
THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

Proceedings of the Embedded Systems Workshop
Cambridge, Massachusetts, USA, March 29–31, 1999

Discourse with Disposable Computers:
How and Why You Will Talk to Your Tomatoes

David Arnold, Bill Segall, Julian Boot, Andy Bond,
Melfyn Lloyd, and Simon Kaplan

Distributed Systems Technology Centre

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org

Discourse with Disposable Computers:
How and why you will talk to your tomatoes

David Arnold, Bill Segall, Julian Boot, Andy Bond, Melfyn Lloyd, Simon Kaplan

CRC for Distributed Systems Technology (DSTC)
The University of Queensland, St Lucia, 4072, Australia

Phone: +61 7 3365 4310 Fax: +61 7 3365 4311

{arnold,bill,julian,bond,melfyn,simon}@dstc.edu.au

Abstract

Beyond ubiquitous computing, is the advent of dispos-
able computing, occurr ing when the price of an em-
bedded computer becomes insignifi cant compared to
the cost of goods. Current software and network ar-
chitectures and their associated programming para-
digms will not scale to this new world. The necessity of
catering for the constant change in number and type of
devices of interest to a user, as well as their sheer
quantity, dictates new approaches to construction of
software systems based on more flexible models.

We propose that distributed event notifi cation forms a
fundamental requirement for systems of this scale, and
discuss the advantages of undirected communication
over current interaction models. Our experience with
Elvin, a prototype notifi cation system motivates the
discussion and serves as ill ustration of its possibil ities.

1. Introduction

We are rapidly approaching an era where most con-
sumer products contain an embedded computer and
network interface. While the availabilit y of ubiqui-
tously "wired" goods is currently a novelty, it will soon
be not only commonplace, but all pervasive.

However, we contend that most predictions of ubiqui-
tous computing drasticall y understate the number of
networked devices. While it is easy to imagine net-
worked toasters, fridges, televisions, and indeed, any
already electronic device, following these will be the
second wave of wired devices; the era of disposable
computing, when the price of embedding a computer
becomes insignificant compared to the cost of manu-
facture. Far more than ubiquitous computing, dispos-
able computing will wreak fundamental changes in the
nature of computing, allowing almost every object en-
countered in dail y li fe to be "aware", to interact, and to
exist in both the physical and virtual worlds.

In particular, disposable computing dictates a new ap-
proach to interaction amongst software components,
and between software and human users. The issue fac-
ing software architects is how do we effectively use
networked food, clothing, paper, books, people, doors,
cars and roads? What communication strategies are
needed? How do we manage quadrilli ons of devices?
And how do they interact with us?

We begin by describing some properties of future net-
works, and a scenario that drives an analysis of re-
quirements for computer-enabled interaction on a vast
scale. A prototype system for pervasive, contingent
component interaction is introduced, and discussed in
light of the scenario. Some of our current endeavors
indicate useful properties, and we discuss some of the
many research challenges that remain the subject of
future work.

2. The Wired World

For over a decade, computer scientists have predicted
the integration of computers and networks with the
affordances of our dail y li fe [Wei91]. The development
of hardware has today reached a point where this is
technicall y viable, and it will shortly become finan-
ciall y accessible to average consumers.

The software challenges offered by the previous gen-
eration of hardware are being answered by technolo-
gies li ke Plug and Play and Jini, but the grand chal-
lenges of ubiquitous computing remain unanswered.
As we examine interaction models for software, we
consider four particular problems and their impact.

The Quadr illi on Node Net

The first wave of consumer electronic devices with a
network interface will extend the current global net-
work to trilli ons of devices. But it is the second wave,
the instrumentation of non-electronic devices, which

ushers in the Quadrilli on Node Net. When every book,
packet, street sign, soda can and pen is active and net-
worked, the number and diversity of devices challenge
out ability to control and manage them.

Disposable Computing and Device Churn

How often do you buy a new computer? And when you
do, how long does it take to get it set up the way you
need it? When every manufactured product you see
larger than a paper clip is a computer, how do you
configure them? Rather than acquire a new computer
every year, you will acquire them every minute, some-
times by the 1000. And you will t hrow or give away
computers at the same rate (or your partner will finall y
leave you!). Objects with embedded computers will
appear and disappear from the containing network at a
frantic rate.

Secur ity and Charging

When you throw you lunch wrapper in the trash, its
computer negotiates with the trashcan to be recycled or
shredded or composted. But your lunch wrapper was
bought using your debit account, and the trash can
wants to charge you for burdening it with non-
recyclable plastic...

The possibilit y for eavesdropping and losing sensiti ve
information becomes overwhelming once computers
are disposable. The volume of data available about you
and your li fe becomes absolutely staggering. How do
we secure your information environment whilst re-
taining the availabilit y and mobilit y of your data? How
do we balance the benefits of availabilit y whilst pro-
tecting against intrusion.

Context Management

Software components are remarkably good at ignoring
unwanted stimulus, but people become quickly irritated
by untimely information. The benefits of having the
universe at your fingertips are quickly overlooked if the
universe is always in your face. When you are respon-
sible for a milli on interaction-rich computers, these
interactions are going to need to be coordinated, fil-
tered, and exchanged, but above all mediated automati-
call y.

Users must be able to set poli cy for their interactions
with the environment that includes the context, not
only of themselves, but their interactions with other
objects at any given time. Context management en-
compasses the mechanisms used to specify what is ap-
propriate user interaction, and to automaticall y deter-
mine when and how it is appropriate.

A common, vital element in the solutions to these
problems is the nature of communication between
software components. Distributed systems currently use
a variety of protocols, with a growing general reliance
on an RPC-style model. However, RPC and remote
method invocation are constrained to a request/reply
interaction, using known interfaces types at a specific,
possibly indirectly resolved, address.

But the universe of disposable computing is populated
with devices whose type and identity are completely
unknown to the other devices they will have to interact
with. The continual churn of artifacts relevant to a task
will completely overwhelm our current solutions of
name servers and well -known addresses within the
homogeneous IP network.

The next section introduces the scenario that the rest of
the paper uses as the basis for analysis of these issues,
and presentation of a possible solution.

3. Pasta, circa 20051

Somewhere in Germany there is a factory that produces
the littl e cans that canned food goes into. This factory
makes cans that appear perfectly normal it 's just that
each can contains a tiny computer, a small amount of
memory, and a short-range radio transceiver. It's a
smart can and the factory that makes them charges
eight pfennigs more for each one. As part of their pro-
duction, the cans get embedded with a small amount of
data such as the date of manufacture, the batch and can
number, the alloy detail s etc.

Once produced these cans travel all over Europe. One
batch of these cans is sent to Italy where they go to a
tomato-canning factory and are fill ed with tomatoes.
At this factory, as part of the canning process, the can
gathers a littl e more data: it is full of diced Roma to-
matoes, it was fill ed on a certain date as part of a par-
ticular batch, and it has a particular use-by date.

One of these cans of tomatoes gets exported to the
USA. As it moves off the wharf it is processed and its
data content is translated from Italian to English. After
a brief stint in a warehouse it ends up on a supermarket
shelf. At the supermarket it inherits a littl e more in-
formation such as the retail price and date of being
placed on the shelf. At some point a customer's pantry
knows to order the can and one is sent to your house in
the next deli very. Before the can leaves the store, the
supermarket extracts the information it needs for
stocktaking.

Some weeks later you're at your desk at work thinking
about dinner, and decide that tonight you're going to

cook a romantic meal for two. You look up your reci-
pes, select one, and check your pantry for the necessary
ingredients. Your tomatoes have cheerfull y registered
themselves to the pantry upon arrival, so it is able to
report that all you need is some fresh basil that you can
pick up on the way home.

At the supermarket, you find the basil and drop it into
the trolley, which updates the cumulative price of your
selections. Noticing the screen's fli cker, you glance
down and see an advertisement for a special on oreg-
ano. You cancel it and disable further advertising.

Finall y done, you push the trolley through the check-
out, where your account is debited for the total, and
your home address attached to your items. You push
the trolley onto the track for deli very before heading to
the cafe for a coffee on the way home as the store de-
li vers the shopping for you.

At home you begin to cook, placing the opened can of
tomatoes from the pantry onto the table. The can re-
ports that it has been opened (after detecting the pres-
sure differential).

You've been meaning to get the auto-light on your gas
stove fixed for weeks now and seemingly every time
you want to light it you can't find the matches. You ask
the kitchen to locate the nearest box for you: there's
one in the cutlery drawer. You've had enough though,
so you direct the kitchen to factor the stove repair into
your budget. Your stove knows not to hassle you again.

Having enjoyed your meal, you turn on the television
but during the first ad break a scrolli ng message from
the kitchen appears at the bottom the screen telli ng you
that there's an open can of tomatoes that's been getting
warm for over two hours. You swear briefly, but are at
least glad the house didn't interrupt while you were
busy. It knows you're not watching an important show
and it did have the decency to wait for an ad break.
You go to the kitchen and put the can into the fridge,
pausing briefly to put the matches back on the fridge
where you expect them.

Three days later you wake up and struggle to the
kitchen for a cup of coffee. As you grab the milk, you
see the fridge's display panel has a number of messages
for you. You'll deal with the emails later but notice that
the fridge is complaining that there is a can of toma-
toes that is getting beyond its prime. At first you can't
find them, but the fridge locates them behind the last of
the beer, and you grab the can and blend them. Enjoy-
ing your tomato juice with your coffee, you begin a
casual cleanup and throw the empty can into the recy-
cling unit.

The recycling unit strips any personal information
from the can, and noticing the alloy content ensures it
gets picked up for recycling. Some time later the can is
shipped to Germany for recycling.

1. Inspired by Hiro's pizza box in Neal Stephenson's
Snow Crash [Ste92].

4. Disposable Interaction

Examining this scenario, and the state of hardware
technology today, it seems that the production of such
processors and network interfaces is practical, if not yet
commerciall y viable. The wide range of devices in-
volved, from the smart can to the local supermarket's
CPU cluster, might require a heterogeneous network,
with the peripheral processors using different protocols
(and physical media) to the Internet backbone. We
assume that arbitrary connectivity is feasible, with the
possible use of proxies or gateways as required.

Given that this is the case, our current interaction
paradigms could, by simple extension, support the pro-
posed scenario. Or could they?

Messaging, RPC and multi cast can all be termed di-
rected communication models: the destination of the
message is specified at the time it is sent (in the case of
multi cast, this specification is not a single address, but
a group or channel upon which the senders and receiv-
ers have previously agreed). The problem with requir-
ing knowledge of the destination is that sometimes you
don't have it, and this has led to the development of
numerous methods of obtaining addresses

• use standardized names, a name server, and a re-
served address for local name servers, ie.
[GA090], or

• use LAN segment broadcast or a reserved multi-
cast address to find named objects, ie. [CG85], or

• use a yellow pages service at a reserved address,
and select one of the available services in the re-
quired class by its advertised properties [OMG97],
or

• perform a multi cast request to a reserved group,
and have all services li sten to that group and re-
spond if they can provide the requested function
[VGPK97], and work in progress on [GPVD99]

This li st is only superficiall y representative; resolving
addresses for directed communication has absorbed a
great deal of distributed systems research over the past
decade. And yet none of these approaches reall y solve
the problem. Each of them merely shifts the required

knowledge to a level of indi-
rection, without addressing
the basic issue: that the
originator of the message
must know where it is to be
sent.

In a system where we seri-
ously expect quadrilli ons of
computers, and several or-
ders of magnitude more ac-
tive endpoints (or objects),
and where the set of these
relevant to an individual is in
constant flux at rates of up to
hundreds per second, re-
quiring that the sender of a
message always specify its
destination does not appear feasible.

We propose an alternative that will exist alongside
directed communication to ameliorate this problem:
undirected communication is that where the sender of
the messages does not specify their destination.

How can this work? By using a "pull " style, content-
based selection of messages. Content-based addressing
is not new. It has been widely used in specific applica-
tions, and was first popularized (to our knowledge) as a
general communication mechanism by Gelernter's
Linda [GB82]. It can easil y, if ineff iciently, emulate
directed communication, leading some to propose it as
a universal communication model. We prefer to use it
in conjunction with directed forms of communication,
selecting the model most appropriate for the task at
hand.

For content-based addressing to work, message con-
sumers (destinations) must have a way to specify that
they want to receive a certain class of messages. This
information is then used by the infrastructure to route
the appropriate messages to the consumer. For the con-
sumer to select a message from a producer (or source),
it must somehow describe the message it is to receive.
If this description is reduced to its simplest form, it
effectively becomes a multi cast address: a single,
unique attribute used to identify a class of messages.

But using a single, unique attribute to identify mes-
sages offers no advantage over directed communica-
tion. While ultimately the consumer must share some
knowledge with the producer(s), this knowledge can be
structured to provide a flexible means of identifying

pertinent messages by specifying selection criteria ex-
pressed in terms of the message's contents.

In Linda, these specifications are called templates and
they describe the number, type and order of the mes-
sage's attributes. The value of a particular attribute can
be fixed by providing a value, or is otherwise con-
strained only to the required data type.

Notification services also provide a degree of undi-
rected communication. Unlike Linda, notifications are
transient, and without Linda's requirements for persis-
tence, notification services scale to support a much
greater overall bandwidth. MIT Athena's
Zephyr[DEFJKS88] was followed by PEN[DB92],
Rendezvous[OPSS93, TSS95], Keryx[Low97], El-
vin[SA97] and others in this general domain.

In the terminology of Rosenblum and Wolf[RW97], the
directed-ness of notification forms the naming model,
where classes of events are named using either a
structured name, or a property-based name. The degree
of direction extends from a multi cast address (very
directed), through a filter-able structured name, to a
property-based query (least directed).

Channel-based services use structured naming. While
requiring producers to nominate a specific channel
(often a hierarchical name of the form foo.sub-foo.sub-
sub-foo), they typicall y allow wildcard filtering of
channel names, and often some local secondary filter-
ing of other distinguished attributes.

Figure 1: L inda's rd() copies a tuple matching the
supplied template.

Keryx and Elvin (described more full y in the following
section) use a boolean constraint language to select
messages by their content. The messages are self-
describing, with unordered attributes identified by
name, and having a strongly typed values. They allow,
for example, selection using numeric ranges and regu-
lar expressions on string values. While this mechanism
still requires that the message producer and consumer
are coupled by the definition of the attribute names, it
is significantly more flexible than the other schemes.
This has a number of practical benefits for distributed
systems.

The deployment of distributed systems is hampered by
the close coupling of components through rigid inter-
faces. Direct, point-to-point binding of components
inhibits runtime substitution, removal or addition of
components. Using undirected communications, com-
ponents can be introduced or replaced without affecting
any others.

In addition to limiti ng the interaction architecture of
distributed systems to a client-server paradigm, the
static definition of component interfaces using an IDL
(ONC[Sun88, MS91], DCE[SHMO94], CORBA
[OMG91], DCOM[Tha99]) severely restricts the abilit y
of applications to adapt to changes in their environ-
ment. An endpoint is bound directly to a component,
and cannot be implemented by a group of cooperating
objects nor can components simply extend their func-
tionalit y to include new behavior. Their API effectively
dictates the structure of applications.

In a world of disposable computing, where the appli-
cations architecture must adapt to the constantly
changing environment, interfaces must be able to split
and merge, run on a single machine or be spread
across the world. Running applications must be able to
constantly and seamlessly adapt to their current con-
text. And the use of directed communications makes
this all but impossible.

The next sections discuss the Elvin architecture and
implementation in detail , describing both its current
form and the work currently under way to extend it to

provide a ubiquitous content-based routing infrastruc-
ture for disposable computing.

5. Elvin Architecture

Elvin is a content-based message routing system under
development at DSTC. It provides undirected commu-
nication, using content-based subscriptions to route
self-describing messages.

5.1. Overview
In essence, Elvin routes undirected, dynamicall y typed
messages between producers and consumers. Messages
consist of a set of named attributes of simple data
types. Consumers subscribe to a class of events using a
boolean subscription expression.

Elvin can be described as a pure notification service
[RDR98]. Producers push messages to the service,
which in turn deli vers them asynchronously to con-
sumers. When a message is received at the service
from a producer, it is compared to the registered sub-
scription expressions for all consumers and forwarded
to those whose expressions it satisfies (see figure 2).
Elvin is a dynamic system: messages can be sent with-
out pre-registration of message types and subscriptions
can be added, modified, or deleted at whim.

The system is implemented as a server daemon that
provides the subscription registry and evaluation en-
gine. Client libraries map the wire protocol to pro-
gramming languages. As well as workstations and per-
sonal computers, we are starting to experiment with
devices li ke Palm Pilots and PIC/AVR-class embedded
micro-controllers, using radio, IR and wired serial
communications to the server.

The flexibilit y of distributing events based on content
is often sacrificed by notification services due to a per-
ceived lack of eff iciency [WWWK95]. Common alter-
natives are to use named channels [DEFJKS88,
RBM96, OPSS93, TSS95] or event types [OMG98,
Sun99] that must be specified by both producer and

Figure 2: Evaluation of subscription expressions.

consumer. A key benefit of content-based addressing is
the reduction of this coupling between producers and
consumers. A producer in a channel-based system must
be made to send to multiple channels if more than one
class of consumer requires the event. Content-based
addressing allows any number of different consumers,
including those previously unknown, to receive infor-
mation based on what they need, rather than where the
information was directed.

Once producers are freed of the responsibilit y to direct
communications, the determination of the significance
of message becomes less important: they can
promiscuously send any potentiall y interesting infor-
mation, and rely on the system to discard messages of
no (current) interest to consumers.

5.2. Quenching

While decoupled message production and consumption
is useful, situations where the cost of message genera-
tion is significant or the volume of traff ic very large,
require a "back channel" from the consumers that can
be used by producers to determine interest in classes of
messages.

The Elvin quench facilit y (named for its abilit y to re-
duce message traff ic), enables producers to be told
when a consumer (or consumers) has subscribed to
messages with particular attributes, and optionally ob-
tain the range of values requested. The producer speci-
fies the attribute names that must be present in the
subscription expression and the names of attributes for
which they want to know the set of requested values.
This information is forwarded to the producer when-
ever changes to the server's subscription base alter the
specified values. The quench facilit y is thus effectively
a subscription to messages describing changes to (or
initial state of) an Elvin server's subscriptions.

Consider a producer that emits a large number of mes-
sages that at any given time might not be of interest to
a consumer. By examining the registered subscriptions,
it can determine when its information is of interest to a
subscriber (or many subscribers) and control its emis-
sion.

Alternatively, if it is too expensive to generate un-
wanted messages, the quench facilit y can control gen-
eration. In the scenario from section 3, consider the
supermarket and some packets of chewing gum: the
gum is very cheap, so cheap that the manufacturer can

Figure 3: Using Quench to control message generation.

only afford to put passive location tracking in the
packaging. However, chewing gum is a prime target
for shopli fting, so the store wants to track the packets
to enable them to detect attempts at theft.

Of course, there are thousands of similar packets in the
store, and tracking each of them is well beyond the
capacity of their radio location system. Fortunately,
only a relatively small number of those packets are
removed from the shelves at any one time. What is
required is a mechanism enabling the location tracker
to determine which packets are of interest.

In figure 3, the theft detector has registered two sub-
scriptions: one for removal of items from the shelves,
and another for the sale of items from the cash register
(step 1). The radio locator requests quench information
for subscriptions to location events (2). After being
notified by the shelf that a packet of gum has been re-
moved (3), the theft detector subscribes to notifications
of its location including the unique identifier for the
packet (4).

The radio locator needs to know what items to track,
without directly coupling it to the theft detector (or any
other system requiring location information). It needs
to examine the active subscriptions to determine for
which items location events are of interest. The theft
detector's subscription (4) matches the quench request
from the radio locator (2), and the id attribute value is
forwarded (5). The radio locator begins tracking the
gum, and emitting location messages (6).

Finall y, either the gum is sold, and the cash register's
sale message (7) informs the theft detector that it need
no longer monitor the item, or, if the location coordi-
nates move outside an approved range, the theft detec-
tor can emit an alarm (8).

Using the quench facilit y in this way, producers are
able to determine consumers' requirements without
losing the flexibilit y that the decoupling of message
production from consumption gives.

6. Elvin 3

Elvin3 is a publicly available implementation of the
Elvin architecture, and has been in use for nearly two
years. It uses a single TCP/IP-based protocol and pro-
vides a simple implementation of quenching. Client
li braries are available for C, Java, Python, TCL, Com-
mon and Emacs Lisp, and Smalltalk. The initial design
criteria targeted the implementation at servicing desk-
top notification service clients in a LAN environment,
from which a scale of around a thousand concurrent
clients each with around ten subscriptions was deter-

mined. Our chief assumption was that changes in sub-
scriptions would be orders of magnitude less frequent
than messages, and the resultant system architecture is
heavily biased towards rapid evaluation against a rela-
tively static subscription base.

The client API is simple, consisting, for example, of 11
functions in C. Aside from the initial connection, all
server interactions are asynchronous, with notification
and subscription quench delivery normally handled via
callback functions. Each subscription can also specify
multi -threaded delivery, using a pool of threads to run
the callback function. A polli ng API is available, but
has been used only for the Smalltalk binding where
Elvin's use of native threads did not integrate with the
runtime system.

conn <- elvin_connect(how, hostname, port,
quench_cb, error_cb, do_poll);

elvin_disconnect(conn);

elvin_notify(conn, notification);

sub_id <- elvin_add_subscription(conn,
sub_expr, notify_cb, num_threads);

elvin_replace_subscription(conn, sub_id,
sub_expr);

elvin_del_subscription(conn, sub_id);

elvin_free_quench(quench);
elvin_replace_quench_cb(conn, quench_cb);

sockfd <- elvin_get_socket(conn);
elvin_dispatch(conn);
elvin_poll_notify(conn, sub_id, notific a-

tion);

Figure 4: Elvin3 C API summary.

The Elvin3 subscription language is also simple, styled
after the C expression syntax, with a handful of pre-
defined functions available for testing attribute exis-
tence, (dynamic) type checking, and regular expression
matching. Subscription expressions are supplied as
strings via the client API and compiled by the server.
Multiple subscriptions can be registered using a single
connection, and delivered notification messages con-
tain a li st of the matching subscriptions whose callback
functions are then invoked.

The server architecture is focussed on rapid evaluation
and delivery, within the constraints of the service se-
mantics. In keeping with our philosophy of simplicity,
the fundamental semantic is "at most once" deli very.
After some initial experimentation, and feedback from
application programmers, this was extended to guar-
antee that for a given producer connection, the mes-
sages seen by a consumer would retain their order of

sending on deli very. Out of order deli very, while ena-
bling lower latency, complicated client programming
to an unacceptable degree and the server architecture
was modified to support this guarantee.

6.1. Performance

One of the chief goals of the Elvin project has been to
demonstrate that content-based routing was perfor-
mant. Existing work in notification services had uni-
formly chosen to use a channel-based routing ap-
proach, which enabled direct use of IP multi cast as a
routing optimization.

Operational use of Elvin 3 has satisfied this goal: the
flexibilit y engendered by the simple API and subscrip-
tion language has led to a wide variety of uses with
completely satisfactory performance. But quantitative
performance measurement is more difficult.

Simple measurements of end-to-end latency show a
wide variance, and don't reflect the possible throughput
of the server's threaded evaluation engine. It is here
that the most diff iculty arises: subscriptions are com-
piled (with some optimization) when registered with
the server. The complexity of the registered subscrip-
tions has direct impact on the deli very latency, as does
the CPU load on the server host.

Until a comprehensive benchmarking suite for meas-
uring the performance of content-based routing serv-
ices is developed, it is most useful to measure server
performance in terms of "matches per second" where a
"match" is a comparison of a message's attribute value
against a subscription's requirement.

An Elvin3 server on an AlphaStation 4/255 worksta-
tion can perform approximately 200,000 attribute
matches per second, and sustain a throughput of
20,000 messages per second (with 50 active subscrip-
tions and a 10% success rate in subscription evalua-
tion).

6.2. User Experience and Issues

After initial testing within the development group, and
then wider exposure within our organization, Elvin3
has been deployed across a wide range of external en-
vironments. Aside from the usual bug fixes, very few
changes have been required, excluding the addition of
the polli ng interface, and the deli very order guarantee
discussed above.

Feedback from application programmers was very
positi ve, with the majority of additional comments
suggesting extensions to the basic service. Most com-
mon amongst these was a nebulous concept unfaili ngly
called "reliabilit y".

Reliabilit y of undirected communications is a diff icult
concept to define, let alone implement. But Elvin3's
asynchronous API and absence of "feedback" to the
producer seems to cause a degree of unease in applica-
tion programmers.

Various degrees of message reliabilit y are possible:
from a simple acknowledgement from the server that it
has received the producer's message, through to an
assertion that all eligible subscribers registered at the
time of deli very have confirmed reception of the mes-
sage. While either of these is simple enough to imple-

Figure 5: Elvin3 server architecture.

ment for a single server, we have two primary con-
cerns: that performance would suffer significantly
given the overhead of managing acknowledgements
and possible attempts to resend lost messages, and per-
haps more importantly, that once extended beyond a
single server, implementation of anything other than
the initial server's reception of the message seems in-
feasible.

The second most common request is for security (yet
another nebulous concept). This was not unexpected,
and our progress on a solution is discussed later.

The quench facilit y in Elvin3 is primiti ve: the server
simply sends a string containing the or-ed subscription
strings of all registered consumers. The Python lan-
guage mapping comes with a set of classes that encap-
sulate this string, and provide some higher-level ma-
nipulation. These classes have been used by a few ap-
pli cations, and this functionalit y will be merged into
the standard API.

Examining the use of Elvin, there are a significant
number of applications classified as "one-shot produc-
ers": the end result of the application is the emission of
a single message. Obviously, the overhead of estab-
li shing a TCP connection (and the resultant resources
within the server process) is significant compared to
sending a single message. However, TCP's reliabilit y is
ubiquitous and it is not clear that an alternative reliable
protocol would have substantiall y lower overhead.

Finall y, another significant class of applications is
what we call correlators: subscribers that wait for a
specific combination or sequence of messages, possibly
within some time constraints, and produce summary
messages when their conditions occur. While these
applications consume very few resources, they must be
long-li ved, and ensuring that all the required processes
are restarted with the machine, and remain ali ve is a
significant administrative burden. We are investigating
a single daemon process that could have registered
descriptions of message sequences and timing con-
straints, and a specification of how to produce the
summary message.

7. Elvin 4: Content-based Routing

Elvin3 is a notification service, designed in the tradi-
tion of distributed systems, along with name and yel-
low pages services and an RPC abstraction. But as our
understanding of the undirected communications para-
digm grew, we began to make the important semantic
distinction between a notification service, and a con-
tent-based routing infrastructure. Even before starting
Elvin3, we had planned to experiment with federation

of notification servers, allowing internet-wide sub-
scription and event notification. We now had multiple
sites with local Elvin servers wanting to share traff ic
and the resulting issues of large numbers of users, ad-
ministrative ownership of servers and their traff ic,
server redundancy and the li ke.

In addition, after using notification for communica-
tions between desktop applications, it became increas-
ingly apparent that a wealth of activity outside the
desktop computer and local area network was useful i f
made available as notifications.

Both of these directions were instrumental to our de-
veloping view of content-based message routing as a
fundamental communications paradigm; a similar ab-
straction to messaging or RPC and criti cal to the de-
velopment of disposable computing.

7.1. Experiments with Federation
A single Elvin3 server can handle at most a few thou-
sand concurrent client connections, and while chang-
ing to use a connectionless communications protocol
would remove the immediate problem, servicing more
than a few thousand clients would approach the limits
of the host capacity anyway. The real solution is to
extend the service beyond a single server, establi shing
a federation of autonomous servers cooperating to route
messages to their consumers.

How will t he properties of a federated service have to
differ from those of a single server? A single Elvin
server provides universal availabilit y: a message from
a producer is available for deli very to any subscriber
(subject to the security scheme described later). But
where the Elvin service crosses an enterprise boundary,
some filtering of the traff ic might be required in a
similar fashion to firewalls used at the IP level. While
it should be possible to receive traff ic from any con-
nected server, not all domains will make all messages
available.

A single server also provides immediate visibilit y: a
new subscription registered by a client is guaranteed to
receive a matching message sent as the next packet on
a client's connection. It is not feasible to maintain this
semantics on a wide-area scale: it would require syn-
chronization of changes to subscription registries. The
delayed propagation of both messages and subscrip-
tions mean that this guarantee cannot be maintained
for clients connected to different servers.

Finall y, the routing of messages between servers intro-
duces the possibilit y of messages from a single pro-

ducer using multiple paths to reach a consumer, and
hence arriving at a consumer out of order or dupli-
cated. The Elvin3 server is architected to ensure or-
dering is maintained, and so explicit measures must be
taken to carry this over to the service as a whole.

After some experimentation using client programs to
filter and forward traff ic between Elvin servers, we
have settled on two distinct scenarios for federation.
They are distinguished mostly by usage requirements,
with different trade-offs taken to address these issues in
the two contexts.

7.1.1. Local Area Federation

Within an organization, business unit or site, federa-
tion usually requires universal availabilit y, and is used
as a means of providing reliabilit y, scaling to large
numbers of clients or to provide separate administra-
tive authority over a sub-domain. Automatic failover to
backup servers, load-sharing abilit y and flexible con-
figuration are the dominant requirements. Within a
local area latency is significant.

If a produced message is effectively multi cast to a
cluster of Elvin servers, each of which supports a group
of subscribers, supporting large numbers of consumers
is simply a matter of balancing the consumer connec-
tions evenly across a cluster of servers. This mecha-
nism will scale to an almost indefinite number of con-
sumers. Servers have a hand-over facilit y, allowing a
single, advertised server to balance the client load
within the cluster. This facilit y is also used to perform
handover of clients for graceful shutdown.

For ease of administration, connections between serv-
ers within a local domain are not subject to topology
constraints. To ensure messages are not duplicated,
regardless of the inter-server links, each message is
tagged with suff icient information to detect duplicates
which are then discarded. Links between servers are
uni-directional, and have optional filters to control
message propagation.

7.1.2. Wide Area Federation

Beyond the bounds of an enterprise domain, access to
messages is the primary requirement; a communica-
tions "backbone" allowing subscription to messages
sent from anywhere in the world (or campus, or com-
pany) and publication of internal messages for global
access.

The primary concern in routing messages beyond a
local domain is scalabilit y. Both the traff ic volume and
the computational effort required to route it must scale

to support our quadrilli on nodes, many of which will
host multiple Elvin clients.

Obviously, simply forwarding all traff ic from a local
domain onto a global message bus is infeasible. Ideally,
only those messages that exactly match the require-
ments of one or more subscribers, somewhere on the
global network, should be sent on. In effect, the back-
bone should subscribe to a set of messages from a local
domain.

However, it should also be possible to prevent both the
export and import of classes of messages. An adminis-
trator of a domain must be able to apply a filter at the
domain boundary, protecting private information from
dissemination and restricting the visibilit y of external
events within the domain.

Design of the backbone protocols is still an area of
active work. In particular, issues of mobile users and
the equivalent of the "Slashdot Effect" [Adl99], where
milli ons of consumers want access to a single message
stream, present extreme challenges to the routing in-
frastructure.

A content-based service has one advantage in scalabil-
ity; total load on the system is shared across the fed-
eration. Each node of the federation only deals with the
data once, unli ke point-to-point protocols where the
originating endpoint must process every request.

7.2. Elvin 4
Elvin4 is an evolution of the Elvin architecture, with
refinements across the board from protocol to API.
Major changes include

• the introduction of a security mechanism,

• a modular architecture for the underlying mar-
shalli ng, security and transport protocols,

• automatic server location using SLPv2 [GPVD99],

• better quenching support, and

• an extended subscription language, including sup-
port for international strings.

With the facilit y for multiple protocol stacks support-
ing the high-level communication, comes the require-
ment for an interworking protocol to ensure that all
Elvin domains can interconnect if required. The com-
bination of XDR[Sri95] marshalli ng, SSL-3[FKK96]
security and TCP/IP transport has been defined as the
standard protocol stack, which must be used for to
connect to the Elvin backbone.

Despite a more complex internal architecture, we ex-
pect significant performance gains from this latest im-
plementation. Careful memory management, a revised
threading strategy and better marshalli ng are targeted
at improving the server's bandwidth. Additionally,
merging and sharing evaluation graphs [GS94] may
lead to signifcant performance increases.

7.2.1. Secur ity

The basic requirements for securing undirected com-
munications are simple: firstly to prevent unauthorized
subscribers from receiving messages, and secondly to
prevent attackers from "spoofing" messages from a
legitimate producer.

A third requirement is introduced by the Elvin quench
mechanism. The returned quench messages must not
reveal subscriptions for which the producer may not
produce matching messages.

In order to retain the loose coupling of content-based
routing, we have adopted a mechanism derived from
[Pin92], attaching keys transformed by a one-way
function to each sent message. Producers retain the raw
key, and distribute the transformed key to authorized
consumers. When sending a message, the raw, private
key is presented, and transformed by the server on ar-
rival. Consumers supply their (already transformed)
key when subscribing, and the server compares keys as
part subscription evaluation.

Privacy of both the authorization keys and message
content can be preserved by encryption of the link be-
tween the client library and the server (and between
federated servers). Users can specify their preference
for security mechanism, authentication and privacy
during connection establi shment. The use of authenti-
cation and privacy is optional, and computationally
expensive.

The major problem with this mechanism is that the
plaintext of the messages, is exposed to the intermedi-
ate servers routing the message to its destinations.
Unfortunately, when using the content to perform the
routing, this is unavoidable. Of course, it is always
possible to encrypt the body of the message prior to
transmission if required.

7.2.2. Charging

While we anticipate that most use of Elvin services will
be "local" and remain uncharged, the provision of in-
formation services and federation of Elvin domains
requires a charging model allowing producers to add a

premium to the basic transportation costs and backbone
routers to allocate forwarding costs to users.

To complicate matters, the cost of routing is not con-
sistent, with complex subscriptions are able to consume
significant CPU resources during evaluation. While a
simple model of charging by number of bytes is attrac-
tive, it does not allow for accurate cost recovery. Addi-
tionally, it is not clear that a single charging model
will suff ice: allocation of the total cost between the
producer and consumers of a message could occur in
any number of ways, with neither producer only nor
consumers only acceptable.

Note that billi ng is not part of the problem. The Elvin
server must simply log the data required for billi ng
which can be processed by a third party.

A simple charging mechanism is provided in Elvin4,
but charging in a wide-area Elvin federation remains
an open issue.

8. Future Work

Elvin4 is a testbed for our research into the challenges
of internet-scale undirected communication using con-
tent-based routing. Active work proceeds on federation
protocols, the security and charging mechanisms and
additional services.

An undirected communication infrastructure would be
incomplete without some form of correlation engine
(see [LV95]) providing recognition of message pat-
terns. Leveraging previous work in Linda on such rec-
ognition, complex correlations can be built from
smaller components to embed expert knowledge into
the network, for example using a process trelli s
[FG91].

The availabilit y of access to such a wealth of informa-
tion from so many devices makes management of an
object's relevant context an extremely diff icult prob-
lem. While the use content-based routing and a corre-
lation service make it relatively simple to create the
mechanism for contextuali zation, the real problem lies
in creating poli cy of suff icient detail for everyday use.
People are extraordinaril y good at casual awareness
and selective focus. The challenge is firstly to simpli fy
mechanisms for defining detailed poli cy, and secondly
to ensure the portabilit y of that poli cy so it adapts as
location changes. We are drawing from related work
on awareness and context management in computer
supported cooperative work[MKFPFT97, Fit98] to pro-
vide objects with the abilit y to adapt to their surround-
ings in similar ways to people.

9. Conclusion

Content-based routing is a fundamentall y different
paradigm for interaction between networked objects.
By removing the necessity for producers to direct mes-
sages, we gain enormous flexibilit y in system archi-
tecture and scalabilit y over traditional communication
systems allowing us to provide an interaction environ-
ment for disposable computing.

We are only at the beginning of our exploration of this
paradigm but can already see the benefits of decoupling
the production, consumption, and dissemination of
data between networked components. Undirected
communication facilit ates systems that are more easil y
extended, simpler to componentize, and contain a
clearer mapping to real world interactions between
objects.

Disposable computing requires a revolution in distrib-
uted systems; existing paradigms will not scale effec-
tively to support the rapidly changing environment of
vast numbers of relevant objects. Undirected messaging
overcomes some of the problems of existing systems
and provides a viable infrastructure for communication
in a quadrilli on node network.

And besides, how else will we know where our toma-
toes are?

Availability

Elvin is available in both source and binary form under
a not-for-commercial-use li cense. Full documentation,
FAQs, additional software and the download itself can
be found on the Elvin homepage

http://www.dstc.edu.au/Elvin/

The SLPv2 implementation used in Elvin will also be
available independently. See

http://www.dstc.edu.au/Elvin/Sulphur/

Acknowledgements

The work reported in this paper has been funded in part by
the Cooperative Research Centre Program through the De-
partment of Industry, Science and Resources of the Com-
monwealth Government of Australia.

This work has also been supported in part by the United
States Defense Advanced Research Projects Agency under
grants F30602-96-2-0264 and F30603-94-C-0161 (both ad-
ministered by the US Air Force through Rome Laboratories).
The views and conclusions contained in this document are
those of the authors and should not be interpreted as repre-
senting the off icial poli cies, expressed or implied, of the

Defense Advanced Research Projects Agency or the US Gov-
ernment.

Bibliography

[Adl99] The Slashdot Effect: An Analysis of Three
Internet Publications,
http://ssadler.phy.bnl.gov/adler/SDE/SlashDotEff
ect.html", 1999.

[CG85] Bill Croft and John Gilmore, Bootstrap Proto-
col (BOOTP), IETF RFC-951, September 1985.

[DB92] DiBella and Bhandaru, Pilgrim Event Notifier
Version 1.0, Technical Report, University of Mas-
sachusetts, Amherst, November 1992.

[DEFJKS88] DellaFera, Eichin, French, Jedlinsky,
Kohl and Sommerfeld, The Zephyr Notifi cation
Service, Proceedings USENIX Winter 1988,
Dallas Texas, pp213-219.

[FG91] Factor and Gelernter, Software Backplanes,
Realtime Data Fusion and the Process Trelli s,
Technical Report YALEU/DCS/TR-852, Yale
University Department of Computer Science,
March 1991.

[FKK96] A. Frier, P. Karlton, and P. Kocher, The SSL
3.0 Protocol, Netscape Communications Corp.,
Nov 18, 1996.

[Fit98] Geraldine Fitzpatrick, The Locales Frame-
work: understanding and Designing for Coop-
erative Work. PhD. Thesis. The University of
Queensland, Australia, 1998.

[GAO90] S Gursharan, R Andrews, A Oppenheimer,
Inside AppleTalk, Addison-Wesley, 1990

[GB92] Gelernter and Bernstein, Distributed commu-
nication via global buffer, Proceedings ACM
Symposium on Principles of Distributed Com-
puting, August 1992, pp10-18.

[GPVD99] Erik Guttman, Charles Perkins, John
Veizades, Michael Day, Service Location Proto-
col, Version 2, IETF Internet Draft, work-in-
progress, draft-ietf-srvloc-protocol-v2-12, Febru-
ary 1999.

[GS94] J. Gough and G. Smith, Efficient recognition
of events in a distributed system, Proceedings
18th Australian Computer Science Conference,
1994

[LSWZ97] Leckie, Senjen, Ward and Zhao, Communi-
cation and coordination for intelli gent fault di-
agnosis agents, Proceedings Eighth IFIP/IEEE
International Workshop for Distributed Systems
Operations and Management (DSOM'97), Syd-
ney, 21-23 October 1997.

[Low97] Colin Low, Integrating Communication
Services, IEEE Communications, v35n6,
June 1997.

[LV95] David C. Luckham and James Vera, An event-
based architecture definition language, IEEE
Transactions on Software Engineering,
21(9):717-734, September 1995.

[MKFPFT97] Tim Mansfield, Simon Kaplan, Gerald-
ine Fitzpatrick, Ted Phelps, Mark Fitzpatrick,
Richard Taylor, Evolving Orbit: a progress re-
port on building locales, Proceedings of Group97,
ACM Press, Phoenix, AZ, Nov 1997.

[MS91] Chuck McManis and Vipin Samar, Solaris
ONC: Design and Implementation of Transport-
Independent RPC, Sun Microsystems, 1991.

[OMG91] Object Management Group, Common Ob-
ject Request Broker: Architecture and Specifi-
cation, OMG TC Document 91-12-1, Decem-
ber 1991.

[OMG97] Object Management Group, Trader Object
Services Specification, OMG TC Document 97-
12-23, December 1997.

[OMG98] Object Management Group, Notification
Service: Joint Revised Submission, OMG TC
Document telecom/98-11-01, November 1998.

[Pin92] James Pinakis, Directed Communication in
Linda, Proceedings 15th Australian Computer
Science Conference, January 1992, pp731-743.

[RBM96] Robbert van Renesse, Kenneth P. Birman
and Silvano Maffeis, Horus, a flexible Group
Communication System, Communications of the
ACM, April 1996.

[RDR98] Ramduny, Dix and Rodden, Exploring the
Design Space for Notifi cation Servers, Proceed-
ings CSCW'98, Seattle WA, pp227-235.

[RW97] David S Rosenblum and Alexander L Wolf, A
Design Framework for Internet-Scale Event Ob-
servation and Notifi cation, Proceedings of the
Sixth European Software Engineering Confer-
ence/ACM SIGSOFT, Fifth Symposium on the

Foundations of Software Engineering, Zurich,
Switzerland, September 1997

[SA97] Segall and Arnold, Elvin has left the building:
A publish/subscribe notifi cation service with
quenching, Proceedings AUUG97, Brisbane,
Australia, September 1997.

[SHMO94] John Shirley, Wei Hu, David Magid and
Andy Oram, Guide to Wr iting DCE Applica-
tions, O'Reill y and Associates, 2nd Edition,
May 1994.

[Ste92] Neal Stephenson,Snow Crash, Bantam, 1992.

[Sun88] Sun Microsystems, Inc, RPC: Remote Proce-
dure Call Protocol Specifi cation, Version 2,IETF
RFC-1057, June 1988.

[Sun99] Sun Microsystems,Jini Distributed Event
Specifi cation, Technical Report, January 1999.

[Sri95] R. Srinivasan XDR: External Data Represen-
tation Standard, IETF RFC-1832, August 1995.

[TSS95] Teknekron Software Systems, Rendezvous
Software Bus Programmer's Guide, 1995.

[Tha99] Thuan L Thai, Learning DCOM , O'Reill y
and Associates, 1st Edition, April&nsp;1999.

[OPSS93] Brian Oki, Manfred Pfluegl, Alex Siegel and
Dale Skeen, The Information Bus: an architecture
for extensible distributed systems, ACM SIGOPS
Operating Systems Review, v27 n5, Decem-
ber 1993, pp58-68.

[VGPK97] John Veizades, Erik Guttmann, Charles
Perkins, S Kaplan, Service Location Protocol,
IETF RFC-2165, June 1997.

[Wan95] Want, Schilit , Adams, Gold, Petersen, Gold-
berg, Elli s and Weiser, The ParcTab Ubiquitous
Computing Experiment, Xerox PARC Computer
Science Laboratory Tech Report CSL-95-1,
March 1995.

[Wei91] Weiser, The Computer for the Twenty-First
Century, Scientific American, September 1991.

[WWWK95] Waldo, Woll rath, Wyant and Kendall ,
Events in an RPC Based Distributed System,
SunLabs Technical Report SMLI TR-95-47, No-
vember 1995.

