
The following paper was originally published in the
Proceedings of the 3rd USENIX Workshop on Electronic Commerce

Boston, Massachusetts, August 31–September 3, 1998

For more information about USENIX Association contact:

1. Phone: 1 510 528-8649
2. FAX: 1 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

On Secure and Pseudonymous Client-Relationships
with Multiple Servers

Daniel Bleichenbacher, Eran Gabber,
Phillip B. Gibbons, Yossi Matias, and Alain Mayer

Bell Laboratories, Lucent Technologies

On Secure and Pseudonymous Client-Relationships

with Multiple Servers

Daniel Bleichenbacher Eran Gabber Phillip B. Gibbons

Yossi Matias� Alain Mayer

Bell Laboratories, Lucent Technologies

600 Mountain Avenue

Murray Hill, NJ 07974

fbleichen, eran, gibbons, matias, alaing@research.bell-labs.com

Abstract

This paper introduces a cryptographic engine, Janus,
that assists clients in establishing and maintaining

secure and pseudonymous relationships with mul-

tiple servers. The setting is such that clients re-

side on a particular subnet (e.g., corporate intranet,

ISP) and the servers reside anywhere on the Inter-

net. The Janus engine allows for each client-server

relationship to use either weak or strong authenti-

cation on each interaction. At the same time, each

interaction preserves privacy by neither revealing a

client's true identity (\modulo" the subnet) nor the

set of servers with which a particular client inter-

acts. Furthermore, clients do not need any secure

long-term memory, enabling scalability and mobil-

ity. The interaction model extends to allow servers

to send data back to clients via e-mail at a later date.

Hence, our results complement the functionality of

current network anonymity tools and remailers.

1 Introduction

We consider the following problem: there is a set
of clients located on a particular subnet and a set
of servers on the Internet. For example, the set of
clients could be employees on a company's intranet
or subscribers of an ISP and the servers could be
Web-sites. See Figure 1, where the ci are clients
and the sj are servers. A client wishes to estab-
lish a persistent relationship with some (or all) of
these servers, such that in all subsequent interac-
tions (1) the client can be recognized and (2) either
weak or strong authentication can be used. At the
same time, clients may not want to reveal their true

�Also with Computer Science Dept., Tel-Aviv University,

Tel-Aviv 69978 Israel. E-mail: matias@math.tau.ac.il.

identity nor enable these servers to determine the
set of servers each client has interacted with so far
(establishing a dossier). This last property is often
called pseudonymity to denote persistent anonymity.
Equivalently, a client does not want a server to in-
fer through a relationship more than the subnet on
which the client is located, nor to connect di�er-
ent relationships to the same client. This paper in-
troduces a client-based cryptographic engine, which
allows a client to e�ciently and transparently estab-
lish and maintain such relationships using a single
secret passphrase. Finally, we extend our setting to
include the possibility of a server sending data via
e-mail to a client.

We consider the speci�cation and construction of a
cryptographic function that is designed to assist in
obtaining the above goal. Such a function needs to
provide a client, given a single passphrase, with ei-
ther a password (weak authentication) or a secret

key (strong authentication) for each relationship.
Furthermore, a username might be needed as well,
by which a client is (publicly) known at a server.
Such passwords, secret keys, and usernames should
neither reveal the client's true identity nor enable
servers to establish a dossier on the client. We name
such a cryptographic function (engine) the Janus

function (engine). We will briey review arguments
why simple choices for the Janus function, such as a
collision-resistant hash function, are not quite sat-
isfactory for our purposes and consequently, we will
show a Janus function that is more robust. We will
also show how to implement a mailbox system on
the client side, such that a server can send e-mail
to a client without requiring any more information
than for client authentication.

1.1 Related Work and Positioning of
Our Work

Network anonymity is being extensively studied
(see, e.g., [PW85, GWB97]). For example, Simon
in [S96] gives a precise de�nition for an Anonymous

Exchange Protocol allowing parties to send individ-
ual messages to each other anonymously and to re-
ply to a received message. Implementation e�orts
for approximating anonymous networks are being
carried out by several research groups (e.g., anony-
mous routing [SGR97] and anonymous Web traf-
�c [SGR97, RR98]). Besides that, there are sev-
eral anonymous remailers available for either e-mail
communication (see, e.g., [GWB97, GT96, B96,
E96]) or Web browsing (see, e.g., [Anon]). We will
discuss some of these in more detail later.

We view our goal as complementary: All of the
above work tries to �nd methods and systems to
make the Internet an (approximate) anonymous net-
work. This is a hard task and consequently the re-
sulting tools are rather di�cult to use and carry
some performance penalties. We focus on a method
for assisting a client to interact with multiple servers
easily and e�ciently, such that the server cannot in-
fer the identity of the clients among all clients in a
given subnet, but at the same time the client can
be recognized and authenticated on repeat visits.
We do not address communication between a sub-
net and a server. Consequently, a server can easily
obtain the particular subnet in which a client is lo-
cated. In many cases, this degree of anonymity is
su�cient, for example, if the client is a subscriber
of a large ISP, or an employee of a large company.
In the language of Reiter and Rubin [RR98], the
anonymity of such a client is somewhere between
probable innocence and beyond suspicion. Alter-
natively, our method can be used in conjunction
with existing remailers to enable a client to in-
teract with a server without revealing the partic-
ular subnet. We elaborate on this point in Sec-
tion 2 for client-initiated tra�c and in Section 4.3
for server-initiated tra�c. The work closest in spirit
to the Janus engine are the visionary papers of
Chaum [C81, C85] on digital pseudonyms.

In [GGMM97], we described the design and imple-
mentation of a Web-proxy which assists clients with
registering at multiple Web-servers. In this paper,
we focus on a new, simpler, and correct construction
of the Janus engine, a new and di�erent method of
conveying anonymous e-mail that greatly reduces
the required trust in the intermediary, and a discus-
sion of moving features to shift trust from a proxy to
the client's machine. The latter allows, for example,

a Janus engine to be integrated with the P3P pro-
posal, giving clients the power to use pseudonymous
P3P personae (see Section 5). Thus, our methods
and design are applicable to a variety of client-server
interactions, well beyond the proxied Web browsing
for server registration of [GGMM97].
Outline: In Section 2 we describe our interaction
model and our function requirements. Section 3
contains a detailed description of the Janus func-
tion. Section 4 extends the model of interaction
to allow servers to send data to clients' anonymous
mailboxes. Finally, Section 5 presents various ap-
plications and con�gurations and discusses some of
the trade-o�s involved.

2 Model and Speci�cations

In this section, we present the framework for in-
teraction between clients and servers, and the
way in which the Janus engine is incorporated
within such interaction. There is a set of clients
C = fc1; c2; : : : ; cNg and a set of servers S =
fs1; s2; : : : ; sMg. Each client can interact with any
server. Interaction can take place in one of the fol-
lowing two ways:

� Client-initiated: A client ci decides to contact a
server sj . The server sj requires ci to present a
username and a password (secret shared key) at
the beginning of this interaction to be used for
identi�cation and weak (strong) authentication
on repeat visits.

� Server-initiated: A server sj decides to send
some data to a client ci which has contacted sj
at some earlier point in time (using the client's
username).

Individual clients may wish to remain anonymous
in the above interaction; i.e., a client does not want
to reveal her real identity ci to a server (beyond the
particular subnet on which ci is located).

Client-initiated interaction: A client ci, on a
�rst visit, presents to a server sj an alias ai;j , which
includes a username and either a password or a
key. On repeat visits a client simply presents the
password again for weak authentication or uses the
key with a message authentication code (MAC) for
strong authentication (see [MMS97]). We would like
the alias ai;j to depend on the client ci, the server
sj , and a secret client passphrase pi. Since we want
this translation of names to be computable, we de-
�ne a function which takes ci, pi and sj , and returns

Internet

Firewall

c1

c2

ISP Access

s1

s2

s3

s4

c3

Janus

mailboxes

c1, p1

c2, p2

c3, p3

a11, a21, a31

a12, a22, a32

a13, a23, a33

a14, a24, a34,

engine

Gateway

Figure 1: Client Server Con�guration with Janus
Engine on the Gateway

an alias ai;j . This function is called the Janus func-
tion, and is denoted J . In order to be useful in this
context, the Janus function has to ful�ll a number
of properties:

1. Form properties: For each server, J provides
each client with a consistent alias, so that
a client, by giving her unique identity and
passphrase, can be recognized and authenti-
cated on repeat visits. J should be e�ciently

computable given ci, pi, and sj . The alias ai;j
needs to be accepted by the server, e.g., each of
its components must have appropriate length
and range.

2. Secrecy of

passwords/keys: Alias passwords/keys remain
secret at all times. In particular, an alias user-
name does not reveal information on any alias
password/key.

3. Uniqueness of aliases among clients & Imper-

sonation resistance: Given a client's identity
and/or her alias username on a server sj a third
party can guess the corresponding password
only with negligible probability. Moreover, the
distribution of the alias usernames should be
such that only with negligible probability two
di�erent users have the same alias username on
the same server.

4. Anonymity / Uncheckability of clients: The
identity of the client is kept secret; that is,
a server, or a coalition of servers, cannot de-
termine the true identity of the client from
her alias(es). Furthermore, it is not checkable

Internet

Firewall

c1

c2

ISP Access

s1

s2

s3

s4

c3 mailboxes

a11, a21, a31

a12, a22, a32

a13, a23, a33

a14, a24, a34,

Gateway

J

J

J
proxy

a11, a12, a13,a14

a21,a22

a23,a24

a31,a32

a33,a34

Figure 2: Client Server Con�guration with Local
Janus Engine

whether a particular client is registered at a
given server.

5. Modular security & Protection from creation of

dossiers: An alias of a client for one server does
not reveal any information about an alias of
the same client for another server. This also
implies that a coalition of servers is unable to
build a client's pro�le (dossier) based on the
set of servers with which he/she interacted by
simply observing and collecting aliases.

One possible physical location to implement the
Janus function is on the gateway. See Figure 1,
where we refer to the implementation as the Janus

engine. Clients provide their identity ci and secret
passphrase pi to the gateway, where the translation
takes place. An alternative location for the Janus
engine is on each client's machine, as depicted in
Figure 2, where the locally generated aliases are sent
to the server via the gateway. See Section 5 for a
discussion of trade-o�s. The following property is
of practical signi�cance, as it provides robustness
against the possibility to recover privacy-sensitive
information \after the fact":

6. No storage of sensitive data: When a client is
not interacting with a server, the Janus engine
does not maintain in memory any information
that may compromise on the above properties
of the Janus function. This excludes the simple
approach of implementing a Janus function by
a look-up table.

Consequently, an entity tapping into a (gateway)
machine on the subnet, cannot infer any useful in-

formation, unless it captures a client's passphrase
(which is never transmitted in Figure 2). Addi-
tionally, a client can use di�erent Janus engines
within her subnet, given that she remembers her
passphrase (mobility).

If a client desires to hide her subnet from a server,
she can easily combine our method with other
anonymity tools. For example, if she contacts a
server via the Web (HTTP), she can use either
Onion Routing [SGR97] or Crowds [RR98]. In the
�rst case, the connection from the gateway to the
server is routed and encrypted similar to the meth-
ods used by type I/II remailers (see also Section 4.3)
and in the second case her connection is \randomly"
routed among members (on di�erent subnets) of a
crowd.

Server-initiated interaction: A server knows a
client only by the alias presented in a previous,
client-initiated interaction. We allow a server sj
wishing to send data to client ci, known to it as
ai;j , to send an e-mail message to the correspond-
ing subnet, addressed to the username component
u of ai;j . The message is received by the Janus en-
gine, see Figure 1, which will make sure that the
message is delivered to the appropriate client, or is
stored by the gateway, until a local Janus engine re-
trieves the messages, as in Figure 2. Our scheme of
storing mailboxes maintains forward secrecy. More
details are in Section 4, where it is also shown how
server-initiated interaction can be combined with
pseudonymous remailers.

3 The Janus Function

In this section we present the Janus function in de-
tail. We �rst develop our requirements, then discuss
some possible constructions.

The Setting of the Janus-function: A client in-
puts her identity ci, her secret passphrase pi, the
identity of the server sj , and a tag t indicating
the purpose of the resulting value. Depending on
this tag, the Janus function returns either an alias-
username aui;j for the user ci on the server sj or the
corresponding password a

p
i;j . In this section we use

the two tags u; p, but we can easily extend the func-
tion by adding additional tags, for generating secret
values for other purposes (see also [MMS97]). For
example, in Section 4 we extend the Janus function
to a third tag, m, for the purposes of anonymous
mailboxes.

Adversarial Model: We assume that a client ci
does not reveal her passphrase pi to anyone (other
than the Janus engine). However, we allow that
an adversary E can collect pairs (aui;j ; a

p
i;j) and the

corresponding server names sj . Note that registered
alias usernames may be publicly available on some
servers and that we can not assume that all servers
can be trusted or store the passwords securely. In
some cases it might even be possible to deduce a
client name ci (e.g., from the data exchanged dur-
ing a session, or simply because the client wishes to
disclose her identity) and we also have to assume
that a chosen message attack is possible (e.g., by
suggesting to a client ci to register on a speci�c
server). Roughly speaking, we will require that an
adversary does not learn more useful information
from the Janus function than he would learn if the
client would chose all her passphrases and aliases
randomly.

3.1 Janus function speci�cations

De�nition 1 We say that a client ci is corrupted

if the adversary E has been able to �nd pi. We say

that ci is opened with respect to a server sj if the

pair (aui;j ; a
p
i;j) has been computed and used. (Note

that if ci has been opened with respect to a server

sj then an adversary E may know only (aui;j ; a
p
i;j)

but not necessarily ci.) We say that ci has been

identi�ably opened with respect to a server sj
if an adversary knows (aui;j ; a

p
i;j) together with the

corresponding ci.

Let C be the set of clients, S be the set of servers, P
be the set of allowable client secret passwords, A

U

be the set of allowable alias usernames, and A
P
be

the set of allowable alias passwords. Let k be the
security parameter of our Janus function meaning
that a successful attack requires about 2k operations
on average. Let the Janus function be J : (C � S �
P � fu; p;mg) 7! f0; 1gk.
Since usernames and passwords normally consist
of a restricted set of printable characters we also
need two functions that simply convert general k-
bit strings into an appropriate set of ASCII strings.
Thus let �U : f0; 1gk 7! A

U
and �P : f0; 1gk 7! A

P

be two injective functions that map k-bit strings
into the set of allowable usernames and passwords.
Let ci 2 C and pi 2 P . The client's identity aui;j and
password a

p
i;j for the server sj are then computed

by

aui;j := �U (J (ci; sj ; pi; u))

a
p
i;j := �P (J (ci; sj ; pi; p)):

The two functions �U and �P are publicly known,
easy to compute and we may assume easy to invert.
Thus knowing �U (x) of some x is as good as knowing
x. In particular if an adversary can guess �U (x) then
he can guess x with the same probability.

Following our adversarial model, the Janus function
has to satisfy the following requirement:

1. Secrecy: Given a server sj , an uncorrupted
and not identi�ably opened client ci and
t 2 fp; u;mg, the adversary E cannot �nd
J (ci; sj ; pi; t) with nonnegligible probability
even under a chosen message attack, that is un-
der the assumption that the adversary can get
J (ci; sj0 ; pi; t

0) for any sj0 6= sj or t 6= t0.

2. Anonymity: Given a server sj , two uncor-
rupted clients ci; ci0 that are not opened with
respect to sj and t 2 fp; ug. Then an ad-
versary cannot distinguish J (ci; sj ; pi; t) from
J (ci0 ; sj ; pi0 ; t) with nonnegligible probability
even under a chosen message attack, that is un-
der the assumption that the adversary can get
J (ci00 ; sj0 ; pi00 ; t

0) for any list of arguments not
used above.

Note that the two requirements are indeed di�er-
ent. For example if we were to implement the
function J using a digital signature scheme, i.e.,
J (ci; sj ; pi; t) = sigpi(cijjsj jjt), then the �rst re-
quirement would be satis�ed, but not the second
one, since the client's identity could be found by
checking signatures. On the other hand a constant
function satis�es the second requirement, but not
the �rst one.

Our requirements are stated in a rather general
form. In particular, the �rst requirement states that
no result of the Janus function can be derived from
other results. This implies the secrecy of passwords,
impersonation resistance and modular security.

3.2 Possible Constructions for J

Assume that `c is the maximal bit length of ci, `s
the maximal length of sj , `p the maximal length
of pi and `t the number of bits required to encode
the tag t. Throughout this section we will assume
that all inputs ci; sj ; pi are padded to their maximal
length. This will assure that the string cijjsj jjpijjt
is not ambiguous.

Given the function speci�cation, an ideal construc-
tion would be via a pseudorandom function f :
f0; 1g`c+`s+`p+`t 7! f0; 1gk. Unfortunately, there
are no known implementations of pseudorandom

functions. Typically, they are approximated via ei-
ther strong hash functions or message authentica-
tion codes (MAC), even though, strictly speaking,
the de�nitions of these primitives do not require
them to be pseudorandom. In the following sec-
tions, we are going to examine both options and
give some justi�cations for preferring a MAC based
solution over other tempting constructions.

3.2.1 Using hash functions

One possible attempt might be to use the hash of
the inputs h(cijjsj jjpijjt) as our function. However,
hash functions are not designed to keep their inputs
secret. Even if it is hard to invert the hash function
for a given input, it might still be possible to derive
pi given h(cijjsj jjpijjt) for many di�erent servers sj .
A hash function that is weak in that respect can
for example be found in [A93]. Some apparently
better constructions for keyed functions based on
hash functions have been proposed (e.g., MDx-MAC
[PO95]). But our requirements are quite di�erent
from the goals of these constructions. Therefore,
we decided not to use hash functions for our Janus
function.

3.2.2 MACs

A much more promising approach is the use of mes-
sage authentication codes (MACs). In particular if
MACK(x) denotes the MAC of the message x un-
der the key K then we can de�ne a potential Janus
function as

J (ci; sj ; pi; t) = MACpi(cijjsj jjt):

This approach has the advantage that some of our
requirements are already met. In particular if the
MAC is secure then the secrecy of passwords and
impersonation resistance for the Janus function are
implied. Other requirements, like consistency, e�-
cient computation of the function, single secret and
acceptability, are just consequences of the actual im-
plementation of the Janus function and the map-
pings �U and �P . The only additional requirement
is the anonymity of clients.

To this end, we consider the following result of Bel-
lare, Kilian, and Rogaway ([BKR94]): Let x =
x1; : : : ; xm be a message consisting of m blocks xi
of size ` bits. Given a block cipher fK : f0; 1g` 7!
f0; 1g` where K denotes the key, de�ne the CBC-
MAC by

MACK(x) = fK(� � � fK(fK(x1)� x2) � � � � xm):

Assume that an adversary can distinguish a MACK

from a random function with an advantage � by run-
ning an algorithm in time t and making q queries to
an oracle that evaluates either MACK or the ran-
dom function. Then the adversary can distinguish
fK from a random function running an algorithm
of about the same size and time complexity having
an advantage of � � q2m22�`�1. Hence, if we use
CBC-MACs, then anonymity is just a consequence
of [BKR94].

If the underlying block cipher fK behaves like a
pseudorandom function then the above result shows
that a birthday attack is almost the best possible at-
tack. In particular an attacker can do not much bet-
ter than collecting outputs of the function and hop-
ing for an internal collision, i.e. two messages x; y
such that fK(fK(� � � fK(fK(x1) � x2) � � � � xi�1) �
xi) = fK(fK(� � � fK(fK(y1) � y2) � � � � yi�1) � yi)
for some i < m. In that case the attacker would
know that replacing the �rst i blocks in any message
starting with x1; : : : ; xi by y1; : : : ; yi would result in
another message having the same hash value.

We thus caution that a block cipher with `-bit block
size should not be used if an attacker can collect
about 2`=2m�1=2 MACs. Concretely, block ciphers
having 64-bit blocks, such as DES, triple-DES, or
IDEA [LM91] should not be used if it is feasible for
an attacker to collect about 232 samples, thus giv-
ing only marginal security to the overall scheme.
However, newer block ciphers, such as SQUARE
[DKR97] and one variant of RC5 [R95] have 128-
bit block sizes and are therefore more suitable in
this case.

4 An Anonymous Mailbox System

We will �rst summarize the history of anonymous
remailers, then describe our anonymous mailbox
system, and �nally discuss how enhanced privacy
can be achieved by using our mailbox system in con-
junction with remailers.

4.1 Brief History of Anonymous E-mail

Tools for anonymous e-mail communication have
been around for a few years by now (see,
e.g, [GWB97, B96, GT96, E96]. Early anonymous
remailers (Type 0, e.g., Anon.penet.fi) accepted
e-mail messages by a user, translated them to a
unique ID and forwarded them to the intended re-
cipient. The recipient could use the ID to reply
to the sender of the message. The level of secu-
rity of this type of remailer was rather low, since it

did not use encryption and kept a plain text (trans-
lation) database. A next (and still current) gen-
eration of remailers (Type I, Cypherpunk remail-
ers) simply take a user's e-mail message, strip o�
all headers and send it to the intended recipient.
The user can furthermore encrypt the message be-
fore sending it and the remailer will decrypt the
message before processing it. For enhanced secu-
rity, a user can chain such remailers. In order to
use a chain r1�r2 of remailers, a user �rst encrypts
the message for r2 and then for r1. (see also the ef-
forts on Onion Routing, [SGR97]). Still, even such
a scheme is susceptible to tra�c analysis, spam and
replay attacks. Mixmaster remailers (Type II) are
designed to withstand even these elaborate attacks.
This development of remailer yields more and more
intraceable way of sending messages, but it gives
no way to reply to a message. This gives rise to
\pseudonymous / nym" remailers, which, in a nut-
shell, work as follows: A user chooses a pseudonym
(nym), which has to be unused (at that remailer).
Then the user creates a public/private key pair for
that nym. When sending a message, the user en-
crypts with the server's public key and signs a mes-
sage with her private key. The recipient can reply
to the message using the nym. Some remailers store
the message and the original sender can retrieve this
mail by sending a signed command to the remailer,
other remailers directly forward the message by us-
ing a \reply block", an encrypted �le with the user's
real e-mail.

The ultimate goal of all these remailers is to en-
able e-mail communication as if the Internet were
an anonymous network. This is a very hard task
and consequently these tools induce a performance
penalty and are rather di�cult to use.

4.2 Anonymous Mailboxes

In this section, we show how to construct an anony-
mous mailbox system within our model. As before,
we assume that the users are in a particular sub-
net. Our goal is to provide these users (clients) with
a transparent way to give e-mail addresses to out-
side parties (servers), which maintain the properties
of the aliases (anonymity, protection from dossiers,
etc). For example, a client might want to register
at a (Web-site) server for mailing-lists, personalized
news, etc. Such an e-mail address provides a server
with the means to initiate interaction with a client
by sending an e-mail message to the client.

We �rst consider a setting with the Janus engine on
the gateway (Figure 1). We propose that the Janus
engine computes \aui;j@subnet-domain" as ci's e-

mail address to be used with sj . We further sug-
gest storing a mailbox for each such active (ci; sj)
pair on the subnet's gateway, such that an owner of
a mailbox is only identi�ed by the respective alias.
Messages are stored in these mailboxes, passively
awaiting clients to access them for retrieval. We
require that (1) given a previous, client-initiated in-
teraction, a server can send data to the mailbox
created for the (client, server) pair, (2) the Janus
engine (upon being presented with (ci; pi)) lets a
client ci retrieve the messages in all of her mail-
boxes without remembering a corresponding list of
servers, (3) neither the Janus engine nor the mail-
boxes compromise on the property that the server
must not store sensitive data (see Section 2). In
particular, the knowledge of e-mail headers of mes-
sages (which contain aui;j and sj) does not reveal
client identity ci. We show that the Janus function
can be used to overcome the apparent contradiction
of requirements (2) and (3). Note that the secrecy
of the actual data stored within a mailbox is an or-
thogonal issue and can be solved, for example, by
using PGP. For the setting of a Janus engine on each
client (Figure 2), most of the scheme above remains
unchanged with one important exception: When a
client wants to retrieve her messages, the local Janus
engine instructs the gateway, which mailboxes to ac-
cess and hence pi is never revealed to the gateway.

Data Structures for (ci; sj)-mailbox: Let
ami;ni = �M (J (ci; ni; pi;m)), where we use the tag
m for the \mail index", ni an integer indexing
ci's mailboxes, and �M a corresponding injective
function to map the output of J into a suitable
range. We explain the extensions in turn below.
The following record R is stored with the (ci; sj)-
mailbox. R has three �elds: (1) Ralias = aui;j , (2)
Rindex = ami;ni , (3) Rs = sj . The argument ni in (2)
indicates the index of the mailbox created for client
(ci; pi) and server sj . The record R (and conse-
quently the mailbox) can be accessed both via Ralias

or Rindex. The Ralias �eld contains the name of the
mailbox that is used for messages sent from sj to the
client ci. A second data structure, stored together
with the mailboxes, holds a counter Ci for each of
the clients (ci; pi). Ci is the number of mailboxes the
client (ci; pi) has established so far. These counters
are initialized to 0. Note that 0 < ni � Ci. The
counter itself is indexed by ami;0, so that the Janus
engine, upon being presented with (ci; pi), can easily
�nd it.

Creating a Mailbox: Whenever the client ci in-
structs the Janus engine to give out an e-mail ad-
dress for sj , the engine checks if a record R with

Ralias = aui;j already exists in the �rst data struc-
ture. If it does not exist, then the engine retrieves
the counter Ci by accessing the second data struc-
ture with the key ami;0. If no Ci is found, it is initial-
ized to zero. The counter Ci is incremented and
a new record is R created, with: Ralias = aui;j ,
Rindex = ami;Ci

, Rs = sj . Afterwards, the engine
stores the updated value of Ci in the second data
structure with key ami;0. Finally, the Janus engine
create a new mailbox under the name of Ralias.

Retrieving Mail: Whenever client ci connects to
the Janus engine, it will retrieve all of ci's accumu-
lated e-mail messages. The engine �rst retrieves the
counter Ci by accessing the second data structure
with the key ami;0. Then it retrieves all records R
with RIndex = ami; for 0 < � Ci. For each such
record R, Janus retrieves the corresponding mailbox
and presents it, together with Rs, to the client ci.

The above scheme constitutes a service to store mail
for any client and allows a client ci to retrieve all her
mail upon presenting (ci; pi). If ci is uncorrupted
and not identi�ably opened with respect to server
sj , then adversaryE cannot do better than guessing
the identity of the corresponding mailbox. Further-
more, given any two such mailboxes, E cannot do
better than guessing whether they have the same
owner. This is a simple consequence of the proper-
ties of the Janus function J .

The above system can easily be extended to allow
a client to actively send e-mail to servers using the
Janus engine to generate a di�erent address depend-
ing on the server.

4.3 Combining our Solution with
Pseudonymous Remailers

When we allow the adversary to execute more elab-
orate attacks (than we introduced in our model of
Section 3), such as eavesdropping or tra�c analysis,
a client visiting several servers within a short pe-
riod of time, might become vulnerable to correlation
and building of dossiers (albeit not to compromise of
anonymity). Also, if a client happens to reside on a
small subnet, the subnet's population might not be
large enough to protect her identity. In these cases,
it makes sense to combine our method with anony-
mous remailers or routing (for Web tra�c) for en-
hanced protection: We can view the Janus engine as
a client's \front end" to a pseudonymous remailer.
It computes the di�erent nyms on a client's behalf
and presents them to the remailer. It manages all

the client's mailboxes and presents incoming mes-
sages to the client. It also manages a client's pub-
lic/private keys for each nym. Furthermore, even
the remailer closest to the client (of a possible chain)
can neither infer the client's identity nor correlate
di�erent aliases. All this remailer sees (when de-
crypting a reply block) is the client's alias e-mail
address.

5 Trade-O�s and Applications

In this secton we examine the trade-o� between the
con�gurations corresponding to Figure 1, which we
refer to as the gateway approach and to Figure 2,
which we refer to as the local approach. We then
present a few concrete applications.

5.1 Local vs. Gateway

The basic advantage of the local approach is that
the Janus functionality is pulled all the way to
the client's machine, minimizing outside trust.
Thus, the client does not have to reveal her secret
passphrase to another machine (the gateway). A
client also has the exibility to choose a mailbox lo-
cation outside her own subnet, minimizing the trust
in the subnet (e.g., the client's ISP). There are also a
number of scenarios, where the Janus functionality
is required to be on the client's machine: For exam-
ple, in the realm of Web browsing, the Janus engine
can be integrated with the Personal Privacy Prefer-
ences (P3P) standard proposal to make a P3P per-

sona (see [P3P]) pseudonymous: P3P enables Web
sites to express privacy practices and clients to ex-
press their preferences about those practices. A P3P
interaction will result in an agreement between the
service and the client regarding the practices asso-
ciated with a client's implicit (i.e., click stream) or
explicit (i.e., client answered) data. The latter is
taken from data stored in a repository on the client's
machine, so that the client need not repeatedly en-
ter frequently solicited information. A persona is
the combination of a set of client preferences and
P3P data. Currently, P3P does not have any mech-
anisms to assist clients to create pseudonymous per-
sonae. For example, a client can choose whether to
reveal his/her real e-mail address, stored in the the
repository. If the e-mail address is not revealed, the
Web-site cannot communicate with the client and
if the e-mail address is indeed revealed, the Web-
site has a very good indication on the identity of
the visitor. Using a Janus engine provides a new
and useful middle ground: The data in repository

corresponding to usernames, passwords, e-mail ad-
dresses, and possibly other �elds can be replaced by
macros which, by calling the Janus engine, expand
to di�erent values for di�erent Web-sites and thus
create a pseudonymous personae for the client.

For the case of the gateway approach, we note that
the Janus engine does not have to be distributed
throughout the subnet. Thus, the clients do not
have to download or install any software and no
maintaince is required, also giving scalability: when
the population in the subnet grows, it enables to
easily add gateway machines (helped by Forward

Secrecy property). The proxy might also provide
alias management capabilities in the case where the
gateway is for a corporate intranet: Such capabili-
ties might include two clients to share their aliases
for all the servers, a client to transfer one or more of
his/her aliases to another client, or even two clients
to selectively share some of their aliases. For ex-
ample, when going on vacation, a manager might
use such functionality to have an assistant take over
some of his daily correspondence. Such alias man-
agement functions have the potential to consider-
ably simplify login account and e-mail management
in big intranets. We note that to achieve this po-
tential, state has to be added to the proxy design,
which goes beyond the scope of this paper.

5.2 Applications

Web browsing. There is a growing number of
web-sites that allow, or require, users to establish
an account (via a username and password) before
accessing the information stored on that site. This
allows the web-site to maintain a user's personal
preferences and pro�les and to o�er personalized
service. The Lucent Personalized Web Assistant is
an intermediary Web proxy, which uses a Janus en-
gine to translate a user's information (user's e-mail
and passphrase) into an alias (username, password,
email) for each web-site. Moreover, this alias is
also used by the web-site to send e-mail back to
a user. More details of this work can be found
in [GGMM97] and at http://lpwa.com:8000/. The
intended con�guration for this project is the gate-
way approach of Figure 1. We note that such
concrete applications typically execute in conjunc-
tion with many other mechanisms. For instance,
Web browsing based on the HTTP protocol in-
terfaces, among others, with SSL for encrypting
the communication and with Java and JavaScript
for downloadable executables. Each such inter-
face can potentially undermine the pseudonymity

of the client-server interaction. In the case of SSL,
the proxy can spoof SSL on behalf of the inter-
nal client (see [SSL-FAQ]). The proxy can initi-
ate SSL between itself and other servers and thus
maintain the client's pseudonymity. Both Java ap-
plets and JavaScript scripts, when downloaded from
a server by a client, can potentially obtain compro-
mising client information. Research is being con-
ducted which might lead to include customizable se-

curity policies into these languages (see [GMPS97,
AM98]). A client can then choose a policy strict
enough to preserve his/her pseudonymity. An-
other approach is to bundle an LPWA proxy with
an applet/script blocking proxy, as described, e.g.,
in [MRR97]. In summary, it is necessary to con-
sider all possible interfaces, and o�er encompassing
solutions to clients.

Authenticated Web-tra�c. Consider a Web
site which o�ers repeated authenticated personalized
stock quotes to each of its subscribers. The value
of a single transaction (e.g., delivery of a web-page
with a customized set of quotes) does not warrant
the cost of executing a handshake and key distribu-
tion protocol. A lightweight security framework for
extended relationships between clients and servers
was recently proposed [MMS97]. The Janus engine
provides a persistent client-side generated shared
key for each server, used in application-layer primi-
tives. Hence, no long-term secure memory is needed
on the client-side, enabling scalability and mobility.

Acknowledgments

We thank David M. Kristol for his insights and for
his many contributions to the design implementa-
tion of LPWA, which uses the Janus engine. We
are grateful to Russell Brand for thought-provoking
discussions.

References

[A93] R. Anderson, The classi�cation of hash func-

tions. Cryptography and Coding IV, pp. 83{94, De-

cember 1993.

[AM98] V. Anupam, A. Mayer, Security of web

browser scripting languages: Vulnerabilities, at-

tacks, and remedies. In Proc. 7th USENIX Security

Symposium, 1998.

[Anon] The Anonymizer. http://www.anonym-

izer.com.

[B96] A. Bacard, Anonymous Remailer FAQ.

http://www.well.com/user/abacard/remail.html.

[BKR94] M. Bellare, J. Kilian, P. Rogaway, The

security of cipher block chaining. Advances in cryp-

tology { CRYPTO'94, Springer Verlag LNCS 839,

pp. 341{358.

[C81] D. Chaum, Untraceable electronic mail, return

addresses, and digital pseudonyms. Communica-

tions of the ACM, 24(2), 1981, pp. 84{88.

[C85] D. Chaum, Security without identi�cation:

Transaction systems to make big brother obso-

lete. Communications of the ACM, 28(10), Octo-

ber 1985, pp. 1030{1044.

[DKR97] J. Daemen, L.R. Knudsen, V. Rijmen,

The block cipher SQUARE. Fast Software Encryp-

tion'97, Springer-Verlag LNCS, to appear.

[E96] A. Engelfriet, Anonymity and privacy on

the internet. http://www.stack.nl/galactus/

remailers/index.html.

[GGMM97] E. Gabber, P.B. Gibbons, Y. Matias,

A. Mayer, How to make personalized web brows-

ing simple, secure, and anonymous. Financial

Cryptography'97, Springer-Verlag LNCS 1318.

[GMPS97] L. Gong, M. Mueller, H. Prafullchan-

dra, R. Schemers, Going beyond the sandbox:

An overview of the new security architecture in

the Java Development Kit 1.2. In Proc. USENIX

Symposium on Internet Technologies and Systems,

1997.

[GT96] C. Gulcu, G. Tsudik, Mixing email with ba-

bel. In Proc. ISOC Symposium on Network and

Distributed System Security, 1996.

[GWB97] I. Goldberg, D. Wagner, E. Brewer,

Privacy-enhancing technologies for the internet. In

Proc. Compcon, 1997.

[KGGMM98] D.M. Kristol, E. Gabber, P.B. Gib-

bons, Y. Matias, A. Mayer, Design and imple-

mentation of the Lucent Personalized Web Assis-

tant (LPWA). Submitted for publication.

[LM91] X. Lai, J. Massey, Markov ciphers and dif-

ferential cryptanalysis. In Proc. EUROCRYPT'91,

Springer Verlag LNCS 437, pp. 17{38.

[MMS97] Y. Matias, A. Mayer, A. Silberschatz,

Lightweight security primitives for e-commerce. In

Proc. USENIX Symposium on Internet Technolo-

gies and Systems, 1997.

[MRR97] D. Martin, S. Rajagopalan, A. Rubin,

Blocking Java applets at the �rewall. In Proc. ISOC

Symposium on Network and Distributed System Se-

curity, 1997.

[PO95] B. Preneel, P.C. van Oorschot, MDx-

MAC and building fast MACs from hash functions.

Crypto'95, Springer-Verlag LNCS 963, pp. 1{14.

[PW85] A. Pfitzmann, M. Waidner, Networks with-

out user observability { design options. Euro-

crypt'85, Springer-Verlag LNCS 219, pp. 245{253.

[P3P] P3P Architecture Working Group, General

Overview of the P3P Architecture.

http://www.w3.org/TR/WD-P3P-arch.

[R95] R. Rivest, The RC5 encryption algorithm. Fast

Software Encryption, Springer Verlag LNCS 1008,

pp. 86{96, 1995.

[RR98] M.K. Reiter, A.D. Rubin, Crowds: Anonym-

ity for web transactions. ACM Transactions on In-

formation and System Security, 1(1), June 1998.

[S96] D. Simon, Anonymous communication and

anonymous cash. Crypto'96, Springer Verlag LNCS

1109, pp. 61{73.

[SGR97] P. Syverson, D. Goldschlag, M. Reed,

Anonymous connections and onion routing. In

Proc. IEEE Symposium on Security and Privacy,

1997.

[SSL-FAQ] ssl-faq at http://www.consensus.com/

security/ssl-talk-sec03.html.

