmer can
trigger bounds check elimination by using another
compilation flag (the -i flag). As described earlier,
this is not safe even for correct programs because
out-of-bounds writes to an array are used to trigger
dynamic resizing. Furthermore, if the code has an
out-of-bounds read access, the compiled code gener-
ated by using this flag may produce either incorrect

results or catastrophic errors.

In the Falcon benchmarks, bounds check elimination
is valid in seven of the twelve programs (in the re-
mainder, the interpreter either halts with an error or
produces incorrect results). The effect of using the
-i compiler flag on these programs is shown in Fig-
ure lc. There are substantial improvements in three
of the seven benchmarks for which this flag is legal
(Di, FD, IC). The remaining benchmarks predomi-
nantly utilize higher-level functions and contain few,
if any, subscripted references to arrays.

3.3 Discussion

The overall effect of compilation, using compiler
flags to eliminate type and shape checks as well as
array out of bounds checks where legal, is shown in



Figure 1d. Eliminating type checks by using the -r
flag is useful in the Di, IC and RK benchmarks while
elimination of array bounds checks by using the -1
flag is most effective in the Di, FD and IC bench-
marks. Note that when a compiler flag is unsafe
for a program, it may still be possible to apply the
corresponding optimization to just a portion of the
program. In the Galerkin benchmark, for example,
dynamic resizing occurs within the function, and so
the -i option will generate erroneous code. How-
ever, it does not occur within the innermost loop,
where array bounds checks are most expensive. Per-
formance measurements at this finer level of granu-
larity require access to the MathWorks interpreter
and compiler.

4 Source-Level Optimizations

In this section, we discuss source-level transforma-
tions of MATLAB programs and show how they can
be used to reduce interpretive overhead. At first
glance, this may seem to be a counterintuitive idea
since the language provides no direct means of in-
structing an interpreter when and when not to per-
form various checks. The key insight s that these
overheads are most significant in loops, so loops can
be transformed to eliminate interpretive overhead.
In this section, we discuss three different source-level
transformations and show how they improve the ef-
ficiency of our work-load. In the next section, we
compare these performance improvements with the
performance improvements obtained by the MCC
compiler.

4.1 Vectorization

Vectorization transforms loop programs into high-
level matrix operations. This is similar to vectoriza-
tion for vector supercomputers; in both cases, the
key is to map a sequence of operations on array el-
ements into one or more high-level operations on
entire arrays. On vector hardware, these array op-
erations can be executed more efficiently than loops
with scalar operations. A similar gain in efficiency
is possible in MATLAB interpretation. Loops slow
down MATLAB programs by magnifying the over-
head of statements contained with in the loop. Any
type checks or array bounds checks performed on a
statement within the loop will be repeated for every

iteration even though multiple checks may be re-
dundant. However, for higher level MATLAB oper-
ations that act on entire matrices and vectors, these
checks are performed only once. Hence, the perfor-
mance benefit of high level operations can be very
large.

Consider the execution profile of the Galerkin
benchmark in Figure 3a. This loop nest represents
a small portion of the program but it is clearly the
bottleneck in performance since 97% of the execu-
tion time of the entire program is spent within this
loop nest. However, the entire loop nest can be vec-
torized by realizing that it is actually performing
a vector-matrix-vector multiplication. When this
loop nest 1s replaced by equivalent matrix-vector op-
erations, the resulting profile is as shown in Figure
3b. This transformation enhances the performance
of the loop nest by a factor of 250, and the perfor-
mance of the entire benchmark is increased 100-fold!

Of course, vectorization i1s not always applicable.
Many programs such as CG and QMR in the Falcon
suite already extensively utilize higher-level opera-
tions and contain no for-loops. In other programs,
such as the Dirichlet code in Figure 4, expensive
for-loops exist but cannot be mapped to higher-level
operations. In this case, the dependences due to U
prevent either of the for-loops from being vectorized.

Vectorization is applicable to five of the twelve Fal-
con benchmarks. The effects on each of these five
programs is shown in Figure 2a. In two programs
(FD, Ga), the effects are dramatic since they result
in more than 30-fold improvements. In these cases,
vectorizable loops were responsible for nearly all the
original execution time. In one case (Di), the effect
is minor. Here, the vectorizable loop took only a
minor portion of the original execution time.

4.2 Preallocation

As discussed in Section 2.2, resizing of arrays can
result in significant memory management overhead
due to repeated reallocation and copying. In many
cases, the final size of the array can be easily in-
ferred. When this is the case, it is often safe to
preallocate the entire array at once. Consider the
original code for the Euler-Cromer program in Fig-
ure Ha.

87% of program execution time is spent in the lines
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shown. In this case, each of the arrays shown above
is undefined prior to execution of this loop, so the
array is resized on each iteration of the loop. How-
ever, it 1s clear in this case that ultimately, each
array will be of length nstep. There 1s no way to
declare the size of a matrix in MATLAB, but an in-
direct way to accomplish the same goal is to use the
zeros operator that creates an array of a desired
size and initializes its values to 0. Therefore, state-
ments of the following form can be used to avoid
resizing:

rplot = zeros(1l,nstep);

When preallocation is done for all arrays, we ob-
tain the profile shown in Figure 5b. Each of these
statements is now significantly faster (by a factor of
more than seven). As a result, the entire benchmark
is faster by a factor of roughly four.

Unfortunately, simple preallocation as above
not eliminate all instances of dynamic resizing. For
example, in the AQ code, the final size of the array
cannot be determined a priori. While more complex
strategies such as preallocating an estimated size or
explicitly growing the array in an exponential man-
ner may reduce this cost, we have not attempted to
do so in this paper.

can-

Finally, even when preallocation can be done, the
performance benefits will differ from case to case.
The Euler-Cromer code represents a relatively ex-
treme case since several one dimensional arrays are
resized, and the final size of each (over 6,000) is
fairly large. As mentioned in Section 2.2, the re-
sizing overhead is significantly less with two dimen-
sional arrays.

Dynamic array resizing occurs in five of the twelve
Falcon benchmarks. In four of these cases (AQ is
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for i=1:N
xtemp = cos((i-1)*pi*x/L);
for j=1:N
phi(k) = phi(k) + a(i,j)*xtemp*cos((j-1)*pi*xy/L);
end
end

b) Transformed Galerkin Code:
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Figure 3: Effect of Vectorization on Galerkin Benchmark

Original Dirichlet Code:

33.
20.

O N O OO,

.72s,
91s,
39s,
.13s,
.06s,
.02s,
.13s,
.0bs,

1%
53%
32%
10%

0%

0%

3%

0%

53:
54:
55:
56:
57:
58:
59:
60:
61:

for j=2:(m-1),
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relx = wk(U(1,j+1)+U(1,j-1)+U(i+1,j)+ U(i-1,3)-4*U(i,j));
U(i,j) = U(i,j) + relx;
if (err<=abs(relx))
err=abs (relx) ;
end
end
end

Figure 4: Dirichlet Benchmark
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end
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tplot (istep) = time;

kinetic(istep) = .5*mass*norm(v)\"{}2;
potential(istep) = - GM*mass/norm(r);
end

Figure 5: Effect of Preallocation on Euler-Cromer Benchmark



a) Original QMR Code:

19.10s, 70% 50: w_tld

b) Transformed QMR Code:

0.80s, 9% 50: w_tld

( A’xq ) - ( betaxw );

( g’*A )’ - ( betakw );

Figure 6: Effect of Expression Optimization on QMR Benchmark

the exception), the eventual size of resized arrays is
easily determined. Figure 2b highlights the effect of
preallocation on these four benchmarks.

4.3 Expression Optimization

Finally, we consider a source-level transformation
not directly motivated by MATLAB overheads. In-
stead, we are motivated by the naivete of MAT-
LAB’s evaluation process. Unlike an optimizing
compiler, the MATLAB interpreter does not con-
sider the best manner in which to compute an ex-
pression. Instead, it blindly computes it in the most
straightforward manner. Consider the profile infor-
mation from the QMR benchmark in Figure 6a.

In an eighty line program, this single statement re-
quires 70% of the entire execution time. Closer ex-
amination of this program reveals that beta is a
scalar, w_tld, q, and w are column vectors, and A
i1s a two-dimensional matrix. Thus, the subexpres-
sion AT#q is clearly the most expensive to compute,
requiring O(n?) work to perform a matrix-vector
product. However, the MATLAB interpreter will
also compute a temporary matrix for the value AT,
requiring an additional n? space and and copy op-
erations, before it computes the product. Clearly, a
temporary matrix should not be necessary to per-
form the computation. Unfortunately, the MAT-
LAB language does not provide a way of expressing
this computation as a single operation, thus forcing
the evaluation of the subexpression. While a source-
level transformation cannot directly avoid this, it
can reduce the cost by realizing that (qT#*4)7T is an
equivalent and less expensive expression. Although
this expression requires two transpose operations,
in both cases vectors are transposed instead of ma-
trices. Note the profile of the transformed code in

Figure 6b.

The result 1s a better that twenty-fold increase on

that single statement and a three-fold increase on
the entire benchmark. These kinds of transforma-
tions that exploit the semantics of matrix operations

are not feasible at the C/FORTRAN level.

5 Comparison of Source-level Trans-
formations and Compilation

In this section, we compare the separate and the
combined effects of source-level and compiler opti-
mizations. Figure 7 shows the performance benefits
realized by different combinations of optimizations.
The first three sets of bars represent the original
MATLAB code, MCC compiled code with no un-
safe optimizations, and MCC compiled code with all
unsafe optimizations legal for that particular bench-
mark activated. The second three sets of bars rep-
resent the same measurements taken on source-level
transformed code.

There are a number of interesting observations to
be made. First, the performance improvement from
source-level optimizations is quite comparable with
performance improvement from MCC compiler op-
timizations. In four cases (CG, EC, RK, SOR),
source-level optimizations have a roughly similar ef-
fect on performance when compared to safe MCC
optimizations. In four other cases (FD, Ga, IC,
QMR), source-level optimizations are better by a
factor of two or more. In two of these cases (Ga,
QMR), source-level optimizations outperform even
unsafe optimizations by a wide margin! On the
other hand, the remaining four cases (AQ, CN,
Di, Mei) profit much more from compilation than
source-level optimizations. These codes all con-
tained expensive loops performing scalar operations
that could not be eliminated by vectorization.

Second, source-level optimizations are best viewed
as being complementary to compiler optimizations.
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Figure 7: Source-Level Transformations and Compilation

The last two set of bars in Figure 7 illustrate the
combined effect of source-level and compiler op-
timizations. For programs in which source-level
transformations result in improved interpreted per-
formance, these transformations result in improved
compiled performance as well. Across all bench-
marks, the combination of optimizations provides
the best performance. In five cases (CN, FD, Ga,
IC, EC), the combination significantly exceeds the
effect of either source-level or compiler optimiza-
tions alone. Each of the different source-level trans-
formations provides benefits not currently provided

by MCC.

o When vectorization can generate high-level op-
erations such as those in BLAS, as in Galerkin,
efficient underlying libraries may be utilized by
both interpreter and compiler. These libraries
outperform code generated by a C or FOR-
TRAN compiler on the corresponding loops.

e Although preallocation does not significantly
effect the performance of every benchmark
where it is applicable (see Figure 2b), it permits
the otherwise unsafe compiler optimization of
array bounds removal. The effect of this op-
timization after preallocation on, for example,
Crank-Nicholson is dramatic.

e Algebraic optimizations such as the one used on
QMR have no equivalent in MCC. These types
of optimizations dependent on matrix proper-
ties cannot easily be applied at the lower level
of a C compiler.

We conclude from these results that source-level
transformations are key to obtaining good perfor-
mance from MATLAB codes for both interpreted
and compiled execution.

6 Related Work

As mentioned in the introduction, several MATLAB
compilers have been developed or are under devel-
opment. Each of these compilers translates MAT-
LAB into a lower language such as FORTRAN, C,
or C++.

There are two commercial MATLAB compilers.
MCC [13] is from the The MathWorks, develop-
ers of MATLAB itself, and is the compiler studied
in this paper. MCC can handle most features in

MATLAB 5 and generates C code. MATCOM [9],



originally developed at the Israel Institute of Tech-
nology and now offered by MathTools, also handles
most features of MATLAB 5 and generates C++
code. Both MCC and MATCOM are capable of
generating either stand-alone programs or mex-files
that may be linked back into the MATLAB inter-
preter. As far as we are aware, these are the only
two publicly available compilers and the only two
capable of generating mex-files.

There are a handful of compilers under develop-
ment in academia. Falcon [4] from University of
Illinois, translates MATLAB 4 into FORTRAN-90.
Menhir [2], from Irisa in France, focuses on a re-
targetable code generator capable of generating C
or FORTRAN for sequential or parallel machines.
MATCH [18], from Northwestern, uses MATLAB
to directly target special purpose hardware. Three
other compilers, CONLAB [5], from the University
of Umea in Sweden, Otter [19], from Oregon State
University, and one other from Northwestern Uni-
versity [20], explicitly target parallel machines by
generating message passing code from MATLAB.

Of all of these compilers, only Falcon appears to
consider source-level transformations [4, 11] along
the lines of those described in this paper. How-
ever, these transformation must be applied inter-
actively via a user tool and are not part of the
automatic compilation process. Furthermore, the
source-level transformations are limited to syntac-
tic pattern match and replacement, so they do not
provide a general solution for optimizations such as
vectorization and preallocation. A similar type of
idiom recognition appears to be performed by op-
timizing FORTRAN preprocessors such as KAPF
[10] and VAST-2 [16]. These tools do attempt to
detect matrix products in loop nests in order to gen-
erate BLAS operations. However, pattern matching
is inherently limited in 1ts ability to do this; neither
processor 1is able to detect a vector-matrix-vector
product written as in the Galerkin code shown in
Section 4.1.

There has been compiler research on performing
optimizations similar to the source-level transfor-
mations presented in this paper. Vectorization for
vector supercomputers has been studied extensively
over the past three decades, for example in [1, 21].
However, this work largely focuses on point-wise as-
signments and scalar operations between arrays and,
occasionally, on reduction operations rather than
the higher-level operations available in MATLAB.
The problem of array bounds removal, similar to

preallocation and directly applicable to MATLAB,
has been studied in the context of conventional lan-
guages [7].

Finally, a handful of projects [8, 15, 17] have devel-
oped parallel toolkits for use with the MATLAB in-
terpreter. These toolkits allow MATLAB programs
to directly access message passing libraries for inter-
processor communication. To gain any performance
benefit, users must parallelize their MATLAB pro-
grams using provided MATLAB-level message pass-
ing constructs.

7 Conclusion and Future Work

Source-level transformations provide an effective
means of obtaining performance for MATLAB pro-
grams, regardless of whether they are interpreted
or later compiled. These transformations are capa-
ble of eliminating many inefficiencies that currently
available MATLAB compilers are unable to opti-
mize away.

We have implemented an automatic tool to perform
source-level optimizations as part of the FALCON
project, a joint project of Cornell University and the
University of Illinois, Urbana. A detailed descrip-
tion of this tool can be found in a companion pa-
per [14]. Incorporating both source-level and lower-
level optimizations into an interpreter in a just-in-
time manner is an ongoing effort.
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