
THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

Proceedings of the Embedded Systems Workshop
Cambridge, Massachusetts, USA, March 29–31, 1999

Massively Distributed Systems:
Design Issues and Challenges

Dan Nessett
3Com Corporation

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org

Massively Distributed Systems: Design Issues and Challenges

Dan Nessett
Technology Development Center

3Com Corporation
Dan_Nessett@3com.com

Abstract

The forty year trend in the computing industry is away
from centralized, high unit cost, low unit volume prod-
ucts toward distributed, low unit cost, high unit volume
products. The next step in this process is the emergence
of massively distributed systems. These systems will
penetrate even more deeply into the fabric of society and
become the information power grids of the 21st century.
They will be ubiquitous. Most will operate outside the
normal cognizance of the people they serve and most
will be based on embedded systems that present non-
traditional computing interfaces to their users. They
will be engineered to operate as distributed utilities,
much like the energy, water, transportation and media
broadcast businesses do today. The first deployment of
massively distributed systems is likely to occur as sup-
port structures for these industries.

Massively distributed systems will differ from existing
distributed systems in important ways. Such systems
eventually will interconnect billions of nodes. This will
necessitate changes in the way nodes interact with one
another. One-to-many communications will be the
norm, rather than one-to-one. The size of on-line appli-
cation communities will necessitate the use of statisti-
cally correct rather than deterministic algorithms for
resource accounting, fault detection and correction, and
system management. These communities will coalesce
and dissolve rapidly in order to host events that are of
interest to groups formed specifically for this purpose.
This will require new approaches to naming, routing,
security and privacy, resource management and synchro-
nization. Heterogeneity will be even more of a factor in
the design, implementation and operation of massively
distributed systems

This paper explores the nature and characteristics of
massively distributed systems by proposing some ex-
amples and then using them to characterize nine major
design issues. Seven of these are drawn from seminal
work in the area of distributed systems. Two others are
based on experience in distributed system design and
implementation subsequent to that work.

1. Introduction

This paper explores trends in distributed system archi-
tecture and implementation that will have far-reaching
consequences in the next 5-10 years. The paper’s central
thesis is that applications will become massively dis-
tributed during this interval and in so doing generate
significant engineering problems, the solution of which
will change the nature of distributed computing. Fol-
lowing this trend, networking technology will change
in order better to serve the communications require-
ments of this new class of applications.

One major driver of massively distributed applications
is the advent of ubiquitous embedded systems. While
embedded systems will not always communicate either
with their peers or with traditional computing equip-
ment, important applications will require the intercon-
nection of them in large numbers. Several examples are
given in section 2. Furthermore, these applications will
require computing architectures that off-load heavy
computational tasks from embedded systems onto more
powerful and capable equipment. Consequently, mas-
sively distributed applications will present problems to
architects and implementers that transcend those of
stand-alone embedded system applications.

The paper examines the motivation for and engineering
problems of massively distributed systems. In the next
section, a case is made why massively distributed sys-
tems will arise. Section 3 presents an analysis of their
engineering design issues. Finally, section 4 presents a
summary of the paper.

2. Motivation

Massively distributed systems are the next step in the
development of computing. From a commercial per-
spective, this process started with centralized, high unit
cost, low unit volume systems in the fifties and sixties.
It then moved to less centralized, but still more or less
stand-alone systems in the seventies. In the eighties,
Network Service Providers (NSPs), such as Compuserv,
Genie and America On-line, became popular providing
email and bulletin board services to businesses and
some advanced home users. In the first half of this dec-

ade, internet access became popular, supporting truly
distributed applications, such as the World Wide Web.
In the first decade of the 21st century, massively dis-
tributed systems will appear and become ubiquitous. In
direct contrast to the systems of the fifties through the
early nineties, these systems will be decentralized, low
unit cost and high unit volume. They will be pervasive.
Most will operate outside the normal cognizance of the
people they serve and most will be based on embedded
systems that present non-traditional computing inter-
faces to their users. They will be engineered to operate
as distributed utilities, much like the energy, water,
transportation and media broadcast businesses do today.
Indeed, the first deployment of massively distributed
systems is likely to occur as support structures for these
industries.

Massively distributed systems will not be limited in
scope to the interconnection of and interaction between
embedded systems alone. While large numbers of em-
bedded systems will participate in massively distributed
systems, at least some will interact with traditional
computing equipment. The latter will provide control,
information storage, intensive computation and other
services to massively distributed applications. Embedded
systems will provide specialized point-of-presence serv-
ices.

Several hypothetical examples illustrate the future im-
pact of massively distributed systems. These will arise
as natural extensions to current practice. They will be
used subsequently to illustrate some of the distinguish-
ing characteristics of massively distributed systems,
which are significantly different from those of smaller
scale distributed systems operating today.

2.1. Ubiquitous supply-chain
management

Managing large distribution processes in the face of
increasing governmental regulation, resource scarcity
and system complexity will become increasingly impor-
tant and open up markets for massively distributed sys-
tems. The classic utility businesses, e.g., the electrical,
water, natural gas, and telephone companies, will be
joined by other flow based service industries, e.g.,
transportation conglomerates, oil companies (especially
those which own and operate service stations), large
retail companies, including food, clothing, soft and hard
goods businesses, and the information industries, such
as newspaper, television, entertainment and advertise-
ment concerns to concentrate on improving their mar-
gins by the efficient control of their product flow. Sup-
ply-chain management will spread from manufacturing

to the day-to-day operations of companies close to the
consumer. This will require the development and de-
ployment of massively distributed systems that reach
into the home, office, public pathways, and private in-
stitutions.

While the problems presented by these massively dis-
tributed applications will display certain differences,
there will be a surprising amount of commonality.
Managing flows, whether they consist of information,
paper, dishwashing detergent, gasoline, or other com-
modities, requires sensors at the points where the prod-
uct is consumed, quickly configurable transportation
systems to move those commodities (e.g., trucks,
power switching systems, airplanes, a communications
fabric), and control algorithms and equipment to match
the ingress of raw materials to the egress of the con-
sumed products.

In many distributed systems, such as those concerned
with power, water, natural gas, vehicle fuel, and mass
market goods delivery, embedded processors will meas-
ure resource use and relay consumption information up
the supply-chain. Control systems will utilize this in-
formation to schedule raw material inventory replen-
ishment and organize the management of resource
flows. Embedded systems close to the consumer (e.g.,
in appliances, yard sprinkler systems, home heating
systems) will schedule resource consumption to mini-
mize resource demand spikes, thereby reducing the peak
capacity requirements of delivery systems [1].

An important supply chain that will dramatically influ-
ence how massively distributed systems are imple-
mented is information flow. The resource management
systems mentioned in the previous paragraph are geo-
graphically hierarchical, since they control physical
processes characterized by the movement of mass or
energy. Information flows as easily over large as small
distances, a characteristic that distinguishes it from
these other supply chains. Consequently, information
supply chains will present significantly different prob-
lems to designers and implementers of massively dis-
tributed systems. Embedded systems will play a large
role in information supply chains, as discussed in the
next section.

It will be necessary to use massively distributed sys-
tems to solve this new class of flow control problems,
since the ratio of control points to production facilities
will grow to be several orders of magnitude larger than
it is today. This adjustment will encourage new control
algorithms based not on deterministic concepts, but
rather on statistical notions of correctness. Profits will
be maximized by ensuring a less than 100% accounting
of resource usage and payment, since reaching the last

few percent will impose significant marginal costs that
will exceed the marginal return. Banks already employ
this philosophy in response to ATM fraud. The money
that could be used to make their equipment more secure
earns more interest than the losses they would prevent.
Of course, to ensure an equitable and legally defensible
operation (not to mention keeping stockholders happy),
control algorithms must eliminate systematic fraud
whereby one or a small group of individuals consis-
tently benefit from a system's non-deterministic behav-
ior.

2.2. Agile distributed information
services

Perhaps the most dramatic development of the past 5
years is the growth of information distribution channels
based on the Internet and their rapid penetration into
areas not normally associated with computing. The
World Wide Web, email, and Internet news groups are
prominent examples. This trend will not only continue
it will accelerate. The maturation of multi-media broad-
cast technology running over the Internet, assisted by
extremely high capacity networking infrastructure will
encourage the formation of virtual information commu-
nities. Unlike more traditional groupings, these com-
munities will be ephemeral, lasting anywhere from
weeks or months to periods as short as several hours or
less. Primitive examples of these communities now
exist, e.g., everyone reading the same newspaper and all
those watching the same TV program. However, the
information communities of tomorrow will not be
based on rigidly structured broadcast hierarchies; rather
they will encourage interactions between people who are
members of a community at a particular moment. Mul-
ticast interest groups centered around a wide variety of
subjects will form, much as internet news groups form
today. Small production companies will present a play,
host a debate, cover a sporting event or sponsor an elec-
tronic interactive event, such as a networked game that
millions play simultaneously. The large media con-
glomerates will gradually evolve into distributed infor-
mation and entertainment production companies offering
a wider variety of programming material than they do
now.

Managing such rapidly changing information communi-
ties will require more capable networks than currently
exist. Switching and routing equipment will include
embedded systems to monitor resource use and adjust
allocations to meet fluctuating demand. These systems
will control resources that are traditionally static, such
as device backplane bandwidth, encryption and compres-
sion hardware, and agile error detection/correction hard-

ware. Embedded processors will run transportable code,
such as Java, in order to support active networking [2].

To protect consumers from unwanted intrusions into
their lives, products will be developed to filter the in-
formation flowing to an end-system. These filters will
range from those that allow parents to control the in-
formation available to their children (eliminating offen-
sive material such as pornography) to those that elimi-
nate the probable increase in junk information broadcast
to consumers. Specialized processors implementing
pattern recognition algorithms and embedded in rout-
ing, switching and end systems will provide powerful
and customizable filtering capabilities to achieve these
objectives.

To solve the problem of locating communities that
might interest an individual, services will form offering
electronic real-time catalogues. These will be the suc-
cessors of the WWW index and search engines that exist
currently. Electronic advisory services will inform con-
sumers which communities offer the best value, using a
value metric tailored for the customer's specific objec-
tives. Specialized processors embedded in database and
information repository systems will continuously index
and catalogue information as it arrives.

Needless to say, participation in these communities will
require payment, ranging from that necessary simply to
reimburse common carriers, when the content is free
(e.g., broadcasts of school plays, candidate sponsored
political events, religious events), to payments for ex-
clusive information commodities (e.g., pay-per-view
sporting events, specialized financial broadcasts). Such
payments will require the development and deployment
of an electronic monetary system that utilizes a combi-
nation of digital cash, electronic credit systems (i.e.,
electronic analogues of the credit card, bank line of
credit, and checks), and point of presence payment ter-
minals. Processors embedded in cash cards and other
payment tokens will play an important role in such
systems.

2.3. The new economics

Electronic commerce is now a common feature of many
commercial enterprises. However, most designers and
implementers of electronic commerce systems have
concentrated on the provision of electronic payment.
Other aspects of electronic commerce have received less
attention, in particular, many components that are well
matched to implementation on massively distributed
systems. Commerce involves not only payment for
goods and services, but also their creation, advertise-
ment, delivery, maintenance, and disposal.

The downward spiraling cost of communication is
changing profit models in many businesses. Hard prod-
uct companies will change their businesses to adapt to
the new micro-economic environment. The creation of
hard goods will become increasingly automated. Their
advertisement will become more interactive, consumers
will use third party search and evaluation companies
that recommend products according to a detailed specifi-
cation. Since consumers are rarely expert enough to
create a useful and detailed description of their require-
ments, such companies will develop interactive systems
with friendly customer interfaces that will lead a cus-
tomer in the development of these requirements.

Customers will not travel to a remote location to use
these systems. They will be accessed through commu-
nications facilities terminated in the customer's home or
place of business. Eventually, requirement specifica-
tions will drive the creation of the product at an auto-
mated facility, create a just-in-time delivery plan to
move the product from the manufacturing facility to the
shipping end-point, schedule the resources to conduct
warranted and purchased maintenance on the product, and
arrange for the disposal of old equipment the customer
no longer needs (or that was traded in for new equip-
ment). Companies will optimize costs by coordinating
this with the warehousing and shipment of the pur-
chased equipment as well as with the disposal of the
equipment of other customers.

Embedded systems will play an important role in the
new economics. Once a manufacturing facility receives
a product specification, embedded processors in robotic
equipment will tailor its mechanical assets to create that
product. Embedded processors will sense resource usage
and work with control systems to ensure parts are deliv-
ered when necessary. Embedded systems will monitor
and schedule warehouse and delivery capacity, cooperat-
ing with control systems to move the product to the
customer. Embedded systems in robots will manage the
repair of products returned for maintenance.

3. Design issues

Massively distributed systems are not only quantita-
tively different, but also qualitatively different than the
distributed systems in place today. Their size and scope
introduce new problems in design and implementation.
However, to a certain extent we can use the experience
we have gained building moderately scaled distributed
systems to guide us in solving these problems.

This section presents a taxonomy of design issues for
massively distributed systems. It is based on seminal
work [3] that analyzed the current generation of distrib-

uted systems. This work identified seven major design
issues. Two additional issues are added to the seven pre-
viously identified based on experience subsequent to that
work. The classical design issues are : 1) naming, 2)
error control, 3) resource management, 4) protection
(security and privacy), 5) synchronization, 6) objects
(representation, encoding and translation), and 7) meas-
urement, testing and debugging. The additional design
issues are : 8) heterogeneity, and 9) scale.

Each of these issues is used to show how massively
distributed systems differ significantly from existing
distributed systems. For pedagogical reasons, the issues
are addressed in the following order : scale, heterogene-
ity, objects (representation, encoding and translation),
resource management, protection (security and privacy),
naming, error control, synchronization, and measure-
ment, testing and debugging.

3.1. Scale

The main characteristic of massively distributed systems
is their scale. While current distributed system are com-
posed of hundreds of nodes1, during the first decade of
the 21st century massively distributed systems will be
composed of thousands to billions of nodes, supporting
hundreds to millions of users [4].

The scaling issue for massively distributed systems has
a number of dimensions. In the area of communications
capacity, recent events in the telecommunications indus-
try promise to dramatically change the available world-
wide bandwidth for networking. For example, Project
Oxygen of the CTR Group, Ltd. intends to lay fiber
across the ocean floors resulting in bandwidth of 1.28
terabits/sec on any segment [5]. Current schedules call
for the completion of an Atlantic ring by Q4 2000 and a
Pacific ring by Q2 2001. The pricing schedules pro-
posed by CTR Group will result in transoceanic band-
width offered at 1.5% of current satellite circuit prices
and 1% of marine cable prices.

Power, water, natural gas, vehicle fuel and mass market
supply chains are naturally large scale. Traditional in-
formation supply chains (e.g., radio, television, motion
picture, the printed news media) are broadcast based and
characterized by a small producer-to-consumer ratio.
However, this is undergoing radical change. The growth
of the world wide web has greatly increased the pro-

1 Some may object to this assertion, observing that the current Inter-
net is composed of millions of nodes. However, the term distributed
system here means a cohesive set of computing resources acting
together to achieve a common objective. While the routing infra-
structure of the Internet can be considered to be a massively distrib-
uted application, no other system of this scale exists currently.

ducer-to-consumer ratio in data communications and this
trend will continue. There may even come a time when
the ratio approaches 1. This one factor has the potential
to completely change how information supply chains
are implemented and could be the major driver behind
massively distributed systems.

Geographically, massively distributed applications sup-
porting information supply chains will be global in
extent. A single application running over a massively
distributed system will interconnect users of signifi-
cantly different languages, cultures and views. Commu-
nication costs will be structured so that they scale loga-
rithmically with the number of destinations, thereby
utilizing efficiencies inherent in broadcast and multicast
communications. Individual subscribers will be able
affordably to communicate with one to a hundred other
subscribers. One-to-many communications will be the
norm, as opposed to one-to-one transfers, which are
most common today.

3.2. Heterogeneity

While heterogeneity is an important design issue for
existing distributed systems, its extent in massively
distributed systems will be significantly greater. In par-
ticular:

 • The communications infrastructure will be composed
of channels of very different capacities. Very low
bandwidth channels (e.g., 1200 BPS) will still be in
use in developing nations during the next decade,
while the developed world will support very high
bandwidth channels in the core services (e.g., 1
Tbps). Communications between embedded systems
and their peers or higher-level facilities will occur
over channels of significantly lower bandwidth than
that available in the core of the network. Building
applications that run over bandwidth diverse com-
munication infrastructure will require new ways of
organizing data flows.

 • Similarly, end-systems will possess a wide variety of
presentation techniques, from interactive HDTV to
personal digital assistants and personal phone
equipment. Applications will combine these end-
systems into coherent interactive subsystems. In
fact, it is possible today to create a communications
conferencing system that patches together video-
teleconferencing equipment, multicast capable work-
stations and cellular phones.

 • Participatory communities, formed on demand, will
choose from an array of costing options for their
members. Short-lived communities may elect a pay-

per-use approach, which is suited to their ephemeral
nature. Longer-lived communities may be more in-
clined to charge a subscription fee for their services.
Some communities with external financial backing
may choose to charge no fee, transferring value to
their sponsors through advertising, indirect persua-
sion, or charitable benefit. Each of these costing
models must be supported by the massively distrib-
uted system infrastructure in a way that allows such
diverse activities to exist concurrently.

 • To support cost recovery for distributed applications,
several efforts are underway to build and deploy elec-
tronic monetary systems. Existing applications are
able to use a single funds transfer system, since
many serve a limited customer base. Massively dis-
tributed systems, on the other hand, will be global
in scope and normally serve customers in many
countries who use a large variety of payment sys-
tems. For some, only traditional methods, such as a
credit card or cash payment card will be available;
while others may use different electronic systems,
such as digital cash, digital checks, or digital credit
cards. Embedded systems will play an important
role in the latter class of payment system. Mas-
sively distributed systems must accommodate the
use of all such systems by a single application.
This will necessitate the development of funds trans-
fer transaction clearinghouses that will convert funds
from one system to the other.

 • Distributed systems currently run on equipment man-
aged by different administrations, which desire to
keep its use under their control. Current practice is
to rely on the users of this equipment to properly
employ it according to policies promulgated by
these administrations. However, this approach is
changing as organizational IT budgets become larger
and as Board of Directors, stock holders and other in-
terested parties hold management more strictly ac-
countable for information processing equipment use.
Organizationally imposed constraints on distributed
applications have a deleterious effect on their opera-
tion. A clear example of this is how router based
firewalls not only provide protection against intruder
attacks, but also prevent certain distributed applica-
tions, such as those using UDP, Java applets or
those using the X window system from running
across firewall boundaries. Massively distributed
systems will experience even greater impediments to
their operation, since not only will locally imposed
constraints interfere with their operation, but other
constraints will hinder them, such as national re-
strictions on transborder data flows and encrypted

data as well as the mandated use of certain standards
for communications protocols.

 • Distributed applications are composed of software
components2 that run on various platforms and are
organized into component classes (e.g., file servers,
public key distribution systems, file system clients,
various clients on embedded systems), each of which
performs a different function. Current distributed ap-
plications either assume that all components run the
same version of software, or are structured according
to a simple client/server model that must concur-
rently accommodate different versions on a small
number of system (e.g., two or three). Massively
distributed applications, because of other heterogene-
ity requirements, such as the use of different presen-
tation formats, costing and cost recovery schemes,
naming techniques and administration constraints,
will be constructed of a significantly larger number
of component types. Components of these types in
general will not run the same version of software.
Designing and implementing these applications will
therefore require engineering techniques that allow
them to operate in the face of software versioning
heterogeneity.

 • One of the fundamental mistakes made when building
distributed systems is ignoring legacy applications
and infrastructure. This invariably leads to poor cus-
tomer acceptance of new technology. Customers
cannot simply discard their existing applications
when new infrastructure becomes available. In many
cases these applications and their supporting infra-
structure represent billions of investment dollars and
reimplementing them according to the interfaces
presented by new technology is economically infea-
sible. Massively distributed systems will be no dif-
ferent in this regard. However, existing distributed
systems generally must accommodate stand-alone
legacy systems and applications. Massively distrib-
uted systems, on the other hand, must accommodate
both stand-alone as well as current distributed sys-
tem legacy infrastructure and applications.

 • While most existing distributed applications run on a
number of different computing platforms, they are
generally limited to a small number of common
families, e.g., Unix, Windows, and perhaps MVS.
Massively distributed applications, on the other
hand, will run not only on the legacy platforms, but

2 The term “component” is used here in its general sense. Distrib-
uted system components may or may not be constructed as object-
oriented software components.

also on a wide variety of embedded systems sup-
ported by their own proprietary operating systems
and hardware (e.g., automobile control systems,
PDAs). For example, a massively distributed appli-
cation for remote conferencing may have compo-
nents that run on workstations, on equipment pro-
vided by a manufacturer for the TV cable industry,
on cellular phones, on PCS based personal commu-
nication devices, and so forth. This will increase the
number of different implementations of the software
for a single component type and thereby increase the
effort necessary to ensure the application works cor-
rectly.

3.3. Objects (representation,
encoding and translation)

A variety of efforts are underway to determine the best
programming model for distributed objects (e.g.,
CORBA, Java). Lessons from these investigations will
directly affect how objects are handled in massively dis-
tributed systems. However, there are certain issues aris-
ing from the scale of these systems that will introduce
new constraints on how objects are represented, encoded
and translated.

• Massively distributed system by their nature will re-
quire the creation, movement, modification and de-
struction of massive objects, which conceivably
could contain thousands to millions of other ob-
jects. The size of these objects will affect how they
are represented. For example, it will be infeasible to
incorporate a copy of each contained object within
the massive object. Instead, object references will be
used within massive objects to represent its con-
stituents. These objects will themselves be con-
structed using references to their contained objects,
leading to a hierarchical object anatomy. However,
several well-known problems associated with refer-
encing distributed objects will require attention. For
example, implementers of massively distributed sys-
tems will have to solve the lost object problem,
which occurs when an object is destroyed without
destroying all its references in other objects. Rely-
ing on manual techniques to recover from this error
condition will not be an option, because of its scale.
Similarly, revoking access to an object will be
much more problematic for massively distributed
systems than for existing distributed systems. It
will be infeasible to locate all references to an object
and delete them, even if the underlying object repre-
sentation allows that. While using access lists can
mitigate the problem of revocation, their use in
massively distributed systems will be problematic,

since their size may make this approach unattrac-
tive. This problem is discussed in more detail in
section 3.5.

• Not only will the representation of massively distrib-
uted objects require new techniques, their presenta-
tion to users will also require innovation. Some re-
searchers have examined this problem. A new class
of user interface represents objects as virtual spaces.
This technique is eminently suitable for presenting
massively distributed objects to end users. For ex-
ample, a first level object might be represented as a
virtual world, its constituent objects as countries,
then cities, streets, houses, rooms, and so on, the
exact structure depending on the size of the first
level object and its relationship to its constituents
as well as the relationship of the constituents to
each other. Such presentation paradigms will be re-
quired to make massively distributed objects acces-
sible to the technologically naive user.

• Since massively distributed applications will be global
in scope, their users will belong to multiple cul-
tures and countries. This will increase the necessity
for the internationalization of data. While current
applications can be configured to use different char-
acter sets, depending on choices made when the sys-
tem is installed, massively distributed systems will
have to internationalize data on-the-fly. This is es-
pecially true of embedded systems, which com-
monly will exist in mobile equipment. There will
be no point when a system administrator can select
a particular internationalized presentation set. Users
of massively distributed applications will come and
go during its lifetime, requiring run-time configura-
tion of this data. Perhaps more importantly, there
will not be a single system administrator who con-
trols a massively distributed application. Its control
will be distributed as well. Not only will character
set data require internationalization, the application
will have to internationalize other data such as fi-
nancial, length/mass/time, and timezone. For exam-
ple, an application that presents financial data may
have to convert between dollars, yen and marks, de-
pending on where the end-point system is located
and how it has been configured by the customer.

• The storage of massively distributed objects will re-
quire new techniques. Current object storage sys-
tems assume objects are located on resources con-
trolled by a single administration. The storage of a
single massively distributed object, however, may
use the resources of many storage systems, con-
trolled by different administrations. This will lead to

new problems in object store performance, error
control and correctness. Object implementers will
have to deal with the internal synchronization of ob-
ject constituents, in regards to their creation,
movement, modification and destruction. They also
will have to deal with these issues when designing
and implementing object caches.

• The algorithms used to manipulate massively distrib-
uted objects will utilize techniques that differ from
those commonly used today. They will be replaced
by those that use multi-cast communications in or-
der to avoid object components understanding the
object's global architecture. Voting and distributed
agreement algorithms will become common. Pro-
grammers will create active objects, i.e., those
which include active on-going computing, that blur
the distinction between data and processing. While
some existing distributed systems support active ob-
jects, massively distributed systems will organize
large parallel computations around this concept,
forming these computations by creating a first level
object containing a large number of active objects
residing on geographically disperse and administra-
tively heterogeneous systems.

3.4. Resource management

In order to design and build massively distributed appli-
cations, engineers will have to grapple with new prob-
lems in resource management. Many existing distrib-
uted systems operate according to a local resource con-
trol model. Local processing manages its own
resources, interacting with other threads of control
through message passing or remote procedure
call/method invocation. In massively distributed sys-
tems, objects will be composed of resources located in a
large number of different places. Controlling the re-
sources associated with an object will only be possible
through a distributed global object resource management
mechanism. This will introduce several new issues in
distributed system resource control:

• Routing will become an issue not only at the network
layer of the distributed system, but also at the appli-
cation layer. Composite objects containing active
objects will require routing services so the compos-
ites can interact with each other, especially if ob-
jects are allowed to move. For example, an embed-
ded system such as a mobile PDA will move and
connect to different portals in a network. If upon
connecting, objects are moved from the PDA to
execution environments hosted near the portal, in-
vocation of those object's methods by other objects

will require a routing protocol to identify a path be-
tween them. The interactions between active objects
and passive objects will require routing so active ob-
jects can locate and contact passive object methods.
Congestion control within composite objects will
be an issue. Programmers and object implementers
will organize objects to avoid computational hot
spots, similar to those experienced by massively
parallel algorithms. Due to their scale, object
implementers will require adaptive routing and con-
gestion control within massively distributed objects,
manual configuration will not be an option.

• Resource management in a massively distributed sys-
tem will interact strongly with its heterogeneous na-
ture. Applications will compose resources under the
control of many administrations into a single dis-
tributed resource. Management of the distributed re-
source must accommodate the usage policies of the
separate administrations. For example, cost recovery
for a massively distributed object must accrete and
disseminate sufficient funds to cover the costs of the
composite objects. Since massively distributed ob-
jects may be highly recursive, cost recovery will re-
quire the composition of recursively discovered
composite costs. As objects evolve, their cost re-
covery anatomy will change, forcing object
implementers to dynamically configure the object's
cost recovery algorithm. Since it will be difficult
and expensive to continually track the exact cost
structure of an object at any point in time, cost re-
covery will use statistical algorithms, assessing
charges and dispersing payments so that the owners
of component resources receive their payments, but
avoiding too fine an accounting of usage. Periodic
audits will ensure systematic fraud is minimized.
Operators of massively distributed objects will adopt
a fixed cost model, allowing users of the object to
flexibly utilize its resources without charging for its
components use.

• Object implementers will devise algorithms enforcing
restrictions on object use that are required by restric-
tions on their components. Unlike existing distrib-
uted resource management, these algorithms will
have to be adaptive, since implementers will not
know all possible component resource usage poli-
cies, a priori. Object implementers will be chal-
lenged to understand object behavior, since dynami-
cally changing an object's components, which may
introduce new resource usage restrictions, will make
this difficult.

• Massively distributed systems will contain extremely
large volumes of data and enormous processing
power. Effectively managing these resources will
challenge implementers. Distributed system archi-
tects will merge the two prevalent ways to organize
computations in a distributed system, i.e., move
data to the processing (used by NFS, World Wide
Web, FTP, gopher) and move processing to the data
(used by active networking and Java applets) into a
single scheme. Such objects will be moved within
the distributed system and carry with them both code
and data [6]. If the object consists primarily of data,
it will closely approximate moving data to the proc-
essing. If it consists primarily of code, it will
closely approximate moving processing to the data.
RPC and other procedure-oriented paradigms will be
emulated by including a single high level instruc-
tion in the code section, specifically a procedure
identifier, which will be interpreted at the RPC
server.

• The deployment of massively distributed systems will
encourage the trend towards a new valuation model
for information. Specifically, the independent vari-
able driving value will be how long the information
has existed. Massively distributed systems will in-
crease the difficulty in keeping information private.
Consequently, customers will pay for fresh informa-
tion, which will rapidly decrease in value once it is
produced. For example, stock market ticker data is
now available electronically, making automated trad-
ing programs possible. However, this implies that
most of the value of the ticker data is consumed in a
very short period of time. Its public release without
cost routinely occurs today 15 minutes after its gen-
eration. As massively distributed systems become
common, more and more stock traders will be forced
to use automatic trading programs, which will re-
duce the value of the ticker data even faster. It is
likely that eventually ticker data will be available
without cost within a few minutes of its production.
This paradigm will apply to other data, such as li-
brary searches, financial analyses and market re-
search.

• Upgrading software in a massively distributed system
will pose new problems for software companies. It
will become more difficult to locate all users of a
particular version of software and users will become
less cognizant of the version they are using. This
situation will arise because objects will contain and
use other objects implemented by software not di-
rectly visible to the user. To meet this new chal-
lenge, software companies will move from a pure

product business model to a combination of product
and service model. Indeed, this is already happening.
Many software companies offers a subscription pur-
chase agreement for their products that provides the
customer with one year of upgrades. Engineers will
design their software to periodically query mainte-
nance centers that will upgrade it automatically, if
the software's maintenance contract is still active.
Again, this is current practice. For example, the vi-
rus detection software that is part of the Norton Sys-
tem Tools product for Windows 95/98 periodically
communicates with a maintenance site on the Inter-
net and downloads new virus checking features as
they are released. Customers will be forced to use
maintenance contracts to keep their applications
running. In the future, customers will force software
manufacturers to provide open interfaces to their
software and negotiate maintenance agreements with
secondary companies, much like the hardware busi-
ness does today.

• Massively distributed systems will force a reexamina-
tion of the way communication interfaces work. In
particular, they will have to scale to accommodate a
large number of correspondents. For example, a
simple mass-market purchase application that al-
lows customers to choose between several products
may receive millions of requests in a short period of
time. Current programming interfaces to communi-
cation services are totally inadequate to handle such
a high rate of transactions. Furthermore, individu-
ally acknowledging each of these transactions would
impose a significant processing burden on the sys-
tems running the application. This will encourage
engineers to design communication interfaces and
protocols that are better suited to high rate and vol-
ume transactions.

• Since massively distributed systems will dramatically
increase the amount of traffic handled by a commu-
nications fabric, engineers will investigate how to
efficiently move extremely large volumes of traffic
over the internet. In addition much of this traffic
will belong to one of several different quality of
service classes (e.g., best effort delivery data, stream
data) and so understanding how to accommodate dif-
ferent quality of service parameters in the internet is
a problem with high priority. Fortunately, this
problem is currently receiving significant attention
by the Internet Engineering Task Force and the
IEEE.

• Massively distributed systems will support a volume
of information flow to an end-system beyond that

which a user is capable of manually examining for
interest, usefulness, or suitability. Various filtering
techniques will be developed and used by customers
to ensure their systems only present to them infor-
mation in which they are interested. Additionally,
once these filtration systems are common, applica-
tions will use feedback controls to gather and em-
ploy end-system supplied filtration data to decrease
the amount of information sent to an end-point that
is automatically discarded. Massively distributed
systems will provide tools to applications that al-
low them to support this type of customization for
large numbers of end-point systems.

3.5. Protection (security and
privacy)

Protection of distributed system assets, including base
resources such as processing, storage, communications
and user-interface I/O as well as higher-level composites
of these resources, e.g., processes, files, messages, dis-
play windows and more complex objects is not a
strength of existing distributed systems. While engi-
neers are currently engaged in developing solutions to
the many problems that exist in this area, they are not
addressing protection issues that will arise as massively
distributed systems become prominent. Specifically:

• Massively distributed systems for the most part will
support a large number of end-systems, many of
which will be embedded in other equipment and used
by technologically naive customers. These systems
will require management, which very probably will
occur through the use of systems under the control
of service providers. Since many end-systems will
either generate or contain data that customers con-
sider private, the management technology for mas-
sively distributed systems must guarantee, to a rea-
sonable extent, that unaggregated data is not com-
promised either by individuals operating the
management sub-system or by the service providers
as part of their corporate strategy, e.g., during the
collection of marketing data. To meet this objective,
end-systems must be customer anonymous with re-
spect to the management sub-system. That is, there
must be no tie between the identifiers used to man-
age end-systems and those used for billing, warranty
or other services that require the identification of the
individuals who own or use these end-systems.

• Since one-to-many communications will play a major
role in massively distributed systems, engineers will
have to address the problems of deletion, modifica-
tion, insertion, replay, release of secret state, and

masquerade for this type of communications. Exist-
ing techniques are designed to protect one-to-one
communications against these threats. New proto-
cols and processing algorithms will be required to
provide these services for one-to-many communica-
tions.

• The scale of massively distributed systems will intro-
duce new problems in resource access control for
both end-systems and infrastructure support sys-
tems. Currently, most systems use access control
lists or their approximations (e.g., Unix file access
permission bits). However, massively distributed
systems will support millions of principals, which
would lead to access control lists of unmanageable
size, if implemented as they are currently.
Implementers will require new techniques, such as
access list caching hierarchies, capability systems
that solve the revocation and lost object problems,
and access control techniques that combine the ad-
vantages and characteristics of access control lists
with capability access control and eliminate the dis-
advantages of each. Since massively distributed sys-
tems will be highly heterogeneous and require the
support of legacy distributed systems, engineers will
be forced to grapple with the hazards of composing
systems that use access control lists with those us-
ing capability based access control [7].

• When confronted with the problem of information
protection, existing distributed systems already must
cope with the controls governments have placed on
cryptographic technology. These constraints have
hampered engineers in providing appropriate levels
of security to the users of distributed systems. Mas-
sively distributed systems will generate new prob-
lems in this area. Since communications will occur
between large numbers of end-systems, security
service implementations will be hard pressed to as-
certain which systems are constrained by particular
national laws concerning encryption and what those
limitations might be. As mobile systems become
more prevalent and as they are integrated into mas-
sively distributed systems, enforcement of these
constraints, even if they are known, would require
tracking the position of a mobile system, identify-
ing the constraints imposed by its locality, and
communicating these constraints to all systems in-
teracting with it. For the number of end-systems
that will engage in a massively distributed applica-
tion and for the frequency with which a mobile sys-
tem's position might change (e.g., those used from
or embedded in an automobile, train, boat or air-
plane), this will be technically infeasible. Since en-

forcing these legal constraints will be just as hard as
implementing the technology that satisfies them,
over time the constraints may be relaxed or even
eliminated. However, while they are in force, the
technical problems they raise will be formidable.

• Commercial enterprises will play a large role in mas-
sively distributed applications. Consequently, new
threats will arise as the value of these applications
increases. One concern is the security of internet-
work routing. Massively distributed systems will
introduce new factors into this problem. The infra-
structure required for such systems will necessarily
federate other large networks into a global commu-
nications fabric. However, routing service providers
may wish to limit the traffic that transits their net-
works and subscribers may demand guarantees that
the quality of service advertised by routing service
providers is actually delivered. The former problem
has received a great deal of attention, leading to the
formulation of policy routing techniques. The latter
problem on the other hand, has received less atten-
tion and will require further study.

3.6. Naming

Engineers have devoted considerable attention to the
issue of naming in distributed systems over the last 20
years. Pioneering efforts, such as Grapevine [8], the
Domain Name System (DNS) [9] and NIS [10], devel-
oped the concepts for the next generation of distributed
naming systems, such as X.500 and LDAP accessed
directories. To some extent these second-generation sys-
tems, especially X.500, are designed for large scale dis-
tributed systems. In particular, X.500 supports the stor-
age and retrieval of customer defined data structures, a
hierarchically structured and distributed naming context
mechanism and decentralized authentication services.
The Open Group's Distributed Computing Environment
(DCE) uses either X.500 or DNS to construct a large
scale naming system from its local Cell Directory Sys-
tem [11].

Even though the designers of second generation distrib-
uted naming systems have attempted to accommodate
massively distributed systems in their design, there are a
number of naming issues that transcend these designs
and require attention:

• The volume of data within a massively distributed
naming system will be so large, tens to hundreds of
millions of entries, that customers will not know
where to start when looking for an item. Hierarchi-
cal structures have the advantage of logarithmically

scaling the name space, given a specific choice of
how the data should be organized. They have the
disadvantage of constraining efficient queries to
those whose unknowns are at the bottom of the hi-
erarchy. Since a single massively distributed system
will be used for a wide variety of purposes, multiple
indexes into its naming data will be required. Inde-
pendent services will manage these indexes and each
will need to update their meta-data as the foundation
data changes. This already exists for indexes of web-
page data. However, as anyone who has used inter-
net search engines realizes, the volume of data re-
turned for many queries is too large for efficient use.
Higher-level indexing services will use the services
of lower-level services, leading to a hierarchy of
naming data accessible by customers. This web will
contain data of varying degrees of freshness, which
will require new methods and algorithms to present
a consistent and coherent view to customers.

• As stated previously, a large number of the organiza-
tional structures within a massively distributed sys-
tem will be ephemeral, e.g., information communi-
ties which will unite around a particular event and
then dissolve. However, many who would be candi-
dates to participate in such an event may not be
aware, a priori, that it exists. The scale of a mas-
sively distributed system invalidates traditional ad-
vertising techniques, since the volume and rate of
the advertising information arriving at an end-
system using these approaches would overload it.
Consequently, engineers will devise new pro-
ducer/consumer models of advertising. For example,
one possibility is a hierarchically structured reverse
advertising technique, whereby the customer adver-
tises desirable product attributes to first tier brokers,
which accrete these into reverse advertisements to
higher level brokers. From other leaves in the hier-
archy, product producers advertise their products to
other first-tier brokers, which likewise accrete them
into advertisements to higher level brokers. Some-
where within the hierarchy a rendezvous occurs and
direct advertisements are sent or otherwise made
available to customers. A simple example of this
strategy for advertising and using computing re-
sources has already been prototyped [12]

• Moving objects requires moving names embedded in
the object. This necessitates either retaining the con-
text in which those names are interpreted or translat-
ing them into contexts available at the new object
site. Massively distributed systems makes either
strategy difficult. Retaining contexts will compel an
object to maintain contact with them as it moves

around, which will in turn require meta-naming
services (i.e., to name the naming context). Trans-
lating naming contexts will necessitate the discov-
ery of the relationships between the different con-
texts. Furthermore, object sharing requires the nam-
ing of objects by different entities. Communicating
names for the purpose of sharing requires moving
the associated naming contexts.

• Different cultures may require different naming
schemes, some hierarchical, some local. These must
be coalesced into a usable massively distributed sys-
tem naming scheme. The same object may be
named differently depending on the use of the name
and its characteristics (e.g., native language, avail-
able character set).

3.7 Error Control

To a certain extent the problem of error control in
global networks has not been solved for existing dis-
tributed systems. For example, multicast links fail dur-
ing video teleconferences, ftp sites become unreachable
during a transfer due to firewall, router or link failure,
and end-system failure results in broadcast storms that
cripple local communications. All of these events are
difficult to analyze and correct automatically. They in-
variably require the use of out-of-band channels to no-
tify a responsible technician or system administrator. In
a massively distributed system, however, the identifica-
tion and use of an appropriate out-of-band channel will
be problematic. Furthermore, service providers must
provide error control in ways that conform to other re-
quirements, such as privacy protection, high perform-
ance and scalability. Such constraints lead to the follow-
ing problems:

• Fault isolation and correction in massively distributed
systems will require new infrastructure services to
monitor communications quality and deliver excep-
tion alarms to service providers when quality falls
below a given threshold. Since the number of dis-
tributed applications running in a massively distrib-
uted system will be too large for manual monitoring
to be cost effective, service providers and distributed
system implementers will design, implement and
deploy automatic fault detection and isolation
mechanisms to ensure service remains available dur-
ing various resource outages. This will be especially
important for distributed embedded systems. The
functions of existing network operation centers will
become automated. Network operation centers will
focus on higher level fault isolation and control,

such as rerouting communication services when a
catastrophic event takes down large subsystems.

• Engineers of massively distributed systems will intro-
duce new ways to process a large volume of infor-
mation and number of transactions. As previously
described for costing strategies, statistical algo-
rithms will be used to cope with the decreasing
probability that all necessary fault identification in-
formation is available in a reasonable amount of
time. For example, consider the problem of auto-
mating the collection of payments for a video serv-
ice. Errors in transmission, bugs in software, unre-
sponsiveness of end-system equipment due to mal-
function and operator error will lead to a certain
amount of imprecision in the accounting and collec-
tion processes. An automated billing and collection
application will record all funds received, match
them with outstanding balances on accounts and at-
tempt to resolve the amount received with the over-
all outstanding balance. A discrepancy below a cer-
tain threshold will be charged to the cost of doing
business. Auditing processes will attempt to ensure
that these discrepancies are not systematically occur-
ring as the result of fraud. Such techniques will also
be used for automated opinion polling, physical re-
source flow monitoring (e.g., power, water), and
distributed system infrastructure maintenance.

• Massively distributed systems will require the use of
highly available subsystems, including a redundant
communications fabric provided by multiple service
providers, fault-tolerant distributed processing for
control and accounting, and high availability end-
systems for content providers, which will be the
next logical step beyond the high availability file
systems currently deployed. Fault-isolation will
have to operate in the face of privacy services, such
as encryption, that are virtually non-existent today,
but that will become prominent in the next decade.
Service providers will have to respond to subscriber
problem reports, even when the ultimate source and
destination of traffic causing the problem is un-
known. They will gravitate toward a scaled cost
structure for various grades of service, from high
grade indemnified service ("you lose service, we lose
revenue"), to lower grades of best effort service.

• Detection of inconsistent state will be difficult in
massively distributed systems, since the distributed
state will not be available for centralized processing.
Consequently, algorithms for communications and
processing will be developed that are tolerant of in-
consistencies. They will use redundancy not only

within communication protocols, but also within
objects so their state driven algorithms are fault tol-
erant. To achieve this objective, there will be an in-
creased use of voting protocols and algorithms.

• It will be impossible to keep track of all the identifiers
or other processing state associated with an object.
Massively distributed systems must be designed to
work in the face of lost objects, which will be the
rule rather than the exception. Loss of identifiers
will also increase the incidence of orphaned objects,
which will increasingly require the use of global ob-
ject garbage collection.

• One-to-many communications on a large scale will
encourage the development of forward error correc-
tion techniques, which will replace feedback error
control in many cases. Feedback error control re-
quires the retention of a large amount of state and a
high level of processing when applied to one-to-
many communications. Idempotent operations will
become the paradigm of choice when one-to-many
communications support remote procedure or object
method calls.

• Error control will move more and more into the appli-
cation layer as the error characteristics of lower lay-
ers become heterogeneous (especially for one-to-
many communications) and as applications are
widely distributed. [13]. To manage application error
control, management systems will expand their con-
cerns from the network layer and below to all layers
of the protocol hierarchy. This will lead to the stan-
dardization of management protocols and interfaces.

3.8 Synchronization

One of the most difficult problems that engineers of
massively distributed systems will encounter is syn-
chronizing computations consisting of thousands to
millions of components. Current methods of synchroni-
zation, such as semaphores, monitors, barriers, remote
procedure call, object method invocation, and message
passing, do not scale well. Generally, they are suitable
either for synchronizing closely coupled computations
(e.g., semaphores, monitors and barriers), or for unicast
distributed applications (e.g., remote procedure calls,
object method invocations and message passing). Engi-
neers have not yet devised efficient synchronization
techniques for group computations, when groups con-
tain thousands to millions of active elements. Specific
problems in the area of synchronization include:

• Caching will become pervasive to accommodate per-
formance, error control and resource management
objectives. Keeping all cached copies synchronized
will require new cache coherency algorithms, since
simple write-back or write-through schemes do not
scale properly. This will lead to synchronization
marker algorithms where an authoritative copy of
information is broadcast periodically to resync
cached state. Resolution of differences will occur as
a result of this synchronization activity. However,
there will be many locations where portions of a
large database are authoritative and redundancy in the
data will accommodate failures.

• The scale of massively distributed applications will
encourage engineers to use asynchronous comput-
ing, mimicking the way live organisms function.
This will be a revolution in the way computations
are designed, implemented and operated. It will no
longer be possible to assume or reason that the state
of some distributed application equals a given value
at any point in time. Instead, engineers will design
distributed application algorithms so that an invari-
ant is always true with high probability.

• The use of pre-agreement algorithms based on roughly
synchronized clocks will emerge as a major syn-
chronization technique for massively distributed ap-
plications [14]. The accuracy and drift of local
clocks will become a major engineering problem.
Separate synchronization systems (e.g., the NIST
time standard broadcast over WWV) will be used to
decouple clock synchronization from resource deple-
tion problems and other errors of massively distrib-
uted applications. The use of geographically distant
physical clocks on high-precision real-time applica-
tions will require the transmission of both clock and
location in a synchronization schedule to accommo-
date relativistic effects.

• It will be virtually impossible for thousands of com-
ponents to synchronize using communications when
it is not possible to use an external synchronizing
signal. If synchronized clocks are not achievable, for
example, because some components do not have
real-time clocks (e.g., simple embedded systems),
barrier synchronization implemented as a hierarchi-
cal tree will be necessary. Because of the attendant
performance degradation associated with barrier syn-
chronization, it will only be employed at major
synchronization points separated by long intervals
of time.

• To accommodate the improbability of a component
knowing all other components with which it should
synchronize, multicast communications will be-
come a major synchronization technique. Thus, a
component might multicast a message that an-
nounces the occurrence of an event to a multicast
group without knowing exactly which other com-
ponents belong to that group. Use of this technique
will rely on the designer making a trade-off between
synchronization and resource consumption.

• Synchronization and fault tolerance will interact
strongly. Synchronization mechanisms will be re-
quired to operate in the face of a certain level of
component and communications failure. However,
synchronization algorithms will be designed to
move the distributed application towards a well-
defined goal even when failures occur. Thus, mas-
sively distributed applications will make significant
use of probabilistic algorithms that complete with a
probability less than unity in a given length of
time, but that ensure this probability always mono-
tonically increases in time.

3.9 Measurement, testing and
debugging

The implementation of massively distributed applica-
tions requires measurement, testing and debugging to
ensure applications behave correctly and perform well.
These services are also required to correct implementa-
tions when they fail to meet either of these criteria. The
scale of massively distributed systems makes the execu-
tion of these tasks difficult. In particular:

• Gathering the necessary measurement data to determine
whether massively distributed applications are per-
forming properly will be problematic. Directing this
data to a single destination will almost certainly in-
terfere with the phenomena being measured. Conse-
quently, measurement will occur through an auxil-
iary distributed application, running in tandem with
the target application. The measurement application
will itself be massively distributed, requiring its
own control infrastructure as well as new monitor-
ing techniques that allow it to maintain contact with
the measured application even when parts of it are
created, destroyed and moved.

• Testing massively distributed applications will require
new techniques to ensure the application scales.
Current approaches used by testing engineers, which
concentrate on determining whether the application
works properly on a single machine will be inade-

quate for massively distributed applications While
there is current work to develop harnesses to test
client/server based applications, the introduction of a
third support process into the test harnessthat sup-
ports client/server interactions (e.g., a database con-
taining public key certificates) is rare. Due to the
expense of developing a dedicated test harness for
massively distributed applications, engineers will be
forced to test applications during large scale beta de-
ployment. This is in fact becoming the norm for
much mass market software.

• It may not be possible to debug a massively distrib-
uted application under full load, so engineers will be
forced to make trade-offs between debugging and
real-time fault isolation with correction. Traditional
debugging techniques, such as breakpointing, do not
scale. Therefore, trace-driven analytical techniques
will predominate when debugging massively dis-
tributed applications. Since test harnesses of the
requisite massive scale will be economically infea-
sible, engineers will be forced to use execution
traces of live application runs. Such execution traces
may produce a very large volume of data, so test en-
gineers will have to develop agile filtering, coalesc-
ing and viewing tools.

4. Summary

The nature of this paper is exploratory and most asser-
tions are presented without detailed justification. Tech-
nology forecasting is always risky and, in hindsight,
rarely completely accurate. However, I hope the analysis
at least stimulated the reader to think about massively
distributed systems, how their characteristics will influ-
ence embedded system design and implementation, and
how they may change the way we do computing in the
future. Even if there is disagreement about its content,
it has succeeded if it motivates readers to develop an
alternative taxonomy of the design issues and challenges
associated with massively distributed systems.

5. References

[1] Gustavsson, R., "Agents with power," Communica-
tions of the ACM, Vol 42, No. 3, March, 1999, pp.
41-47.

[2] Tennenhouse, D.L., Smith, J.M., Sincoskie, W.D.,
Wetherall, D.J., and Minden. G.L, "A survey of active
network research," IEEE Communications Magazine,
pages 80-86, January 1997.

[3] Watson, R. W., "Distributed system architecture
model," in Distributed Systems, Architecture and Im-
plementation, Springer-Verlag, Berlin, NY, 1981.

[4] Takada, H. and Sakamura, K., "Compact, low-cost,
but real-time distributed computing for computer aug-
mented environments," Proc. 5th IEEE Comp. Soc.
Workshop on Future Trends of Dist. Comp. Sys.,
Cheju Island, Korea, Aug., 1995, pp. 56-63.

[5] Lange, L., "The Internet," IEEE Spectrum, January,
1999, pp. 35-40. (see also www.oxygen.org).

[6] Sadok, D. H., Kelner, J., and Silva, R.A., "A dis-
tributed programming platform using mobile agents,"
3rd Inter. Symp. On Autonomous Decentralized Sys.,
April, 1997, pp. 103-110.

[7] Nessett, D.M., "Factors affecting distributed system
security," IEEE Trans. Soft. Eng., vol. SE- 13, pp.
223-248, 1987.

[8] Birrell, A.D., Levin, R., Needham, R.M.., and
Schroeder, M.D., "Grapevine: an exercise in distributed
computing," Communications of the ACM, April,
1982, 260-274.

[9] Mockapetris, P.V., Dunlap, K.J., "Development of
the domain name system," Proc. of SIGCOMM '88,
ACM, August 16-19, 1988, pp.123-133.

[10] Weiss, P., “Yellow pages protocol specification,”
Technical Report, Sun Microsystems, Inc., Mountain
View, CA., 1985.

[11] Dilley, J., “Practical experiences with the OSF cell
directory service,” Networked Systems Architecture,
Hewlett-Packard, International Workshop OSF DCE,
Karlsruhe, Germany, Oct., 1993

[12] Cappello, P., Christiansen, B., Neary, M., and
Schauser, K., "Market-based massively parallel internet
compuing," Proc. 3rd Working Conference on Mas-
sively Parallel Programming Models, London, England,
Nov., 1997, IEEE Computer Society, pp. 118-129.

[13] Saltzer, J., Reed, D., and Clark, D., “End-to-end
arguments in system design,” ACM Transactions on
Computer Systems 2(4), Nov., 1984, pp. 277-288.

[14] Kopetz, H., "The time-triggered architecture," Proc.
1st IEEE International Symposium on Object-oriented
Real-time Distributed Computing, Kyoto, Japan, April,
1998, pp. 22-29.

