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Abstract

Information processing capabilities of embedded sys-
tems presently lack the robustness and rich complexity
found in biological systems. Endowing artificial systems
with the ability to adapt to changing conditions requires
algorithms that can rapidly learn from examples. We
demonstrate the application of one such learning algo-
rithm on an inexpensive robot constructed to perform
simple sensorimotor tasks. The robot learns to track a
particular object by discovering the salient visual and au-
ditory cues unique to that object. The system uses a con-
volutional neural network to combine color, luminance,
motion, and auditory information. The weights of the
networks are adjusted using feedback from a teacher to
reflect the reliability of the various input channels in the
surrounding environment. We also discuss how unsu-
pervised learning can discover features in data without
external interaction. An unsupervised algorithm based
upon nonnegative matrix factorization is able to auto-
matically learn the different parts of objects. Such a
parts-based representation of data is crucial for robust
object recognition.

1 Introduction

The information processing capabilities embedded in
systems today are extremely unreliable when operated
in conditions that fall outside of their narrow design
specifications. For example, the best present-day speech

recognition systems will fail if a different microphone is
substituted, or if the speaker has a sore throat [Rabiner].
On the other hand, biological systems are extremely ro-
bust to environmental changes when compared with ar-
tificial systems. The success of biological information
processing systems lies in their ability to accommodate
changes at all processing levels, from low-level sensor
modalities to high-level computational algorithms and
architectures. In order for artificial systems to truly be-
come ubiquitous in the future, they will need to incorpo-
rate this ability to quickly and robustly adapt to changes.

In these proceedings, we present some of our work on
algorithms that allow a system to learn from prior expe-
rience and adapt its behavior accordingly. We demon-
strate these algorithms on a small quadruped robot that
we have constructed to perform various kinds of sensori-
motor tasks. In particular, we show how the robot learns
to track a novel object by rapidly changing the weights
of a convolutional neural network which processes the
color, luminance, motion, and audio signals. Based upon
the reliability of the different input channels, the system
is able to discover the most salient visual and auditory
cues unique to that object.

The training of the robot is done online in real time us-
ing supervisory signals from a teacher. We also explore
how the robot can learn robust cues for object recogni-
tion without any supervision. This form of unsupervised
learning is essential for adaptation in situations where
there is little user interaction. We show how a sim-
ple algorithm can automatically learn to segment high-
dimensional input data into features that correspond to
functionally relevant parts [Palmer]. Our learning al-



Figure 1: Photograph showing a small quadruped mo-
bile robot that we have constructed to demonstrate our
learning algorithms on sensorimotor tasks.

gorithm incorporates nonnegativity constraints that are
similar to those found in biological neural networks.
This enables our algorithm to learn parts as features by
modeling positive coactivation in the inputs. Such a
parts-based representation is valuable because it is in-
variant to perturbations or occlusions that affect local-
ized regions of the input space.

2 Artificial sensorimotor system

In order to demonstrate how learning algorithms can
be applied to improve the information processing capa-
bilities of systems in real environments, we have con-
structed a small quadruped robot that is able to perform
various simple sensorimotor tasks. Figure 1 shows a pic-
ture of our robot, which is approximately 25 cm in length
and about 1 kg in weight, powered by a 9.6V recharge-
able battery pack. It contains 14 hobby servo motors to
provide three degrees of freedom for each of the four
legs, as well as two degrees of freedom for the head. At-
tached to the head assembly is a small board level CCD
camera that acts as a single eye, as well as two direc-
tional electret microphones for ears. The two head servo
motors allow the camera to rapidly pan and tilt over a
wide range of viewing angles. In addition to the visual
and auditory inputs, a two-axis gyroscopic rate sensor is
used to provide vestibular input for stabilization tasks.

An onboard Motorola 68HC11 microprocessor converts
and processes the gyroscopic inputs, and provides audi-
tory feedback by producing sounds in a small speaker.
It also generates the timing signals for the 14 motors,
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Figure 2: Schematic diagram showing the various hard-
ware components of the system.

which are demultiplexed to the separate motors using
shift registers. Because the microprocessor is not pow-
erful enough to process the input signals from the CCD
camera and microphones, the video and audio signals are
currently sent to an offboard computer for processing as
shown in Figure 2. The computer is then able to direct
the onboard microprocessor to generate the appropriate
motor behavior via a serial link.

The neural network algorithms for visual and auditory
processing and control are implemented using Matlab
for rapid development purposes. Real-time acquisition
of the video and audio signals into Matlab variables is
accomplished with custom-written drivers running un-
der either the Microsoft Windows or the Linux operating
system. Because the hardware was built using cheap,
commercially available components (total cost of the
system< $700), the control software needs to be ro-
bust against the large sources of noise and drift in the
hardware components. The following sections explain
how online learning algorithms can compensate for lim-
itations in the hardware and changes in environmental
conditions.

3 Tracking application

Let us consider the problem of trying to program the
robot to watch and follow with its head as someone
walks around the room. This type of active perception is
critical for proper functioning of the human visual sys-
tem [Yarbus]. Because human retinas have small, high
resolution foveal regions surrounded by visual fields of
relatively much lower resolution, the eyes need to be
making constant movements in order to keep objects fo-
cused on the foveas. Thus, the role of the human ocu-
lomotor system is to direct relevant objects in the visual
world onto these high resolution areas. To accomplish



this task, biology has evolved many complex neural cir-
cuits to control eye movements. Some examples include
the saccadic system which rapidly acquires new objects,
and the smooth pursuit system which tracks slowly mov-
ing objects [Horiuchi, Rao].

In analogy with the biological system, our robot also
needs to first determine which feature in its visual field
is most relevant and then direct its gaze towards that ob-
ject. As the target person moves about, the robot’s track-
ing system will attempt to stabilize the person’s image in
the center of the field of view. Unfortunately, the physi-
cal performance of our hardware system is very lacking
compared to biology. A fixed lens is used on the camera
which gives it roughly a65Æ horizontal and48Æ verti-
cal field of view. With the video digitized at frames of
120�160 pixels, this corresponds to a little less than half
a degree of angular resolution, which is 25 times worse
than human foveal acuity. Also, the maximum saccadic
velocity of the servo motors is about 300 deg/sec, which
is twice as slow as human eye movements. The tracking
algorithm needs to be able to overcome these physical
limitations.

A naive heuristic algorithm for the robot to track some-
one is to simply have it follow the largest moving ob-
ject in the image. However, such a system is easily
fooled if there are multiple objects moving in the room.
More sophisticated algorithms [Darrell, Petajan] have
proposed locating human heads by employing rules such
as flesh color detection [Yang], or matching ellipses to
head outlines [Eleftheriadis]. Another approach is to use
the directional microphones to locate any person who is
speaking using audio cues [Bregman]. But all these al-
gorithms will fail in situations for which they were not
designed. Such predetermined tracking algorithms tend
to be very brittle and break when the surrounding envi-
ronment is highly variable.

Recently, a potentially more robust method has been
demonstrated for head detection using neural networks
to learn the appropriate grayscale features of a face
[Sung, Nowlan, Rowley]. Although these networks can
very accurately detect faces in images, they need to be
trained on a very large set of labelled face and non-face
images. Since these networks are typically trained in
batch mode on a preset ensemble of faces, they also do
not learn to discriminate one person from another.

For our robot, we use a convolutional neural network
that rapidly learns to locate and track a particular per-
son’s head. The system learns to do this task in real time
with online supervisory signals. The network architec-
ture integrates multimodal information in a natural way,
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Figure 3: Preprocessing of the video images. Lumi-
nance, chromatic and motion information are separately
represented in the Y, U, V, D channels at multiple reso-
lutions.

and the fast online adaptation of the network’s weights
allows it to adjust the relative importance of the inputs
depending upon the current environment. This enables
the system to robustly track a person even in a cluttered
background in the presence of other moving objects.

3.1 Video preprocessing

The raw video signal from the robot first needs to be
preprocessed before it can be input to the convolutional
neural network. The composite video signal from the
CCD camera is digitized with a video capture board into
a time series of raw120� 160 RGB images as shown in
Figure 3. Each RGB color image is then converted into
its YUV representation, and a difference (D) image is
also computed from the absolute value of the difference
between consecutive frames. The Y component repre-
sents the luminance or grayscale information in the im-
age, while the U and V channels contain the chromatic
or color data. Motion information in the video stream is
represented in the D image where moving objects appear
highlighted.

At each time step, the four YUVD images are then sub-
sampled successively to yield representations at lower
and lower resolutions. The resulting “image pyramids”
allow the network to achieve recognition invariance
across many different image scales without having to
train separate neural networks for each resolution. In-
stead, a single neural network with the same set of
weights is simultaneously run across the different reso-
lutions, and the maximally active resolution and position
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Figure 4: Processing of the audio waveforms to yield a
topological map of audio sources as a function of time
delay.

is selected.

3.2 Audio preprocessing

Animals are able to robustly localize audio sources using
a variety of auditory cues [Bregman]. Experiments have
shown that one of the most important cues for azimuthal
position determination is interaural time difference, cor-
responding to the slight delay it takes for a sound to
reach the different ears [Konishi]. Similarly, the two mi-
crophones on the head of our robot are separated hor-
izontally in space to optimize the interaural difference
between their audio signals. This information is then
combined with visual cues by the convolutional neural
network to determine the overall saliency of the differ-
ent locations in its field of view. In order for the neural
network to process the auditory information in the same
manner as it does visual information, the raw audio data
has to first be converted into an auditory space map as
depicted in Figure 4.

The audio signal from the left and right microphones
are first digitized at 16000 Hz in the sound card. These
waveforms are then passed through a rectification non-
linearity to emphasize the envelope of the sound wave-
forms present in the recordings. The resulting signals
are then cross-correlated, giving the following time cor-
relation function:

A(�t) =
X

t

jxL(t)jjxR(t+�t)j (1)

wherexL(t) andxR(t) are the audio inputs from the
left and right microphones. Ambient background noises
are attenuated by subtracting out the mean of this cor-
relation function. Different values of the time delay
�t correspond to varying azimuthal positions of au-
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Figure 5: Neural network uses a convolutional architec-
ture to integrate the different sources of information and
determine the maximally salient object.

ditory sources, assuming their elevation angle is near
the horizontal plane of the microphones. Thus, the
cross-correlation indicates the likelihood that an audi-
tory source is located at the various azimuthal posi-
tions. This correlation function can be considered a one-
dimensional auditory space map of the environment.

4 Supervised learning

4.1 Neural Network Architecture

Our tracking algorithm uses the convolutional neural
network architecture shown in Figure 5 to locate the
salient objects in its visual and auditory fields. The
YUVD input images are filtered with separate16 � 16
kernels, denoted byWY , WU , WV , andWD respec-
tively. This results in the filtered images�Y s, �Us, �V s,
�Ds:

�Zs(i; j) = WZ Æ Z
s

=
X

i0;j0

WZ(i
0; j0)Zs(i+ i0; j + j0) (2)



wheres denotes the scale resolution of the inputs, andZ
represents any one of theY ,U , V , orD channels. These
filtered images correspond to a single layer of hidden
units in the neural network. The hidden units are then
combined with the one-dimenional auditory correlation
functionA(j) to form the saliency mapXs in the fol-
lowing manner:

Xs(i; j) = cY g[ �Y s(i; j)] + cU g[ �Us(i; j)] +

cV g[ �V s(i; j)] + cD g[ �Ds(i; j)] +

cA g[A(j)] + c0 (3)

where the sigmoidal nonlinearity is given byg(x) =
tanh(x). Thus, the saliencyXs is computed on a pixel-
by-pixel basis using a nonlinear combination of hidden
units. The relative importance of the different lumi-
nance, chromatic, motion, and auditory channels in the
overall saliency of an object is given by the scalar vari-
ablescY , cU , cV , cD , andcA.

With the bias termc0, the functiong[Xs(i; j)] may be
interpreted as the relative probability that the tracked ob-
ject appears in location(i; j) at input resolutions. The
final output of the neural network is then determined in a
competitive manner by finding the location(im; jm) and
scalesm of the best possible match:

g[Xm] = g[Xsm(im; jm)] = max
i;j;s

g[Xs(i; j)]: (4)

After processing the visual and auditory inputs in this
manner, head movements are generated in order to keep
the maximally salient object located near the center of
the field of view.

4.2 Adaptation

Our robot learns to track a specific target using super-
visory feedback from a teacher. During training, the
teacher watches the robot’s video input and corrects its
behavior whenever it makes a mistake. The teacher cor-
rects the robot by indicating where the target is located in
the visual field using a graphical user interface. This ac-
tion prompts the learning algorithm to adjust the weights
of the convolutional neural network in order to better
track the object at that location.

The algorithm uses the supervisory signals to adjust the
kernelsWZ and scalar weightscZ of the neural network.

The neural network is updated whenever the maximally
salient location of the neural network(im; jm) does not
correspond to the desired object’s true position(in; jn)
as identified by the teacher. Objective functions propor-
tional to the sum squared error terms at the maximal lo-
cation and at the new desired location are used for train-
ing the network:

e2m = jgm � g[Xsm(im; jm)j2; (5)

e2n = min
s
jgn � g[Xs(in; jn)j

2: (6)

For each correction that is provided by the teacher, the
algorithm tries to minimize the errors in these objective
functions. First, the gradients of Eqs. 5–6 are computed.
These gradient terms are then backpropagated through
the convolutional network [Nowlan, LeCun], resulting
in the following rules for adaptation:

�cZ = � emg
0(Xm)g[ �Z(im; jm)] +

� eng
0(Xn)g[ �Z(in; jn)]; (7)

�WZ = � emg
0(Xm)g0( �Zm)cZZm +

� eng
0(Xn)g

0( �Zn)cZZn: (8)

In typical applications of neural networks where a large
set of the training examples can be considered simul-
taneously, the learning rate� is set to some small pos-
itive number. However in our case, it is desirable for
the robot to learn to track an object in a new environ-
ment as quickly as possible. Thus, rapid adaptation of
the weights during even a single training example is
needed. A natural way of doing this is to use a fairly
large learning rate, and to repeatedly apply the update
rules in Eqs. 7–8 until the calculated maximally salient
location is very close to the actual desired position.

4.3 Training example

An example of how quickly the robot is able to adapt is
given by the learning curve in Figure 6. In this particular
example, the system was trained to track the head of one
of the authors as he moved around and talked in his of-
fice. The weights were first initialized to small random
values and the learning parameters were set togm = 0,
gn = 1, and� = 0:1. The robot was then corrected in
an online fashion using supervisory inputs to follow the
author’s head.
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Figure 6: Fast online adaptation of the neural network.
The head location error in pixels in a120 � 160 image
is plotted as a function of frame number (5 frames/sec).

After only a few seconds of training at 5 frames/sec
(200 ms processing time per image), the system was able
to locate the head to within four pixels of accuracy, as
determined by hand labelling the video data afterwards.
As saccadic eye movements were initiated at the times
indicated by the arrows in Figure 6, new environments
of the office were sampled and an occasional large error
was seen. However, over time these errors were cor-
rected, and the neural network learned to robustly dis-
criminate the head from the office surroundings.

Figure 7 shows the inputs and weights of the network af-
ter a minute of training as the author walked around his
office. The kernels necessarily appear slightly smeared
because they are adapted to be invariant to slight changes
in head position, rotation, and scale. But they clearly
depict the dark hair, facial features, and skin color of
the head. The relative weighting (cY ; cU ; cV > cD; cA)
of the different input channels shows that the luminance
and color information are the most reliable for tracking
the head. This is probably because the presence of other
moving body parts and external noise sources in the of-
fice made the motion and auditory channels relatively
unreliable.

More complicated neural network architectures could
be used for combining the different sensory inputs to
achieve better tracking performance. However, this ex-
ample shows how a simple convolutional network archi-
tecture can efficiently integrate the different visual and
auditory cues in order to learn how to robustly track an
object. Moreover, by using fast online adaptation of the
neural network weights, the system is able to rapidly ac-
commodate changing environments.

Y U V D

cY=0.15 cU=0.12 cV=0.11 cD=0.08

Figure 7: Example showing the inputs and weights used
in tracking a head (cA = 0:05). The head position as
calculated by the neural network is marked with a box.

5 Unsupervised learning

The online learning algorithm described above allows
our robot to rapidly adapt and correct mistakes when
given supervisory feedback by a teacher. But there are
many situations in which it is impossible for any teacher
to be present. In these situations, would it still be possi-
ble for a system to adapt based upon raw sensory stim-
uli without being told the appropriate thing to do? This
is generically quite a difficult problem, but there are
some well-established algorithms that allow the system
to continue to adapt even without a teacher. Generally,
these unsupervised learning algorithms attempt to ex-
tract common sets of features present in the input data.
The system can then use these features to reconstruct
structured patterns from corrupted input data. This in-
variance of the system to noise allows for more robust
processing in performing recognition tasks.

One commonly used technique for building invariances
into systems is to project the input data onto a few
representative directions known as the principal com-
ponents. This procedure called principal components
analysis (PCA) has historically found widespread use
in data compression, modeling, and classification sys-
tems [Jolliffe, Turk]. For an example of its application,
consider the bottom portion of Figure 8. Here, a set of
images of handwritten “two”’s has been analyzed using
PCA. The images are taken from the Buffalo Zip Code
database [LeCun], and can formally be described by a
n �m matrixX of pixel values. Each of them = 731
grayscale images is preprocessed to roughly center and
align it within a16� 16 grid. The pixels are scaled such
that white is equal to zero and black is equal to one. The
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Figure 8: Three different unsupervised learning tech-
niques applied to handwritten images of the digit ”two.”
NMF learns a representation based upon the strokes of
the digits, while VQ and PCA learn holistic representa-
tions. For each algorithm, the 25 columns of basisW are
depicted as a5 � 5 montage on the left, with their cor-
responding activationsV in the middle. The reconstruc-
tion of the digit given by the productWV is displayed
on the right of the figure.

n = 256 pixel values are then arranged into a column of
X , with each handwritten image forming a separate col-
umn. PCA factorizes the matrixX into the approximate
form X � WV where the matrix factorsW andV are
n � r andr �m in size, respectively. The columns of
W correspond to an orthogonal basis set which can be
used to reconstruct the original images inX using the
coefficients inV . The left side of Figure 8 displays the
r = 25 different columns ofW , which are then multi-
plied by a particular set of coefficients inV to form the
reconstruction image on the right.

PCA is able to efficiently reconstruct the original data
X using the limited numberr of bases because it uses a
representation that is distributed across all of the matrix

factors. Some of the bases inW resemble common dis-
tortions of “two”’s such as translations and rotations, so
the PCA representation is able to capture this global vari-
ability in the data. However, this representation utilizes
both positive and negative combinations of all the avail-
able bases inW . This implies that the reconstruction
involves finely tuned cancellations among the different
bases, so it is difficult to visualize exactly how most of
the columns inW contribute to a robust representation.

In contrast, vector quantization (VQ) is another unsuper-
vised learning technique that categorizes the input data
in terms of prototypes rather than orthogonal basis vec-
tors. VQ may be thought of as applying a quantizing er-
ror correction to the data in order to remove small pertur-
bations in the input. Formally, it can again be described
as an approximate matrix factorizationX �WV where
the columns in matrixV of activations are constrained to
be unary (exactly one element in each column is equal
to one, all the other elements are zero). In the mid-
dle portion of Figure 8, the effect of this constraint can
be seen as forcing the VQ factorization to learn vari-
ous templates of different types of “two”’s. In this case,
reconstruction merely involves choosing the most simi-
lar prototype, and the representation is extremely sparse
since only a single element ofV is active.

The top portion of Figure 8 shows our new matrix factor-
ization algorithm that decomposes the images into their
representative parts. It achieves this by utilizing nonneg-
ativity as a constraint on the components of the matrix
factorsW andV [Lee]. As seen in the figure, nonnega-
tive matrix factorization (NMF) learns to decompose the
image data into their constituent parts, corresponding to
the different strokes of a “two.” To approximate a partic-
ular two, the appropriate strokes are summed together to
form the reconstruction. This is in sharp contrast to the
holistic features found by PCA and VQ. Note that NMF
finds a decomposition into localized parts even though
no prior information about the topology of the images
was built into the input data, i.e. the rows of matrixX
could have been arbitrarily scrambled and the NMF al-
gorithm would have yielded the same results.

NMF also combines some of the representational advan-
tages of PCA and VQ. Since many of the parts are used
to form the reconstruction, NMF has the combinatorial
expressiveness of a distributed representation. But be-
cause the nonzero elements ofW andV are all posi-
tive, NMF allows only additive combinations. So unlike
PCA, no cancellations can occur. On the other hand, the
nonnegativity constraint causes almost half of the coef-
ficients inV to go to zero, resulting in a sparse cod-
ing of the input. Thus, NMF learns a parts-based repre-
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Figure 9: Multiplicative update rules for nonnega-
tive matrix factorization. The accuracy of the cur-
rent approximationX � WV enters the learn-
ing through the quotientXik=(WV )ik . It can be
shown that these rules maximize the objective functionPn

i=1

Pm
k=1[Xik log(WV )ik � (WV )ik ].

sentation of the data that is sparse as well as distributed
[Foldiak, Olshausen].

Analytically, the NMF algorithm can be derived from
a probabilistic generative model that incorporates Pois-
son noise [Hinton]. This model has previously been
used in the deconvolution of astronomical images that
have been blurred by the atmosphere and the telescope
[Richardson, Lucy]. NMF may thus be considered
a generalization of this technique to blind deconvolu-
tion. By maximizing the likelihood of this probabilis-
tic model, the NMF learning rule for nonnegative matrix
factorization is obtained [Dempster, Saul]: Given a data
matrixX , the matrix factorsW andV are first initialized
to random positive values. The factors are then updated
using the multiplicative update rules shown in Figure 9,
which guarantees that the likelihood of the dataX is in-
creased. This procedure is then iterated until an optimal
factorizationX �WV is learned.

6 Discussion

The reason NMF discovers strokes as the functional
parts of digits is because the nonnegativity constraints
allow it to learn from positive coactivation of image pix-
els in the data. The NMF algorithm adapts the basisW
in order to learn the appropriate coactivations. In con-
strast, PCA has no constraints on the sign of the activa-
tion, and learns simultaneously from both positive and
negative activations in the data. It should be noted that
biological neural networks may use similar types of con-
straints to achieve analogous representations. The firing
rates of neurons cannot be negative, and the strengths
of synapses do not generally change sign. These one-

sided constraints could possibly be important in devel-
oping the sparsely, distributed coding of sensory input
that give rise to robust biological information process-
ing.

The NMF algorithm is also generally applicable to prob-
lems outside the domain of image analysis. We have
also applied it to the semantic analysis of text documents
[Salton, Landauer], as well as to the analysis of rout-
ing patterns in data networks. In each of these cases,
the algorithm learns to decompose the input data into
their constituent parts. This enables any additional pro-
cessing of the data to be robust against perturbations
that can change only a small number of these features
[Biederman]. Our current research in this area involves
incorporating the NMF parts decomposition of the in-
put data into a hierarchical representation that would
be appropriate for high level control of systems such as
our robot. Along with future improvements in sensory,
motor, communications, and processing hardware, ad-
vances in these new learning algorithms will hopefully
allow artificial embedded systems to someday exhibit
the computational complexity and robustness found in
biological systems.
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