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Abstract

The ability to support disputes is an important, but

often neglected aspect of payment systems. In this

paper, we present a language for expressing dispute

claims in a uni�ed manner, independent of any spe-

ci�c payment system. We illustrate how to support

claims made in this language with evidence tokens

from an example payment system. We also describe

an architecture for dispute handling. Our approach

may be generalised to other services where account-

ability is a requirement.

1 Introduction

1.1 Importance of Dispute Handling in
Electronic Commerce

Services in an electronic commerce system involve

more than one player. An e�ective system guar-

antees that if all players behave correctly (\hon-

estly") according to some pre-de�ned protocol, each

player obtains the services it expects. A system

with integrity [12] guarantees that, in addition, hon-
est players are also protected against the incorrect

behaviour of other players they do not trust. For

example, in a payment system, an integrity require-

ment of an honest payer is that the payee receives at

most the amount of value authorised by the payer.

Sometimes practical considerations may render it

desirable to settle for a weaker form of integrity
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| the integrity requirement is modi�ed as follows:

even if the system is not able to prevent a dishonest

player from causing \harmful" e�ects to the honest

player(s), it must allow the honest player(s) to later

prove the behaviour of the dishonest player. \Stand-

ing order" payments is an example. The payer in-

structs his bank to allow periodic value transfers re-

quested by the payee (e.g., for paying utility bills).

While the payer cannot prevent the payee from re-

questing more money than necessary (e.g., more

than the amount of the monthly bill), he can prove

the amount transferred by obtaining a statement

from the bank.

Furthermore, electronic commerce transactions typ-

ically have legal signi�cance in the real world. This

means that even if a transaction is concluded suc-

cessfully, there may be subsequent disputes about

what happened during the transaction (or whether

in fact an alleged transaction took place).

Thus, the ability of an honest player to win any

dispute about a past or current transaction is often

an important requirement.

1.2 Handling Disputes

Even those systems which have accountability as

one of their major goals (signature systems such as

RSA [13], payment systems such as SET [10], or

integrated electronic purchase systems such as Net-

Bill [6]), usually limit themselves to the generation

and collection of evidence. Analysis of these systems

may include proofs which demonstrate that the col-

lected evidence is enough to win any disputes. It

is assumed that such evidence can be used in some

dispute resolution procedure external to the system.

Obviously, this is not practical: it excludes the pos-

sibility of the system making its own decisions based

on the outcome of disputes, or internally trying to

recover from errors or failures (e.g., caused by loss

of a network connection).



Moreover, evidence tokens are essentially part of the

internal structure of the system; their structure and

raw contents are not relevant outside the system.

For instance, a payment receipt in the form of a

digital signature is outwardly just a string of bits.

Even if the receipt is in a format which allows any-

one to securely verify who signed it, and when it

was sent or received, the semantics to the evidence

have to be added by the system itself. Outside the

system (that is, from the point of view of the user

of a system), what is necessary is to know what the

evidence means, and how it can be used in disputes.

Thus, a system providing a primary service (e.g., a

payment service) should also support a dispute ser-
vice. The dispute service speci�es how to initiate

and resolve disputes for the given primary service.

In a dispute, there is a set of (one or more) play-

ers called initiators who start the dispute and an-

other set of players called responders who partici-

pate in it. A special player called the veri�er or

arbiter makes, or helps in the making of, the �nal

decision regarding disputes, according to some well-

de�ned procedures which can be veri�ed by any-

one. The initiator(s) try to convince the veri�er of

a claim. Initiators may support their claims by pro-

ducing evidence or engaging in some sort of a proof

protocol. Responders may attempt to disprove the

claims. The veri�er analyses the claims made and

the evidence presented. This analysis may lead to a

judgment as to whether a dispute claim is valid or

not.

Completely automated dispute resolution may not

always be feasible or even desirable. Our dispute

handling service should instead be used as a tool in

human-driven dispute resolution. For example, it

can be used by an expert witness in court in order

to support his testimony. Or, it can be used by an

entity like the Online Ombuds Service [8] which is

not a legally competent authority but helps players

resolve their disputes. In these cases, the veri�er

does not make a �nal decision. Instead, it presents

an analysis of the evidence to a human judge. The

veri�er may even be one of the players themselves,

trying to settle a dispute in a friendly way without

going to court, or trying to convince itself of which

disputes it can win.

The �rst step in developing a coherent approach to

dispute handling is to �gure out how to de�ne a dis-

pute handling service given the description of some

primary service. To keep the problem tractable, we

focus on handling disputes in payment systems - we

will however attempt to stay general as far as pos-

sible so that the approach outlined here has the po-

tential of being applicable to other types of generic

service de�nitions as well. Our goal is to stay in-

dependent of any speci�c payment system. This

approach is consistent with existing e�orts to de�ne

generic payment services [1, 14] which enable users

(human users or applications acting on their behalf)

to invoke payment services in a system-independent

fashion. In trying to preserve the same generality in

the de�nition of the dispute service, we aimat devel-

oping a uni�ed framework integrating both payment

and dispute services.

In Section 2, the problem of how to express dispute

claims is studied. In Section 3, the problem of how

to map evidence tokens to dispute claims is inves-

tigated. This mapping is payment system-speci�c

and needs to be done internally in every payment

system. As an example, we will use a simpli�ed ver-

sion of the iKP [3] payment protocol.2 An overall

architecture for dispute handling, including a gen-

eral dispute resolution protocol, is also described.

2 Expressing Dispute Claims

2.1 What to Dispute?

Consider a payment system which implements the

services de�ned by a generic payment service (e.g.,

the one described in [1]). The primary purpose of

the generic payment service is the transfer of value

from payer to payee.

To make a value transfer, the payer tells the system

who the payee is, what amount is to be transferred,

and certain other parameters.

� pay $200 to BobAir (\#434: for ight 822 on

Jan 19").

In a generic payment service, and using the ISO-OSI

approach of modelling a distributed system [9], this

may be represented by a service primitive pay which

could take the following pieces of information as pa-

rameters: payee, amount and ref (an external refer-

ence string enabling the payment transaction to be

linked to an external context). In order to complete

the value transfer, the payee invokes a receive prim-

itive with input parameter ref (optionally also payer

and amount) and output parameters payer, amount.

Figure 1 illustrates the interface events during a

payment.

2SET is the proposed standard for credit-card payments

on the Internet. However, we will use iKP here since its
simplicity helps illustrate the approach more clearly.



paid()

Alice BobAir

pay (BobAir,$200,ref,..) receive(ref)

payment protocol

received(Alice,$200,..)

Figure 1: An Example Payment Transaction

Before formally de�ning a language to express dis-

pute claims, let us attempt to get an idea of the

kinds of claims that need to be expressed. What

sorts of disputes, related to the above value trans-

fer, does the payer (Alice) expect to be able to initi-

ate and win? For example, Alice may want to claim

that

� she paid $200 to BobAir (perhaps because

BobAir refused to send the tickets claiming no

payment was made), or

� her payment was made before Jan 12 (perhaps

because there was a deadline).

Some disputes may be about negative claims: for

example, BobAir may want to prove that

� BobAir did not receive $200 from Alice.

In other words, dispute claims are statements about

the characteristics of value transfer. These char-

acteristics are determined by the service primitives

used, together with their parameters, and additional

contextual information (such as the time of value

transfer).

In addition to the payer and payee, a �nancial in-

stitution may be involved in creating a digital rep-

resentation of money or converting it back to real

value. Thus the value transfer may involve two or

more sub-protocols involving di�erent pairs of play-

ers. For example, in a cheque-like [1] model, the

payer sends a \form" (e.g., a cheque or a credit card

slip) to the payee using a payment protocol and the

payee may use a deposit or capture protocol to claim

the real money. This leads to two other types of dis-

pute claims.

� Suppose BobAir makes an o�er to Alice for a

cheap ticket if she made the payment before Jan

12. Alice goes through the steps of the payment

protocol (e.g., sending a credit-card slip). How-

ever, BobAir changes his mind after receiving

the credit-card slip | he does not \capture"

Alice's payment. Alice cannot of course prove

that the value transfer took place. But if she

has a signed acknowledgement from BobAir,

she can prove that the value transfer could have

taken place without further help from Alice, if

BobAir had wanted.

� Suppose Alice pays $200 to BobAir using a

debit card. Later, she �nds an entry in her

monthly statement indicating a debit of $300.

Alice may now want to start a dispute with the

bank claiming that she approved a debit of only

$200. In other words, a single original transac-

tion could lead to two di�erent types of dis-

putes: one involving the payer and the payee,

and the other involving the payer and the bank.

2.2 Value Transfers as Primitive
Transactions

Users expect a system to provide a certain service.

Therefore, disputes in the system are about an in-

stance of the service that was or could be provided.

The primary service provided by the generic pay-

ment service is value transfer from one player to

another. The model in [1] assumes four types of



players involved in value transfer: the payer, the

payee, the issuer, and the acquirer. Value transfers

between the issuer and acquirer are carried out over

traditional banking systems; this transfer is outside

the scope of the generic payment service. Thus, for

the purpose of our disputes, we will consider the is-

suer and acquirer as a single entity, called the bank.

As shown above, we also need to express and con-

duct disputes about transfers between payer or

payee and bank. This requirement leads us to follow

the approach taken in [11] of de�ning three di�erent

types of value transfer as shown in Figure 2.

� In value subtraction, a user allows the bank to

remove \real value" from the user; this implies

the user's right to spend \electronic value."

� In value claim, a user requests that the bank

gives \real value" to the user.

� In payment, the payer transfers value to the

payee.

We now de�ne a primitive transaction as an instance

of one of these value transfers. A primitive trans-

action represents a partial view of a subset of the

players on the overall transaction.

In some cases, a primitive transaction actually cor-

responds to a protocol run of the underlying pay-

ment system. For example, a withdrawal protocol

run in a cash-like system is a value subtraction prim-

itive transaction. Thus, value subtraction completes

independently of and before the actual payment.

The payment and value claim complete after the

actual cash payment protocol is run and the payee

has deposited the coins with the bank.

In other cases, the primitive transaction is a purely

virtual one and represents only the view of a subset

of the players. For instance, a payment protocol

run in a cheque-like payment system is seen by the

set fpayer, bankg as a value subtraction primitive

transaction while it is seen by the set fpayer, payeeg

as a payment primitive transaction.

Given the de�nition of a generic payment ser-

vice, one can make a mapping between its ser-

vice primitives on the one hand, and the primi-

tive transactions (payment, value subtraction, value

claim) e�ectuated by those primitives on the other

hand. We refer to [2] for a description of such a

mapping for the generic payment service described

in [1].

Rather than referring to speci�c protocols or service

primitives, we will state dispute claims in terms of

whether or not the service de�ned by a primitive

transaction did (or could) take place. If a value

transfer is reversed (e.g., the payee refunded the

payer), it is equivalent to the value transfer not hav-

ing taken place at all. However, it must still be pos-

sible to express a claim like \Alice did pay $200 to

BobAir in the past" which must be true, even if the

payment was later refunded by BobAir.

2.3 Statements of Dispute Claims

2.3.1 Syntax

We express a statement of dispute claim as a for-

mula in a �rst-order logic with certain modal ex-

tensions. The language of the logic consists of the

following symbols: logical connectives, typed vari-

ables, typed constants, and relational connectives

(which are functions of variables/constants of the

appropriate type).

There are three types of variables: primitive trans-

action (pt), roles, and attributes. The pt vari-

able can take its value from a well-de�ned enu-

merated set. In the case of the payment service,

this set consists of payment, value subtraction,

and value claim. Each primitive transaction has

a set of well-de�ned role variables associated with

it. For example, payment has payer and payee as

associated role variables. The role variables be-

long to a type called id val, which represents distin-

guished names according to some well-de�ned nam-

ing scheme (e.g., account numbers or certi�ed e-

mail addresses). Each primitive transaction also

has a well-de�ned set of attribute variables asso-

ciated with it. For simplicity, we assume that all

value transfer primitive transactions have the same

set of attribute variables: amount, time,3 and ref.

The attribute variables are typed | they take their

values from the appropriate domains. In the case

of the payment service, we assume that amount,

time, and ref take values from domains named

amount val, time val, and ref val respectively. Each
attribute, depending on its type, has a �nite set

of relational operators associated with it. Table 1

lists the variables in the generic payment service,

their domains, and applicable relational operators.

We also allow two logical connectives: ^ (conjunc-

tion) and :(negation), a parenthetical operator for

specifying precedence, and modal operators called

can without, could without, once, always and

3There may be several di�erent timestamps involved; for

simplicity, we assume that there is only one instant at which
the transaction is considered to have taken place.



Transfer of "real" value

Payer Payee

Bank

value subtraction

payment

value claim

Figure 2: Value Transfer Transactions

variable domain relational operators

pt fpayment, value subtraction, value claimg =

<role> id val =

amount amount val < � = � >

time time val < � = � >

ref ref val =

Table 1: Attributes and Operators of Primitive Transactions

never. A comma indicates concatenation.

The rules to construct valid dispute claim state-

ments are described in the grammar speci�cations

shown in Table 2. Note that this grammar is

only payment speci�c in its concretisation of pos-

sible values for pts, roles, attributes and relops,

and as such represents one instantiation of a fam-

ily of grammars, each instantiation of which de-

�nes a grammar for dispute statements related

to a speci�c service (payment, non-repudiation,

etc.). From now on, we will simply write primi-

tive transaction name to denote the predicate

`pt=primitive transaction name.' Also, when

a conjunction (^) is obvious, we omit it. For ex-

ample, `payment payer =Alice payee =BobAir' is

shorthand for `pt=payment ^ payer =Alice ^ payee

=BobAir'.

2.3.2 Semantics

First, let us try to capture the intuitive semantics of

our dispute claim language. During the execution

of a protocol, the system as a whole goes through a

series of well-de�ned global states. The global state
consists of the initial secrets (e.g., private keys) of

all the players involved, all message exchanges up to

that point, and all sources of randomness. There-

fore it has enough information to assign values to

all the variables that can possibly appear in a dis-

pute claim phrased in our claim language. Given a

dispute claim phrased in our claim language, a ver-

i�er who knows the entire global state can decide

with certainty if the claim is true or not. However,

it is extremely unlikely that any veri�er can know

the entire global state (e.g., private keys of other

players). The goal of dispute resolution is for the

veri�er to attempt to partially reconstruct the se-
quence of global states (along with as much of their

contents as possible or necessary) the system has

gone through, arriving at the current state. A ver-

i�er can do this using the evidence presented to it.

Based on interpretation of the evidence (which is a

payment system-speci�c function), the veri�er can

assign values to some of the variables. Such a partial
assignment may be contingent on the trustworthi-

ness of the entities involved in the creation of the

evidence. The claim is evaluated with respect to

the current state, and/or the sequence of states tra-

versed so far.

Once a su�ciently complete interpretation of a state

is available, the veri�er can determine if a given ba-

sic stmt s is true in that state. The meanings of



claim ::= role claims claim stmt
claim stmt ::= modal stmt k : modal stmt k (modal stmt)

modal stmt ^ modal stmt
modal stmt ::= possibility stmt k certainty stmt k basic stmt
certainty stmt ::= always basic stmt k never basic stmt
possibility stmt ::= role set could without role set basic stmt k

role set can without role set basic stmt k
once basic stmt

role set ::= role k role, role set
basic stmt ::= role part ^ attr part
role part ::= pt=payment ^ payer=id val ^ payee=id val k

pt=value claim ^ user=id val ^ bank=id val k

pt=value subtraction ^ user=id val ^ bank=id val

attr part ::= truek attr val pair ^ attr part
attr val pair ::= amount relop amount val k time relop time val k

ref=ref val

relop ::= < k � k = k 6= k � k >

role ::= payer k payee k user k bank

Table 2: Grammar for the Payment Dispute Claim Language

the modal operators are intuitive. The statement

\always s" is true at a state S if s is true in S as

well as in every state reachable from S. The mean-

ing of \never s" is analogous. The statement \P

can without Q s" is true in S if there is a state

S0 where s is true, and it is possible for P to cause

the transition from S to S0 without any action from

Q. Given a path p = fS0; : : :Sng, the statement \P

could without Q s" is true in p if the following

two conditions are satis�ed: (a) \P can withoutQ

s" is true at some state S in p, and (b) if, at some

later state in p, it was no longer possible to reach a

state where s is true, then P was responsible for this

change. Given p = fS0; : : :Sng, \once s" is true in

p if s was true in a state S in p.

Now, let us try to de�ne the semantics more for-

mally. Our model consists of a set of states S, a set
of roles R, a set of transitions T � S � S, and an

interpretation L which assigns a value of the appro-

priate type to variables in the language.

A role uniquely identi�es a service access point (e.g.,

payer). We assume that there is an infrastructure

that enables a veri�er to unambiguously identify

and authenticate the identity of a player (which

is some value from the domain id val) playing any

given role. We assume that a multi-party protocol

can be described by a directed acyclic graph (DAG),

the edges of which correspond to message transmis-

sions between the players, and the nodes correspond

to internal global states4. We can capture this prop-

4The DAG representation, rather than representing exact

erty by de�ning that each state has a cardinality,

de�ned by the function card() : S ! N , where

N is the set of natural numbers. The cardinality

is used to impose a partial temporal order over S.

If (S1; S2) 2 T , then card(S2) > card(S1). If

the protocol is speci�ed in the form of local �nite

state machines, they can �rst be unwound into a set

of DAGs which can then be combined into a single

DAG. Replays of protocol messages, when detected

and rejected by the receiver, do not inuence the

global state and therefore do not a�ect the DAG. If

a protocol allows di�erent messages with the same

message type to be sent several times during a pro-

tocol execution, the di�erent occurrences are repre-

sented as seperate transitions in the DAG.

The sender of a message is the agent associ-

ated with the edge that represents the message

in the DAG. A function agent () : T ! R

identi�es the role associated with a given tran-

sition. (Recall that an interpretation will asso-

ciate an id val with a role, thereby associating

an id val with each transition as well.) Given

a path p, in the form of a sequence of states

fS0; S1; : : : ; Sng, the function agents(p) returns the
union of agent(Si; Si+1); for i = 0 : : : n � 1.

The veri�er has a payment system-speci�c evalua-

tion function which can be used to associate a par-

protocol states along the di�erent possible execution paths,
should be seen as a \template" allowing the veri�er to map

pieces of evidence to idealized states as de�ned by the proto-
col.



tial assignment with a given state. The relational

operators have the usual semantics. Thus, given

a su�ciently complete partial assignment, and a

proposition involving an attribute, a relational op-

erator, and a value, it is possible to evaluate if the

proposition is true. Given a global state S with a

partial assignment, and a basic stmt s of the form

\role part attr part" (where role part and attr part

are conjunctions of propositions as described in the

previous section), s is true in S, if role part and

attr part evaluate to true after the partial assign-

ment is made. Since the assignment is partial, the

veri�er may not always be able to decide whether

a claim is true or not, for example, if the evidence

supplied is incomplete.

Figure 3 illustrates the semantics of the modal op-

erators. The �gure shows the DAG description of

a protocol, including the states where a certain ba-

sic stmt s is true.

1. If the statement `always s' is true in a state

(e.g., S100), then s (as well as 'always s') is true

in that state and in all states reachable from it,

in all possible paths. Similarly, if `never s' is

true in a state (e.g., S3; S201), then `not s' (as

well as `never s') is true in that state and in

all states reachable from it.

2. The statement `P2 can without P1 s' is true

in S1 because P2 can cause the transfer to S100.

3. The statement `P2 could withoutP1 s' is true

in the path fS0; S1g because of 2. It is also true

in the path fS0; S1; S110g even though s itself

cannot be true in S110 or any state reachable

from S110. This is because, in S1 it was still

possible to reach a state where s would have

been true (S100) and it was P2 which chose not

to e�ect that transition.

4. Given a path, the statement `once s' has the

usual meaning in linear temporal logic | for

example, `once s' is true in fS0; S1; S2; S200g

and fS0; S1; S2; S200; S201g.

We now de�ne the semantics of modal operators

more formally. We �rst de�ne a valid path as:

For a path p = fS0; S1; : : :Sng,

valid path(p) i�
(Si; Si+1) 2 T , i = 0 : : :n� 1

In the following de�nitions, paths are implicitly as-

sumed to be valid paths. The semantics of the

can without operator are now de�ned as follows:

S ` PSET can without QSET s, i�

9 Sn such that

Sn ` s

^ 9 p = fS0 = S; S1; : : :Sng such that

agent (S; S1) 2 PSET
^ QSET \ agents(p) = �

That is, given a state S, if there is a valid path

p leading to a state Sn, such that s is true in Sn,

and the �rst transition in p can be made by a mem-

ber of PSET and no one from QSET is required

to make any transition in p, then the statement

`PSET can without QSET s' is true in S. The

can without operator is used to make a statement

about the possible future states of the system. In

contrast, the could without operator is more gen-

eral. It is de�ned with respect to a path (more pre-

cisely, with respect to a state and a speci�c path

leading to that state). It can be used to make a

statement about the system at the end of the path

about where it can go in the future, as well as where

it could have gone in the past. The semantics of the

could without operator can be de�ned in terms of

the can without operator:

For a path p = fS0; S1; : : :Sn = Sg,

p ` PSET could without QSET s, i�

S ` PSET can without QSET s

_ 9 Si 2 p,i = 0 : : :n� 1 such that

Si ` s

^ Si+1 ` : s

^ agent(Si; Si+1) 2PSET
_ 9 Si 2 p,i = 0 : : :n� 1 such that

Si ` PSET can without QSET s

^ 9 Sj 2 p, j = i : : : n� 1 such that

Sj ` ALL can without QSET s

^ Sj+1 ` : ALL can without QSET s

^ agent (Sj ; Sj+1) 2 PSET

The set ALL represents the set of all roles for

the primitive transaction referred to in s. The

rule identi�es three disjunctive conditions to eval-

uate the truth of the statement `scould=PSET
could without QSET s' with respect to a path

p. The �rst disjunction says scould is true if

`scan=PSET can without QSET s' is true in the

last state of p. The second disjunction says that



Time

P1

P1

P2 P2
P2

P3
P3

S0

S1

S200

S2

S100
S110

S201

S3

States where `never s' is true

States where `always s' is true

States where `s' is true

`P2 could without P1 s' is

- true in path fS0; S1; S110g

- false in path fS0; S1; S2; S3g

- false in path fS0; S1; S2; S200; S201g

`P2 can without P1 s' is

- true in S1
- false in S0, S3 and S201

`once s' is

- true in fS0; S1; S2; S200g

- true in fS0; S1; S2; S200; S201g

Figure 3: Semantics of Dispute Statements

if s was true at some state in p, but not at the

state immediately following it, and the transition

was caused by someone in PSET, then scould is true
with respect to p. The third disjunction is a little

more complicated. The intent is to capture the fol-

lowing case. Sometime in the past, it was possible to

reach a state where s is true (i.e., there was a path,

say p0 from some state Si in p, making scan true

at Si). The agents of p0 consist of some members

of PSET but none from QSET. It may also con-

sist of other entities, not in either of the above sets.

The statement `(PSET [ agents(p0)) can without

s' should therefore hold at every state in p subse-

quent to Sj . If it fails to hold after a certain tran-

sition, and that transition was caused by a member

of PSET, then we can assert that scould is true in p.

In the interest of simplicity, we relax the de�nition

a little by using the set of all roles (ALL) instead of

(PSET [ agents(p0)). The last disjunction captures

this property. Similarly,

p ` once s, i� 9 S 2 p such that S ` s

S0 ` always s; i� 8 p = fS0; : : :g; p ` 2 s

S0 ` never s; i� 8 p = fS0; : : :g; p ` 2 : s

The notation \p ` 2 s" has the usual meaning in

linear temporal logic: in the sequence of states p, the

formula s holds true in every state. In Section 3.3,

we will look at an example payment system to see

how we can build a global state transition diagram.

The claim language described above constitutes the

set of symbols and grammar rules necessary for spec-
ifying dispute claims in the generic payment service.

The language constructs allow multiple time-lines.

Therefore, it belongs to the family of branching tem-

poral logics [7]. It does not include all possible tem-

poral logic constructs: for example, the until op-

erator. We have only included the constructs that

seemed necessary to express the claims described

earlier. However, we have included constructs like

can without and could without, which are not

standard branching temporal logic constructs.



The language can be extended as needed. In Sec-

tion 3.2 below, we describe how the claim language

can be extended to derive the language describing

the messages in a generic dispute protocol between

the veri�er and the player.

The inference mechanisms used by the veri�er con-

stitute a logic over the claim language described.

Proving soundness and completeness of this logic

with respect to a given payment system actually

means proving the payment system correct. Our

approach has rather been to add dispute handling

to existing payment systems, most of which do not

ful�ll these correctness requirements. Therefore, we

consider the main contribution of this work to be in

the problem de�nition and the development of the

claim language; not in the development of the logic.

2.3.3 Examples

The �ve dispute claims mentioned in Section 2.1

correspond to the following statements in our lan-

guage:

� payment payer=Alice payee=BobAir

amount=$200

� payment payer=Alice payee=BobAir

amount=$200 time < Jan12

� : payment payer=Alice payee=BobAir

amount=$200

� payee could without payer payment

payer=Alice payee=BobAir amount=$200

time < Jan12

� : value subtraction user=Alice
bank=CarolBank amount=$300 ref =\#434:

for ight 822 on Jan 19:payment to BobAir"

If players have evidence proving that a certain

value transfer transaction has reached a guaran-

teed �nal state, they may choose to make stronger

claims, using the always or never operators. For

example, if Alice has a receipt for the payment

made using a payment system which does not sup-

port refunds, she may claim \always payment

payer=Alice payee=BobAir amount=200" instead.

3 Supporting Claims with Evidence

3.1 Architecture for Dispute Handling

3.1.1 Overview

Recall that there are three types of players in a dis-

pute: the initiator who starts the dispute by making

a claim, the veri�er who co-ordinates the dispute

handling and possibly makes, or helps make, the �-

nal decision about the validity of the claim, and a

set of responders who may be asked by the veri�er

to participate in the process.

At the access point of each player, there is a \user"

part (which may be the human user, or an appli-

cation program acting on his behalf) and a \sys-

tem" part (which is an implementation of the dis-

pute service: e.g., an iKP implementation of the

generic payment dispute service). The veri�er's sys-

tem has two parts: the inference engine receives a

claim, and associated non-repudiation tokens, anal-

yses them, and determines the conditions under

which the claim is true, and the conditions under

which it is false; the policy engine uses the result of

the �rst part to make a �nal decision. The policy

engine may be a human arbiter, external to the dis-

pute handling service. It needs to use trust assump-

tions. In the simplest case, this may be in the form

of a blacklist of untrusted principals. It is possible

that the trust assumptions require a more elaborate

representation (for example, as in PolicyMaker [4]).

Each player's system then engages in a proof pro-

tocol with the veri�er's system. Recall that during

the dispute protocol, the veri�er's goal is to deter-

mine both the current state of the payment system,

and the sequence of states through which it has pro-

gressed, and that the validity of the claim should be

evaluated with respect to this state and sequence.

At the end of the protocol, the veri�er's system re-

turns an analysis of the claim. The analysis consists

of a likely decision (yes or no) as well as the set of

players who were witnesses to the decision and the

set who were against it. If there is insu�cient evi-

dence, the veri�er's system may throw an exception.

The policy engine makes the �nal decision by com-

bining this analysis with his trust assumptions.

This leads to the following requirements on the de-

sign:

� The veri�er needs the following service primi-

tives:

{ map: Takes a claim as input and returns
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Figure 4: Basic Dispute Protocol

a list of (player, statement) pairs. Each

player is required to prove the correspond-

ing statement.

{ analyse: Takes a claim, a set of players,

and the statements they need to prove

as input, engages in some proof proto-

col (maybe as simple as receiving one or

more non-repudiation tokens, interpreting

them, and making an inference on the

statements proved), and returns the set

of players according to which the claim is

true, the set of players according to which

it is false, and the set of players who have

been found to be cheating.

{ decide: Takes a claim, and two sets of

players (yes-set, no-set) as input, and re-

turns one of yes, no, or cannot-decide,

based on the veri�er's trust relationships

as output. This is the result of the dis-

pute.

� Each player needs the following primitives:

{ constructClaim: which allows the user to

construct a claim, and

{ prove: which takes a statement as input

and attempts to prove it (maybe as sim-

ple as retrieving the pieces of evidence and

returning them to the caller).

A concrete design of a dispute service for the generic

payment service of [1] is described in [2].

3.1.2 Lost and withheld evidence

In some scenarios, a claimant may need to rely on

another party to help prove a certain claim. This



may be because the claimant lost parts of the nec-

essary evidence; it may also be an inherent property

of the payment system; e.g., in a payment system

where the payer never gets signed receipts from the

payee, the payer may not be able to win a pay-

ment dispute without cooperation from his bank.

In either case, the other party could decide to with-

hold the necessary evidence. This problem cannot

be dealt with except in the case where it can be

shown that the other party should indeed possess or

have possessed the evidence. It is up to the speci�c

payment system to de�ne the actions to be taken in

such a case.

3.1.3 Enhancements

We have limited ourselves to disputes in a generic

payment service where there is only one service

boundary. The system is \below" the boundary and

the user or his application is \above" the bound-

ary. Comprehensive electronic commerce frame-

works such as SEMPER [17] are structured into

multiple layers. A payment usually takes place in

the context of a higher layer transaction (e.g., a fair

exchange) which in turn may take place in the con-

text of a transaction in the layer above (e.g., an

instance of an on-line purchase application). A dis-

pute claim made in a higher layer needs to be suit-

ably mapped to corresponding claims in the lower

layers. The running of the dispute protocol needs

to be co-ordinated among the di�erent levels. This

is left as an open problem.

3.2 Evidence and Trust

During a dispute, players have to support dispute

claims by proving certain statements to the veri�er.

The ability to prove statements comes from pieces

of evidence (evidence tokens) accumulated during

a transaction of the primary service. The simplest

form of evidence is a non-repudiation token that can

be veri�ed by anyone who has the necessary pub-

lic keys, certi�cates, certi�cate revocation lists etc.

The proof protocol in this case simply consists of

presenting the token to the veri�er. There can be

more involved proof protocols, such as in \undeni-

able signature schemes" [5]. In the following, we

will assume only simple proof protocols consisting

of the presentation of non-repudiation tokens.

Often, non-repudiation tokens cannot substantiate

an absolute statement. In general, an evidence to-

ken corresponds to a non-repudiable assertion by

one or more players that they believed the protocol

reached a certain state (with an associated partial

assignment). Such an assertion is a witnessed state-
ment. During the dispute protocol, the veri�er asks
various players to prove witnessed statements (in

the proof request messages in the dispute protocol

of Figure 4). We de�ne the language for these wit-

nessed statements by building on our claim language

in Section 2.3 and extending it with the following

rule.

witnessed stmt ::= role witnessed asserted stmt

asserted stmt ::= basic stmt k certainty stmt

The witnessed operator takes two parameters: an

asserted stmt s, and a role P . The statement \P

witnessed s" is true if P has non-repudiably as-

serted that the transaction reached a certain state,

with an associated partial assignment in which s

evaluates to true. The ability to prove and ver-

ify such a non-repudiable assertion itself assumes

a lower layer dispute service for non-repudiation.

The veri�er's analyse method, after having collected

the non-repudiation tokens proving the witnessed

statements, returns a result of the form:

_f[:] <claim stmt> yes=f: : :g, no=f: : :gg,

cheating=f. . . g

Each component of the disjunction contains either

the original statement in the claim or its negation,

and two optional sets of players: the set of players

whose statements are in agreement with the con-

clusion and the set of players whose statements are

contrary to the conclusion. The veri�er will pick

one of these disjunctions, depending on the set of

players he trusts. If the evidence presented is insuf-

�cient to decide one way or the other, the system

may raise an exception. Further, it may also be able

to detect if some player has cheated (for example, if

the same player has witnessed a certain statement

and its exact opposite, it may imply that the player

had cheated).

Note that a carefully designed, secure, payment sys-

tem can be rendered insecure if the inference engine

used by the veri�er is wrong. It is important to

make sure that the inference engine used not de-

grade the security of the protocol.

Consider as an example a dispute claim discussed

earlier: Alice claims to have made a payment of

$200 to BobAir. There is no way to say with abso-

lute certainty whether the transaction actually took

place. A receipt from BobAir proves the statement



BobAir witnessed payment payer=Alice

payee=BobAir amount=$200

Whether a veri�er can infer

payment payer=Alice payee=BobAir

amount=$200

depends on the context, the trust assumptions of the

veri�er, and even on the actual payment system al-

legedly used for the value transfer. For example, in

a dispute against BobAir, the veri�er could accept a

signed receipt from BobAir as su�cient evidence to

conclude that the latter claim is true. However, if

BobAir and Alice are in collusion and want to con-

vince a third party (say the tax authorities) that a

certain payment happened, BobAir's signed receipt

alone is not su�cient. In this case, if the veri�er

trusts the bank, it can accept a signed statement

from the bank as su�cient evidence. Thus an anal-

yse result of the form:

payment <role part> <attr part> yes=fbankg

no=fg

may allow the veri�er to reach a �nal positive deci-

sion, whereas a result of the form:

payment <role part> <attr part>

yes=fpayer,payeeg no=fg

cannot exclude collusion of payer and payee in try-

ing to prove a payment.

Now, in Section 3.3, we will look at a simpli�ed ver-

sion of the iKP protocol to see (a) how statements

can be supported with evidence and (b) how to de-

rive system speci�c inference rules.

3.3 An Example: Evidence Tokens in
iKP

iKP was designed as a solution for securing credit

card payments over open networks. The original

protocol was described in [3]. A more detailed def-

inition with some improvements is available in [15].

In this section, we present a simpli�ed version of the

3-party iKP (3KP) where all three players are as-

sumed to have signature and encryption key pairs.

We will see how the receipts gathered during an iKP

protocol run can be mapped to dispute statements

de�ned in Section 2.3 for the generic payment ser-

vice.

3.3.1 Protocol Description

In our simpli�ed version of iKP, there are three play-

ers: Customer (Payer), Merchant (Payee), and Ac-

quirer (Bank). Before the transaction begins, the

customer and merchant agree about the amount of

payment (\price") and the description (\desc") of

what the payment is for. The �rst half of Table 3

depicts the initial information of each player. To

begin the transaction, the payee:

� generates two random nonces v and vc; these

nonces will later be used as part of the re-

ceipt(s) from the payee,

� collects the common information (\com"). The

common information consists of all the pieces

of information that will be known to all the

parties at the end of the transaction,5 and

� generates a signature Sig
M

containing hashes of

the data items mentioned above and sends the

signature along with any necessary information

to the payer. This is the signed o�er from the

merchant.

The signature on the o�er makes it non-repudiable.

But this is not relevant to our discussion.

The payer then sends an order message. This is the

authorisation by the customer to make the payment.

The order is a signature Sig
C
of the payer on two

pieces of information,

� H(com), and

� an encryption of the price, the customer's ac-

count number (\CHI"), and H(com).6

The payee forwards the order along with the of-
fer to the acquirer requesting authorisation. The

acquirer replies indicating whether the authorisa-

tion succeeded or not. For simplicity, let us assume

that the acquirer immediately transfers the money

from payer to payee if the authorisation is successful.

The authorisation response Sig
A
from the acquirer

is signed.

5One item in the common information is a randomised
hash of the description (HR(desc)). The payer and payee

already know the description. The randomised hash allows
the bank to con�rm that the payer and payee agree on the

descriptionwithout the bank's having to know the actual text
of the description

6Parts of the card-holder information is considered \se-
cret" information (e.g., like a credit card number). The en-

cryption in the order can be opened only by the bank |
thus, the payee will not be able to determine CHI.



Data Functions

M Merchant (payee) H() A one-way hash function

C Customer (payer) HR(m) A randomised one-way hash of m
A Acquirer (bank) ERX(m) A randomised encryption
TID Transaction ID of m with the public key of X
date Time stamp SX(m) Signature of X on m
price Amount information
desc Description of payment
v Con�rmation Authenticator
vc Cancellation Authenticator
CHI Card-holder Information

com Common information (M;C;price;TID;date;HR(desc);H(v))

Payment

o�er : C  ���
TID; date;H(v); Sig

M
= SM (H(com);H(v);H(vc))

������������������������������������������ M

order : C �

Enc = ER
A
(price;H(com);CHI); Sig

C
= SC(Enc;H(com))

���������������������������������������������! M

auth-request :M ���
TID; date;H(v);H(com);HR(desc);Enc; Sig

M
; Sig

C

�������������������������������������������! A

auth-response :M  ���������
yeskno; Sig

A
= SA(yeskno;H(com))

������������������������������������ A

con�rm : C  ��������������
(v; yes)k(vc; no); Sig

A

������������������������������ M

Cancellation

cancel : C  �����������������
vc

���������������������������� M

Refund

refund-request :M �������

Sig
refund

M
= SM (H(com); price; \refund")

���������������������������������������! A

refund-response :M  �������

Sigrefund
A

= SA(H(com); price; \refund")
�������������������������������������� A

Figure 5: Simpli�ed iKP Protocol

Initial Information

payer desc; price;CHI

payee desc; price;TID; date; v; vc

bank

Collected Information

payer com;H(v); Sig
M
; [Sig

A
]; vkvc

payee com;Enc; Sig
C
; [Sig

A
]; [Sig

refund

A
]

bank [com;Enc;CHI; Sig
M
; [Sig

refund

M
]; Sig

C
]

Table 3: Information of Players in a Completed iKP Transaction



Role Evidence Statement Possible

witness Primitive Transaction Counter

payer 1. Sig
M
; v; com payee payment 8

2. Sig
A
; yes; com bank value subtraction 10

3. Sig
A
; no; com bank never value subtraction

4. Sig
M
; vc; com payee never payment 11

payee 5. Sig
C
; com;Enc payer payment 3, 4, 10

6. Sig
A
; yes; com bank value claim 10

7. Sig
A
; no; com bank never value claim

8. Sig
refund

A
; com bank never value claim

bank 9. Sig
M
; Sig

C
; com payee value claim 8

10. Sig
refund

M
; com payee never value claim

11. Sig
C
; com;CHI payer value subtraction 3, 4

Table 4: Mapping Evidence to Dispute Statements in iKP
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Figure 6: Global States in iKP



Once the payee receives the authorisation response,

he will send a con�rmation to the payer. The con-

�rmation contains the acquirer's authorisation re-

sponse and the authenticator v. The pair (Sig
M
,

v) constitutes a receipt by the payee that he re-

ceived the payment. If a payee decides to cancel a

payment, he can issue a cancellation receipt to the

payer by sending him vc. If the payer possesses the

pair (Sig
M
,vc), it is proof that the payee agreed to

cancel the payment. If the payee cancels an already

authorised payment, he can contact the acquirer and

arrange for a refund.

The second half of Table 3 lists the pieces of infor-

mation that are collected by the players at the end

of a successful protocol run. Again, items within

square parentheses are available only under certain

circumstances.

Note that instead of using v and vc, the con�rm and

cancel ows from the payee to payer can be signed

by the payee. The use of v and vc avoids the payee

having to make two or more signatures by allowing

the original signature to be \extended."

3.3.2 Mapping iKP receipts to Dispute

Statements

Table 3 lists the pieces of information known to each

player at the end of a successful transaction. We can

now try to extract evidence tokens from these pieces

and identify the dispute claims they can support.

In the actual iKP protocol, the acquirer transfers

the money from the customer to merchant during a

\capture" transaction. The merchant can also cap-

ture a di�erent (lower) amount than was previously

authorised. The refund transaction is essentially a

negative capture. Depending on the policies of the

players, some of the receipts may be omitted. All

these variations are not relevant to our discussion.

Therefore they are left out from our simpli�ed ver-

sion.

With the information in Table 4 and Figure 5, we

can represent the global states in a run of the iKP

payment protocol in the form of a DAG as in Fig-

ure 6.

In iKP, all three primitive transactions are com-

pleted at the same time. The states where the

primitive transactions are succesfully completed are

marked with a circle. The states where `never s'

is true (s is any basic stmt with any of the prim-

itive transactions e.g. `payment payer, payee')
are marked with a thick broken circle. Notice

how the veri�er can use this graph to implement

the analyse method (Section 3.1): while `payment

rest of the claim' is false in S300, S400, and S7, the

statement `payee could without payer payment

rest of the claim' is true in S300 and S7 (but not

in S400).

4 Summary and Conclusion

We have shown why a generic dispute service is

needed for payment systems. We developed a lan-

guage to express dispute claims and applied it to

an example payment system. Finally, we described

a generic dispute handling protocol in the context

of an architecture for dispute handling. A crucial

part of the dispute handling framework is the ver-

i�er's inference engine. When a new payment sys-

tem is adapted to the framework, the critical step is

to identify the inference rules applicable to that sys-

tem. In general, the process of deriving the inference

rules is equivalent to proving the payment system

correct. Ideally, derivation of inference rules should

be an integral part of the design process of the pay-

ment system. On the other hand, the aim is not

complete automation of dispute resolution. Thus,

even with an incomplete set of inference rules, a

payment system can be incorporated into the frame-

work. The most trivial inference rule is \ask the

human user!"
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