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Abstract

VarietyCash is a new electronic money system which
strikes a balance between functionality, security, and
user privacy. The system can encompass both net-
work and stored-value card based payment mecha-
nisms, with transferability between them, hence the
name.

1 Introduction

Electronic payment systems are well-understood to
be an essential step on the road to electronic com-
merce, and are thus in high demand. These systems
need to strike a good balance between a number of
di�erent issues. Amongst these are:

� Anonymity: The extent to which a third party
(bank or other payment service provider) or the
merchant has information about the identity of
the buyer.

� Account-based or account-less: Account based
systems are higher cost from the point of view
of the service provider. In the US, at least,
so-called Regulation E obligates the service
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provider of account-based systems to provide
customers with a level of account maintenance
(e.g., periodic statements) which increases the
cost of such systems.

� Network versus card-based: Some systems are
software-based for transactions across the net-
work; in others, like Mondex [14], stored-value
cards are used.

� Atomicity: The system should be fair and robust
in the sense that network failures, for example,
do not result in incomplete transactions [22].

We propose a simple, versatile system that is
account-less, provides some degree of anonymity in
the form of anonymity by trust , is versatile enough to
allow both network-based and card-based payment
to inter-operate in the system, and provides atomic-
ity. The system is the result of a thorough system's
analysis, design, and proof of concept carried out by
the authors for a large �nancial institution.

1.1 Background

There are many good reasons to have some degree
of anonymity: people want to avoid being added to
mailing lists, or simply keep secret the kinds of goods
they buy; businesses may not want competitors to
know what kinds of information they are buying.
The strongest form of anonymity (unconditional) is
provided by systems based on so-called blind signa-
tures [10]. (These systems were �rst proposed by
Chaum [8]. At this point, there are many of them
published.) However, these systems have many well-
known drawbacks. Tygar and Yee (as reported in
[22]) point out that the protocols lack atomicity:
network failures during a transaction will result in
loss of the electronic money involved. That double
spending is only caught after the fact is considered
too high risk by banks. Another problem (as pointed



out in [16]) is scalability: as all coins that have been
spent have to be recorded, the coin data base will
grow over time, increasing the cost to detect double
spending. Attempts to address some of these issues
have been made (e.g. via escrow [13]) and stored-
value card based settings mitigate others [7], but
drawbacks remain.

Mondex [14], on the other side of the spectrum,
provides no anonymity. It seems to be a shared key
based card design. There are well-known scalability
and security problems with such designs. For exam-
ple the security is totally dependent on the security
of a master key, and this master key must be dis-
tributed to many users and points of sale across the
system. If a single module is penetrated, not only
is signi�cant retailer fraud facilitated, but the entire
card base may be compromised.

NetBill [19] has a large spectrum of desirable prop-
erties, including atomicity. It might be able to pro-
vide some limited anonymity via trust in the Net-
Bill server and the use of pseudonyms, but linkage
is still possible. Also the NetBill server maintains
accounts for buyers and merchants, which is costly.
Also, NetBill's transaction protocols include func-
tions that are beyond payment, such as price ne-

gotiation. The trend nowadays is that these func-
tions should be separated, and standardized; e.g.,
JEPI [12], SEMPER [20].

Our design (its network version) shares many
features with NetCash [16, 15] (NetCash has no
\o�-line" operation, meaning the ability to also
work with stored-value cards). The NetCash pro-
tocols also combine symmetric-key cryptography
for performance with public-key mechanisms. A
consequence of shared-key operations is no non{
repudiability in some key functions (e.g., in ex-
changes with currency server). Anonymity in Net-
Cash is also trust-based, with multiple currency
servers which the client selects; this in turn implies
an accounting infrastructure in order to maintain
consistency accross servers, etc. [17]. Additionally,
NetCash is cast as a framework that can accommo-
date various electronic currency mechanisms,

iKP [3], SET [21], etc., are credit card-based pay-
ment systems. We are looking for some form of cash.

1.2 Variety Cash

In VarietyCash, the issuer functions as a mint. Coins
are tokens authenticated under an issuer master key.
The system is on-line, meaning the issuer maintains
a coin database, and the merchant checks on-line
with the issuer that a coin has not been previously
spent. Since the system is on-line, the master key is

present only at the issuer, so, unlike in Mondex, can
be well protected.

Spent coins can be erased from the database, un-
like some systems; if this were not possible scalability
would be adversely impacted.

VarietyCash provides \trust-based anonymity."
At withdrawal time the issuer does note the asso-
ciation of user ID to coin serial numbers, but this
user database is separate from the database record-
ing the spent or unspent status of a coin which is
looked up when a merchant wants to con�rm that
no double spending has occurred. The information
can be co-related as necessary in case of law en-
forcement needs, but the issuer is expected to main-
tain user privacy except in such cases. While not
anonymity at the level of digicash, this relies on
no more trust than we put in our �nancial service
providers today, and with a well-known, reputable
service provider, is likely to be deemed adequate by
most people for most things. Furthermore, users can
use pseudonyms.

The system is robust, functional and exible. The
protocols for withdrawal and spending will provide
atomicity. Coins can be purchased in any number or
denomination, and paid for in a variety of ways. The
system is account-less, so Regulation E is avoided,
and the payment service provider does not have to is-
sue statements to customers or incur other such over-
head. The same coins can be used for network based
payment transactions or put on stored-value cards in
the Mondex style, and the coins are transferable be-
tween the two. Novel features include transferability
of coins without any speci�c payment transaction,
ie. \making change".

The main concern is cost arising from it being
an on-line system. The issuer will have to invest
some resources to be able to handle lots of trans-
actions quickly. This, however, appears feasible for
reasonable load. Our protocols minimize the over-
head. Batching and aggregation can be used to re-
duce costs (e.g., [4]).

This design originated in response to a request of
a certain large �nancial service corporation to seek
a practical, viable e-money system. In discussions
with them we found they were more ready to take
on the cost of on-line veri�cation than to incur the
risks arising from anonymous cash, or to fall under
Regulation E. From this it appears that there is a
market for a system like VarietyCash.

1.3 Implementation

Our design has been implemented in C++. The
core of the system can be viewed as a distributed



cryptographic application framework. The issuer
and merchant sides have been implemented to run
on AIX, whereas the client (buyer) runs on Win-
dows 95. A buyer can access web-sites of mer-
chants through a browser. If the web-site is e-money-
enabled, on a purchase it returns a document with
a special mime-type, which the browser has been
con�gured to recognize. The browser then invokes
an external e-money daemon. The daemon launches
(if not already running) a graphical user interface
for the client, and rest of the communication be-
tween the three parties takes place via the daemon.
The transaction databases have been implemented
persistently, so that malfunctions such as network
breakdowns do not hamper the protocol.

1.4 Organization of the paper

We start in Section 2 by describing the model
and system architecture of the main component of
VarietyCash, namely, a network-based, on-line pay-
ment system. Some of the design considerations and
requirements for the processes we present may be of
wider applicability. In Section 3 we concentrate on
two processes (and corresponding protocols) in de-
tail: withdrawal of e-money and payment. Finally,
in Section 4 we show how to integrate to the network
component a typical card-based payment system.

2 Model and System Architec-

ture

2.1 Security design goals

We start by identifying the basic aspects that com-
pose the security of an e-money system.

Protocol Security. By this we mean liveness
and safety guarantees, namely, that the protocols
achieve their goals and that every participant gets
its information, and is secure in the sense that the
other parties which are considered adversaries do not
compromise or spoil the system. This aspect is the
main focus of this paper.

Internal Security. The security of the inter-
nal operation system of the issuer of electronic cur-
rency, its capability to withstand insider attacks and
abuses. The internal network architecture, opera-
tion policies, employment of tamper-proof hardware
as well as dual control measures and access-control
and physical access limitations should be reviewed.
The internal security architecture has to be com-
bined with issues such as availability, reliability, load

balancing and back-up requirements.

Network Security. The security of the net-
work (e.g., Internet) of users and the issuer, to pre-
vent attacks not via the protocol but rather through
\break-ins;" these attacks exploit the lack of proper
protection into the system and software holes. Care-
ful design of the interface to the external network
(�rewall protection) is required. Both the internal
and the network systems have to be evaluated under
\Global Security Testing," which includes penetra-
tion attempts and security assessment of design and
implementation.

User Security. Security of the user's assets. The
user must obviously protect his electronic currency,
and the software and procedures supplied to the user
have to provide for protection at a proper level (e.g.,
beyond password-only protection), but at the same
time be user-friendly.
In this paper, we deal speci�cally with the proto-

col aspects and their security. In this presentation
we do not cover all the protocols, but what we cover
seems to capture the basic needs of the system. For
simplicity, nor do we deal with the temporal aspects
of maintaining the system, such as long-term key
management and cryptographic policies.

2.2 Parties and roles

We will use the following terminology for the parties
involved in VarietyCash. In a typical transaction
there would be three parties involved: the payer, the
payee, and the bank or e-money server. However, we
would like to be more speci�c than that:

Participant { A generic name for a party in-
volved in the system.

Issuer (I ) { Party who issues coins.

Coin-holder (CH ) { A party who holds coins or
has the potential to do so.

Payee (PY ) { A party who is willing to accept
coins as payment (e.g., a merchant).

Bank (B) { A number of banks will be involved
in moving funds due to conversions between
electronic and real money.

Certi�cation Authority (CA) { The party who
can \certify" the public keys of the participants.
(In some scenarios, this role can be played by
the Issuer itself.)

In turn, a coin-holder may play the following roles:

Coin Purchaser (CP) { purchases coins from is-
suer

Redeemer (RD) { turns coins into real money



Payer (PA){ customer who pays for
goods/services with coins

Refresher (Rf ) { gets new coins for old

Changer (Ch) { makes change

Further, we make the following distinction amongst
participants:

Registerer (RG) { Register a public key at the
issuer

Enroller (EN ) { Enroll for a particular role such
as coin purchaser or merchant

The idea here is that a participant may wish to be
able to \play the game," i.e., accept and use coins
as a form of payment, without going through the
more elaborate process that enables the purchase or
redemption of e-money. Note that parties and roles
are not mutually exclusive.
In VarietyCash all the participants have distinct

identities, as well as public keys. The issuer has
a database listing the identities of all participants,
and, for each one, its public key. This information
is entered at the time of registration. In all transac-
tions directly involving the issuer, there is thus no
need for an external certi�cation authority; however,
the design leaves an option for such a case.
We assume in this extended abstract a unique is-

suer, thus dispensing with the presentation of a more
elaborate clearing system.

2.3 Adversaries and attacks

We distinguish between two major kinds of attack-
ers: the abusers and the spoilers. Abusers try to
get some speci�c advantage, such as get coins with-
out properly paying for them; forge or steal coins;
etc. Spoilers do not seek any advantage per se; they
just try to disrupt the system. An example of a
spoiler attack is to replay a coin purchase request in
an attempt to make an unnecessary transfer of funds
(from the withdrawer's bank to the issuer). Another
example is the denial of service attack in which the
attacker tries to tie up issuer resources.
Attackers may be external (e.g., on the Internet

lines), or they may be parties themselves (for exam-
ple, a malicious payee or withdrawer trying to get
some money for free), or they may be insiders (such
as an employee at the issuer).
Active attackers are the main problem. Pure

eavesdroppers only try to learn information, such
as the nature of a transaction. Our protocols will be
designed to resist active attacks.
We do not discuss error handling or denial of ser-

vice attacks. An adversary can always interrupt a
ow and thus disrupt a protocol. It is assumed that

standard re-transmission and time-out procedures
underly the transmission of protocol ows and ad-
dress these attacks as well as possible.

2.4 Coins and cryptographic termi-

nology

An e-coin (coin for short) is an object consisting of
a unique identi�er (serial number, counter) called
the coin ID, an indication of value (denomination),
an expiry date, and an authenticating cryptographic
tag. This cryptographic tag can be implemented in
di�erent ways. In our design we choose to use a
MAC, or message authentication code, on the rest
of the information, computed using a symmetric key
which is kept in secret by the issuer. Thus, the is-
suer can compute and verify the tag, but no other
party can compute a valid tag. Because it is secret-
key based, the tag cannot even be checked by anyone
except the issuer, i.e., this is not a digital signature.
This is done for e�ciency reasons|symmetric key
based cryptography is hundreds of times more e�-
cient than public-key operations. A schematic rep-
resentation of a coin is shown in Figure 1.

The cost of successful tag forgery can be enor-
mous, since if an adversary could forge tags, he or
she could manufacture counterfeit coins at will. In
order to minimize the possibility of successful tag
forgery, we suggest the following:

First, the tag should be computed in protected,
tamper-proof hardware. This minimizes the
risk of loss of the secret key.

Second, the tag-computing algorithm should be
\strong." One can of course use MACs based
on existing primitives such as DES. This may
be acceptable, but we suggest that a Triple-
DES based MAC be used. A good choice would
be a Wegman-Carter [23] type MAC, meaning
that one applies an XOR-universal hash func-
tion to the data and then XORs the result with
the value of a Triple-DES based pseudorandom
function applied to a counter. The size of each
tag should be (at least) 128 bits, so the total tag
length is 28 bytes. Outside the cryptographic
module the tag is encrypted inside the issuer
database, and it goes encrypted over the net-
work. It is only available in plain form to the
receiver of the coin.

Additional protection is provided by the fact that
the coin database itself is protected. So that if an
adversary manages to forge the correct tag for a coin
which has not yet been issued, it will not help, be-
cause the issuer will fail to validate the coin. Thus,
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Figure 1: Structure of an un-encrypted coin.

the adversary must be able to successfully forge tags
of issued, un-spent coins to achieve a meaningful
gain.

A coin can have various states. For example, spent
or not; anonymous or not; split, and if so how; etc.
These are marked in the database.

The issuer will expect from a coin purchaser re-
questing coins, or a change maker wanting change,
a speci�cation of exactly what kinds of coins are
being requested. The speci�cation takes the form
of a list of denominations, and for each denomi-
nation, the number of coins of that denomination
that is desired. The simplest thing is to just ask
for one coin of a certain denomination, for example
a single coin of $0.80. But one could ask for, say,
(2; $2:50); (1; $1:25); (3; $2), meaning I want 2 coins
of value $2.50 each, one coin of value $1.25, and 3
coins of value $2. The total value of the list is the
total dollar value, $12.25 in the example just given.
The choice of speci�cation is decided by a combina-
tion of the user's needs and the software (purse).

The cryptographic primitives used in the protocols
of Section 3 are summarized in Figure 2. All the par-
ties have public keys. The issuer has a cache of iden-
tities and their corresponding public keys, so that
the certi�cation authority is not needed in transac-

tions with the issuer. (But it may be needed for
other transactions.)

The encryption function E�

X must provide, besides
secrecy, some form of \message integrity." Decryp-
tion of a ciphertext results either in a plaintext mes-
sage, or in a ag indicating non-validity. Formally,
the property we require of the encryption scheme
is plaintext awareness [5, 2]. Roughly speaking, this
means that correct decryption convinces the decryp-
tor that the transmitter \knows" the plaintext that
was encrypted. This is the strongest known type of
security, and in particular it is shown in [2] that it
implies non-malleability (it is not possible to mod-
ify a ciphertext in such a way that the resulting
plaintext is meaningfully related to the original one,
as formalized in [11]) and security against chosen-
ciphertext attacks. A simple, e�cient scheme to
achieve such encryption using RSA is OAEP [5]. A
Di�e-Hellman based solution can be found in [1].
(Note that the RSA PKCS #1 encryption standard
can be broken under chosen ciphertext attacks [6],
and is thus not suitable for our purposes.)

However we stress that plaintext-aware encryption
does not provide authentication in the manner of a
signature, i.e., it does not provide non-repudiation.
But it prevents an adversary from tampering with a



� Keys:

PKX ; SKX Public and secret key of Party X

CERTX Public key certi�cate of Party X, issued by CA. We assume it includes

X;PKX and CA's signature on PKX .

� Cryptographic primitives:

H(�) A strong collision-resistant one-way hash function. Think of H(�) as return-

ing \random" values.

E
�

X Plaintext-aware public key encryption using PKX

SX(�) Digital signature with respect to SKX . Note the signature of message M

does NOT includeM . We assume the signature function hashes the message

before signing.

eK Symmetric key based encryption algorithm, taking key K and a plaintext,

and producing the ciphertext

macK Symmetric key based signature, or message authentication code (MAC),

taking key K and a plaintext, and returning a short tag.

Figure 2: Keys and cryptographic primitives used in protocols

ciphertext.
Also note that the encryption function is random-

ized: E�, invoked upon message m will use, to com-
pute its output, some randomizer, so that each en-
cryption is di�erent from previous ones.
Finally, the notation � denotes bitwise XOR.

2.5 Databases, modules, components

We briey mention the components that interact
with the processes we describe. Briey, a participant
has a purse, which has a database of coins. The is-
suer has a coin database and a participant database.
These indicate the status of a coin, including the
withdrawer ID if anonymity was not requested. A
schematic view of the issuer's coin database is shown
in Figure 3.
The issuer has a secure cryptographic module

for coin generation. The coin-generation key is
hardware-protected inside this module.

2.6 General requirements and princi-

ples

A global requirement is the conservation of cash.

This means that the total e-money in the system is
equal to the total amount of real money that the
issuer's logs show is in e-money.
A general principle is that any coin representa-

tion is seen by at most one participant other than

the issuer. Thus, after an issuer issues a coin, the
withdrawer is the only party who \sees" this coin.
When the withdrawer makes a payment with it, the
payee doesn't see the coin; it is in a digitally sealed
envelope which goes straight to the issuer for vali-
dation. This implies \on-line" payments where the
issuer is involved in every such transaction. In ad-
dition, the internal representation of the coin does
not enable insiders with access to its database to use
it|a coin is checked by a tamper-proof hardware for
its validity.

Coins are treated as bearer instruments, like real
currency. The user has the money if s/he has a
(valid) coin; no questions asked.

The security requirements that we pursue are
those of \strong cryptography" for the protection
of �nancial transactions; the use of \weak cryptog-
raphy" only (e.g., 40 bit-long keys and passwords)
is insu�cient for e-money. International usage of
the system is possible if the encryption is not made
\general purpose," but is rather restricted to the use
inside the user's software.

3 Processes and Protocols

We �rst enumerate the basic processes taking place
in VarietyCash, and the parties involved in them.
Later we describe in detail the requirements and pro-
tocols that realize them for the two more relevant
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Figure 3: Encrypted coin in the Issuer's coin database.

processes: Coin Purchase and Payment.

Registration { A party chooses an identity, and
has his/her public key registered at the issuer.

Enrollment (PY ; I or PA; I ) { An already reg-
istered participant enrolls for a role such as coin
purchaser or redeemer.

Coin Purchase (CP ; I ;B) { The withdrawer
speci�es what kinds of coins s/he wants, and
a corresponding set of coins is then issued and
sent to the withdrawer. The coins are paid for
by funds of value equal to the total dollar value
of the issued coins, which the withdrawer au-
thorizes the issuer to get from his/her bank ac-
count.

Payment (PA;PY ; I ) { The payer pays to the
payee a requested sum, using one or more coins
totalling to the requested value. The payee im-
mediately (i.e., on-line) validates the coins with
the issuer, and may either obtain new coins in
return, redeem the coins, or aggregate them for
later redemption.

Change (CH ; I ) { The coin-holder gives the is-
suer a set of coins, and also speci�es what kinds
of coins he wants in change, the total dollar
value of the requested coins being the same as
that of the provided coins. Coins corresponding
to the request are then issued to the coin-holder.

Redeem (RD ; I ;B) { The redeemer gives some
set of coins to the issuer, and the latter turns
them into real money in the redeemer's bank
account.

Refresh (Rf ; I ) { The refresher turns in old (ex-
pired) coins for an equivalent value in new coins.

Refund { A non-anonymous coin holder can re-
quest the issuer to resend him his coins in case
of a failure (e.g., disk crash).

Again, we note the distinction between the Regis-
tration and Enrollment processes. Intuitively, Reg-
istration is a simpler, on-line process that will let
a user participate in the transactions. It basically
consists of chooshing and ID (possibly a pseudonym)
and a secret/public key pair, and making sure that
requirements such as availability and security (e.g.,
minimizing spoiler attacks) are met. On the other
hand, Enrollment is accomplished by a combination
of on-line and out-of-band steps. It comprises steps
such as providing DDA/credit card information, val-
idation of this information, and issuance of initial
amount. Being enrolled allows a user to play an \ac-
tive" role in the system, in the sense of generating
money conversions from regular to electronic, and
viceversa. We leave the details of these two impor-
tant processes for the full version of the paper, and
will assume in the following description that they
have already taken place.
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Figure 4: The Coin Purchase process.

3.1 Coin Purchase

The Coin Purchase process involves the coin pur-
chaser, the issuer and the coin purchaser's bank.
The coin purchaser speci�es how much he wants in
e-coins, and in what denominations, and provides
the information to make the coin purchase from the
bank. The issuer makes the coin purchase and then
issues the coins.

The requirements are as follows:

W1{ Valid transactions go through.

W2{ Can't get coins for nothing. It is not possi-
ble to get coins without paying for them: if a
party ends up getting a certain dollar value
of valid coins, then the issuer has the corre-
sponding funds from the same party's bank
account.

W3{ Can't create false debits. An adversary may
want to play spoiler: it doesn't want coins,
but wants the coin purchaser's account to
be unnecessarily debited. This should not
be possible. That is, it is not possible for
an adversary to create a fake coin request
which leads the issuer into debiting the coin
purchaser's account.

A protocol for the coin purchase process is shown
in Figure 5. The �eld W-DESC contains two things.
First, the type and number of coins he wants: this is
a list of denominations, and, for each denomination,
the number of coins of that denomination that are
desired (see Section 2.4). Second, information nec-
essary to enable the issuer to get paid, in real funds
of equal value to the total dollar value of the coins.
Here we take the case that this payment is made

by coin purchase from the coin purchaser's bank,
so this information includes the bank name and ad-
dress, and the coin purchaser's account number.1

Note that this protocol does not make use of a
certi�cation authority. It assumes that the parties
have each other's public keys and certi�cates already
cached. The coin purchaser has the issuer ID and
public key in his purse from enrollment, and simi-
larly the issuer has the coin purchaser ID and public
key in his database from enrollment.

There are three transactions: the coins request, in
which the coin purchaser asks for the coins and pro-
vides the bank information; the execution, in which
the ACH transaction is done; and the �nal issuance
of coins. The protocol is designed to guarantee both
privacy and authenticity of the data. This is to pro-
tect the coin purchase information and the coins that
are issued. It must also provide freshness. For ef-
�ciency's sake we use a key exchange protocol to
get a session key K under which later messages are
encrypted or MACed. However, the coin purchase
information is digitally signed for non-repudiability.
We now go over the transactions in more detail.

(1) Coin Request. The coin purchaser requests
that a certain amount in coins be returned to
him, and authorizes the issuer to withdraw this
amount from his bank account. The protocol
begins with a key exchange which issues the key
K = KCP �KI to both parties:

(1.1) WRequest1. The coin purchaser chooses a
random number KCP , and then encrypts

1Another possibility is that this payment is made by credit

card, in which case an iKP/SET-type protocol [3, 21] may be

used, instead of the protocol we are describing here. The

issuer would play the role of the merchant in SET.



� Fields:

W-DESC Coin Purchase description{ amount, denominations of desired coins, informa-

tion and authorization required to make debit at bank.

RX Random challenge chosen by party X

KX Random number chosen by party X

K KCP �KI

� Protocol Flows:

WRequest1 : CP ����������

E
�

I (IDCP ; KCP)
�����������������������! I

WRequest2 : CP  ����������

E
�

CP (IDI ; KI ; RI )
����������������������� I

WRequest3 : CP �

eK(W-DESC; SCP(IDI ; RI ;W-DESC) )
��������������������������������! I

WExecution : I ����������
ACH-Req

�����������������������! B

Issuance1 : CP  �

EncC
z }| {

eK(Coin1; : : : ;Coinn); macK(IDI ;EncC)
��������������������������������� I

Issuance2 : CP ����������

macK(IDCP ; RI )
�����������������������! I

Figure 5: Coin Purchase rotocol

his identity IDCP and KCP under the
public encryption key of the issuer, using
the plaintext aware encryption algorithm.
The ciphertext is passed to the issuer.

(1.2) WRequest2. The issuer applies the
plaintext-aware decryption algorithm to
the received ciphertext. If this algorithm
rejects the text as non-authentic then
he rejects; else be obtains and records
the identity IDCP of the withdrawer and
KCP . Now he chooses a random number
KI and also a random nonce RI . He uses
IDCP to retrieve PKCP and then encrypts
IDI ;KI ; RI under PKCP using the plain-
text aware encryption algorithm. The ci-
phertext is sent to the coin purchaser.
The value K = KI � KCP is stored as

the session key.

(1.3) WRequest3. The withdrwawer applies the
plaintext-aware decryption algorithm to
the received ciphertext. If this algorithm
rejects the text as non-authentic then he
rejects; else be obtains and records the
identity IDI , and the numbersKI ; RI . He
checks that the identity is really that of
the issuer by matching it with the value
in his purse. He forms the session key
K = KCP �KI . Now he forms the indi-
cated ow, which contains W-DESC and
a signature, the whole encrypted under
the shared session key K to ensure pri-
vacy of the bank coin purchase informa-
tion. Note the nonce RI is included in the
signature to ensure freshness.



(2) Execution. The issuer now uses the coin pur-
chase information and authorization provided
by the customer to make the ACH transaction
of coin purchase from the bank.

(2.1) WExecution. The coin purchaser uses
K to decrypt the ciphertext and obtain
W-DESC and the signature. He checks
that the signature is valid, and stores it.
Now he uses the information in W-DESC
to make the ACH request. The issuer
then waits a suitable period (which can
range up to the order of days). If there
is anything wrong, the bank sends a re-
ject within this period; else the funds are
in the issuer account. Now the issuer is
ready to issue the coins.

(3) Issuance. The issuer forms e-coins Coin1; : : : ;
Coinn of the denominations requested in
W-DESC. (These coins may have been created
earlier and are archived, or may be formed at
this time.) Then:

(3.1) Issuance1. The issuer encrypts the
coins under the session key K to get
EncC. This ciphertext is then authen-
ticated, also under K, by computing
macK(IDI ;EncC). The ciphertext and
the MAC are sent to the coin purchaser.

(3.2) Issuance2. The coin purchaser checks that
the MAC is correct. (This means the
coins are really from the issuer.) Then he
decrypts the ciphertext to get the coins,
which go into the purse. He now issues
a �nal acknowledgment, consisting of the
issuer nonce RI MACed under the session
key.

In the full paper we show how requirementsW1{

3 are met. We now turn to the description of the
Payment process.

3.2 Payment

The Payment process involves the payer (e.g., a cus-
tomer), the payee (e.g., a merchant) and the issuer.
The requirements are as follows:

P1{ Valid payments go through. If the payer
transfers a certain amount in valid coins, and
if these coins are as yet unspent, then, after
checking with the issuer, the payee accepts
the payment. (He may end up with refreshed
coins, or have redeemed them, or aggregated,
as he wishes.)

P2{ Accepted payments are valid. If after check-
ing with the issuer a payee accepts a pay-
ment, then he knows that the refreshed coins
he has obtained are valid. In particular,
already-spent coins are detected: If a payer
uses an already-spent coin then (by checking
with the issuer) the payee will detect it, and
the payee will not accept the payment.

P3{ Payment is for the goods or services the par-

ties have agreed on. An adversary A cannot
divert a payment by the payer to A's advan-
tage, or even change the order description
in \spoiler" ways. This is an optional re-
quirement, which can be provided given an
external certi�cation authority.

P4{ Payer is informed of double spending. In case
the issuer detects double spending, the payer
should be told his coins are bad, and be sure
that the issuer thinks so.

We provide two basic kinds of payment protocols:
payment with refresh (i.e., the payee obtains new
coins) and payment with redemption (the payee is
enrolled, and obtains real funds). In this abstract
we only describe the former; payment with redemp-
tion has the same avor. The same applies to pay-
ment with aggregation. The ows involved in pay-
ment with refresh are shown in Figure 6, and the
protocol in Figure 7. The V-DESC �eld indicates
which option is being used. In addition, it includes
whatever information is needed for the option being
used. For example, if it is refresh, the V-DESC �eld
includes the type and number of the desired coins;
if it is redemption, the V-DESC �eld includes the
bank name, address and the account number.
The payment protocols have certain optional

ows. They are indicated in square brackets, for
example [SPY (H(Com))] means providing this sig-
nature in the �rst ow is an option. The issue here
is certi�cates. The basic protocol does not need a
certi�cation authority: it is enough that the issuer
have the public keys of the participants. But for the
extra functionality of order protection and receipt,
an external certi�cation authority is needed to pro-
vide the payer with the public key of the payee. We
now describe how the ows are computed.

(1) Invoice. This transaction consists of a single ow
in which the payee provides the transaction ID.
The latter is a randomly chosen number which
uniquely identi�es the transaction. For con�r-
mation of amount and order information, it is
suggested that this be accompanied by a signa-
ture of the common information.
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Figure 6: Payment with Refresh: Flows

(2) SendCoins. The payer picks from his purse a
collection of coins Coin1; : : : ;Coinn whose to-
tal dollar value equals the amount to be paid.
(If the purse happens to not currently hold this
amount, but holds coins of total dollar value
which is larger, the payer can go through a
change transaction to get change, and then re-
sume the payment. If the purse has insu�cient
funds, the payer will have to make a coin pur-
chase, and, since this is a lengthy process, he
will probably stop the payment here and re-start
when he has the funds.) The coins are put in an
envelope by encrypting them (and the identity
of the payee) under the public key of the issuer .
The ciphertext is transmitted to the payee.

(3) Validation Request. The payee cannot open the
envelope; he never sees the coins. Instead, he
forwards them to the issuer for validation, along
with V-DESC which indicates whether he wants
refresh, redemption or aggregation. The payee
also includes in V-DESC the amount, to guard
against the payer paying less than the agreed
amount. This is done, for privacy, under cover
of an encryption under the issuer's public key.
Also in the scope of the encryption go the payer
identity, the transaction id, and a numberKPY ,
chosen at random, which will be used to derive
a session key.

At this point the process is di�erent depending on
whether we are doing refresh or redeem. We con-
tinue to describe the refresh case.

(3) Issuance. The issuer decrypts the ciphertext to
obtain IDPY ;KPY ;TIDPY ;V-DESC;EncC1.
He then decrypts EncC1 to get the coins which
were sent by the payee. The validity of these
coins is checked, as also the fact that the total
value of these coins matches the amount claimed
by the payee that is present in V-DESC. Now
new coins are issued, of the type speci�ed in
V-DESC, via two ows:

(3.1) Issuance1. The issuer picks a number
KI at random and forms the session key
K = KI � KPY . The session key, to-
gether with IDI , are encrypted under the
public key of the payee, and the result-
ing ciphertext is transfered to the payee.
Also the issuer encryptes the new coins
under K; then MACs this ciphertext and
some other stu� as shown. The second
ciphertext and the MAC are also sent to
the payee.

(3.2) Issuance2. The payee acknowledge having
received the new coins by sending a mes-
sage signed under the session key K.

(4) Receipt. The last ow is optional, and consists of
a receipt, from payee to payer, that the payer's
payment was accepted by the issuer.

We have omitted from the protocol picture the ows
related to error conditions, such as the issuer in-
forming the payer if his coins are bad, or the is-
suer informing both parties if the claimed and paid
amounts do not match. The issuer would sign the
bad coins and the error statement, and pass this to



the payee, who in turn passes it to the payer.

Several spoiling attacks are possible. For example
an attacker could ip some bits in the MAC in the
Issuance1 ow, making the payee reject. In a seem-
ingly more sophisticated attack, he can remove the
ValidationReq ow sent by the payee and substitute
a fake one which contains the same information ex-
cept that the value of KPY is di�erent. (Note he is
in possession of all information except KPY so can
indeed do this.) Then the payee will again reject the
Issuance1 ow since he will recover the wrong session
key. However, such attacks do not really help the
attacker. These kinds of spoiling attacks are unpre-
ventable, and handled by appropriate error handling
and re-transmission.

4 Integrating Card Cash

4.1 Card-based systems

Typically, a card-based e-money system is an
electronic payment system based on a tamper-
proof device, with the properties of being pseudo-
anonymous, o�ine, and non-circulating. The term
non-circulating refers to the fact that the mone-
tary value once paid cannot be reused o�ine (by
the payee of the �rst transaction) and must be re-
deemed. Being an o�ine system, it requires tamper-
proof smartcards holding monetary values (for mak-
ing payments), as well as tamper-proof devices for
accepting payments. The devices for accepting pay-
ments require even higher level of protection as they
may contain certain global cryptographic keys.

The e-money system outlined in Sections 2 and 3
is a network-based, online payment system. In this
section we show how that system can be combined
with this card-based system to o�er additional ser-
vices and functionality, i.e., VarietyCash. For exam-
ple, the combined system allows transfer of mon-
etary value from one system to another and vice
versa. The advantages of one system can then be
used in the other. Fortunately, these transfer proto-
cols can be built at a high level, on top of the two
systems.

4.2 Cardcash

We assume the card-based system has the following
components:

Purse smartcard (smartcard for short) (SM),

load/unload device,

load/unload server (LUS),

purchase device,

purchase SAM (Security Access Module), and

collection server.

In addition, there maybe one or more payment and
clearing agencies (AG) which are not part of the sys-
tem, but are needed for transfering the real money
to electronic money and vice versa.
The cryptographic protocols used in these systems

typically use symmetric keys (e.g., DES). The secu-
rity is hierarchical in nature. In other words, there
are devices which have the capability of generating
their own keys, whereas devices higher up in the
hierarchy can generate keys of devices immediately
lower in rank using identi�cation information of the
lower ranked device. For example, a smartcard is
lower ranked than a Purchase Security Access Mod-
ule(PSAM). The PSAM has a global keyK, whereas
the purse just has a derived key f(K; ID), where f
is a prede�ned one-way function, and ID is the iden-
ti�cation number of the smartcard. The PSAM can
dynamically generate the derived key once it has the
identi�cation of the smartcard.
In general, the keys are \segmented" for further

security. In such a scheme there maybe many global
keys for a particular device class. In this abstract we
will simplify the presentation by assuming no seg-
mentation of keys.
We now turn to the description of some of the \na-

tive" card-based system protocols, and the transfer
protocol between systems.

4.3 Load protocol

There are many modes of loading value onto the
card, such as o�-line load using Load Security Access
Modules (LSAM), on-line account-based loads, and
on-line non-account-based loads. In this abstract
we will only cover on-line account-based loads. In
the on-line account-based load, there is a payment
agency involved with which the card holder has an
account (or registration). The load is mediated by
the payment agency, and the account is debited.
Informally, when a user with a card wants to load

value onto his card (using an on-line account based
method), he communicates with his payment agency
using the load/unload device. Once a load of a par-
ticular value is requested by the card, the payment
agency (which acts as a trusted party), instructs the
load/unload server to load the monetary value onto
the card (while guaranteeing payment). All further
messages between the load/unload server and card
go via the payment agency (or the client), and the
payment agency and the load/unload server commit
the transaction based on acknowledgments from the
two end parties. The load/unload server logs the



transaction, and clears the payment with the pay-
ment agency via a clearing system.

A sketch of the protocol is shown in Figure 8.
There are three parties invloved: the load/unload
server (LUS), the card (SM), and the payment
agency (AG). The �rst step of the Load protocol
(not shown) is itself a high level protocol between an
account holder and a payment agency. This protocol
ensures a monetary value transfer from the smart-
card holder to the payment agency. For example,
if the payment agency is your bank, this payment
protocol is an electronic authorization to debit your
account. As to how this protocol is de�ned is inde-
pendent of the card-based system, except for the fact
that it should be able to associate a SM ID, a unique
transaction ID for this SM ID, and an amount with
this transaction to be used in the composite trans-
action.

All the messages between SM and LUS go via the
payment agency (or the load/unload client in the
payment agency). However, note that in this pro-
tocol there is no way for the server LUS to prove
to the payment agency that the load into the card
actually happened, since the key is symmetric. In
other words the signature (i.e., signed ack) in the
protocol|it could have been generated by the server
itself. Thus, the server is assumed to be a trusted
party.

The Unload protocol is symmetrically opposite to
the one of Figure 8.

4.4 Transfer protocols and complex

payment transactions

We now briey describe the transfer protocols be-
tween card- and software-based systems. E�ectively,
this is a composition of an online protocol between a
user and a load/unload server, followed by an online
protocol between the same user and the issuer of Sec-
tion 2. Speci�cally, an account-based Unload proto-
col followed by a Coin Purchase protocol similar to
that of Figure 5. The issuer acts as the payment
agency in the Unload protocol. Call this combined
protocol Cardcash-to-Softcash.

The reverse direction, software cash to card cash,
is composed of the Redeem protocol between the
user and issuer, followed by the Load protocol of
Figure 8 between the same user and a load/unload
server. Again, the issuer acts as the payment agency
in of the Load protocol. Call this protocol Softcash-
to-Cardcash.

In the same way, transactions between users from
the same or di�erent payment \media" are also en-
abled. For example, the payment from one card user

to another is achieved as follows. This type of trans-
fer can be accomplished by any intermediary, in par-
ticular, the issuer of Section 2:

1. The payer runs Cardcash-to-Softcash;

2. the payer, payee and issuer run the Payment
with Redeem protocol (Section 3);

3. the payee runs Softcash-to-Cardcash.

Note that in the card-based system a clearing sys-
tem is used for transfering money back and forth
between the load/unload servers and the payment
agencies. Thus, there is not much of an overhead
in running these composed protocols. At the end
of the three steps above the payment agency (the
issuer) and the load/unload server are even.
Similarly, card payers can pay software payees

with not much of an overhead, since a clearing sys-
tem is involved. Here, the unload server owes money
to the issuer. In the reverse direction, the issuer owes
money to the load server.
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� Fields:

P-DESC Purchase description{ amount, description of goods, payment method or

mechanism. Assumed part of starting information of payer and payee.

TIDPY Transaction ID{ a number generated by the payee which is uniquely associated

to this transaction

Com P-DESC;TIDPY ; IDPA; IDPY ; IDI

V-DESC Veri�cation and execution request text. Indicates one of three options (refresh,

immediate redeem, or aggregate) and provides corresponding data. Includes

amount.

KX Random number chosen by party X

K KPY �KI

� Protocol Flows:

Invoice : PA  ��������������

IDPY ; TIDPY ; [SPY (H(Com)) ]
��������������������������������������� PY

SendCoins : PA �������������

EncC1

z }| {

E
�

I (PY ;TIDPY ;Coin1; : : : ;Coinn)
���������������������������������������! PY

ValidationReq : PY ����������

E
�

I ( IDPY ; KPY ; TIDPY ; V-DESC; EncC1 )
��������������������������������������������! I

Issuance1 : PY  �

E
�

PY (IDI ; KI );

EncC2

z }| {

eK(Coin
0

1; : : : ;Coin
0

n0); macK(IDI ;TIDPY ;EncC2)
����������������������������������������������������� I

Issuance2 : PY ������������������

macK(IDPY ;TIDPY )
�����������������������������������! I

Receipt : PY ���������������

[SPY (IDPA;H(Com);EncC1) ]
��������������������������������������! PA

Figure 7: Payment with Refresh protocol.



� Fields:

SMID Smartcard's unique ID

TID A unique transaction ID for the smartcard

Amount Monetary value to be loaded

eLoad�key(SMID) Encrypted under the derived Load key of the SM , stored as it is on the SM

, and computable by the load server using its own global key and SM ID

RX Random challenge chosen by party X

H A standard one-way hash function

� Protocol Flows:

LInitialize1 : LUS  ����������
TID; SM ID; Amount
�������������������������� AG

LInitialize2 : SM  �����

eLoad�key(SMID)(TID;RLUS ); T ID
�������������������������������� LUS

LDebit : SM �

eLoad�key(SMID)(H(TID;RLUS); RSM ); T ID
�����������������������������������! LUS

LCredit : SM  ��

eLoad�key(SMID)(H(RSM ); Amount); T ID
���������������������������������� LUS

LAck1 : SM �

eLoad�key(SMID)(H(TID;RSM �RLUS )); T ID
�������������������������������������! LUS

LAck2 : LUS ������������
TID; ``OK00

�������������������������! AG

Figure 8: Load protocol




