
THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

Proceedings of the Embedded Systems Workshop
Cambridge, Massachusetts, USA, March 29–31, 1999

Challenges in Embedded Database
System Administration

Margo I. Seltzer
Harvard University

Michael A. Olson
Sleepycat Software

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org

Challenges in Embedded Database System Administration

Margo I. Seltzer, Harvard University
Michael A. Olson, Sleepycat Software

Database configuration and maintenance have histori-
cally been complex tasks, often requiring expert knowl-
edge of database design and application behavior. In an
embedded environment, it is not possible to require such
expertise or to perform ongoing database maintenance.
This paper discusses the database administration chal-
lenges posed by embedded systems and describes how
Sleepycat Software’s Berkeley DB architecture
addresses these challenges.

1 Introduction

Embedded systems provide a combination of opportuni-
ties and challenges in application and system configura-
tion and management. As an embedded system is most
often dedicated to a single application or small set of
cooperating tasks, the operating conditions of the sys-
tem are typically better understood than those of gen-
eral-purpose computing environments. Similarly, as
embedded systems are dedicated to a small set of tasks,
one expects that the software to manage them would be
small and simple. On the other hand, once an embedded
system is deployed, it must continue to function without
interruption and without administrator intervention.

Database administration has two components,
initial configuration and ongoing maintenance. Initial
configuration includes database design, manifestation,
and tuning. The instantiation of the design includes
decomposing the data into tables, relations, or objects
and designating proper indices and their
implementations (e.g., B-trees, hash tables, etc.). Tuning
the design requires selecting a location for the log and
data files, selecting appropriate database page sizes,
specifying the size of in-memory caches, and
determining the practical limits of multi-threading and
concurrency. As we expect that an embedded system is
created by experienced and knowledgeable engineers,
requiring expertise during the initial system
configuration process is acceptable, and we focus our
efforts on the ongoing maintenance of the system. In
this way, our emphasis differs from other projects that
focus on automating database design, such as
Microsoft’s AutoAdmin project [3]and the “no-knobs”
administration that is identified as an area of important
future research by the Asilomar authors [1].

In this paper, we focus on what the authors of the
Asilomar report call “gizmo” databases [1], databases
that reside in devices such as smart cards, toasters, or
telephones. The key characteristics of these databases
are that their functionality must be completely
transparent to users, no explicit database operations or
database maintenance is ever performed, the database
may crash at any time and must recover instantly, the
device may undergo a hard reset at any time (requiring
that the database return to its initial state), and the
semantic integrity of the database must be maintained at
all times. In Section 2, we provide more detail on the
sorts of tasks typically performed by database
administrators (DBAs) that must be automated in an
embedded system.

The rest of this paper is structured as follows. In
Section 2, we outline the requirements for embedded
database support. In Section 3, we discuss how Berkeley
DB is conducive to the hands-off management required
in embedded systems. In Section 4, we discuss novel
features that enhance Berkeley DB’s suitability for the
embedded applications. In Section 5, we discuss issues
of footprint size. In Section 6, we discuss related work,
and we conclude in Section 7.

2 Embedded Database Requirements

Historically, much of the commercial database industry
has been driven by the requirements of high perfor-
mance online transaction processing (OLTP), complex
query processing, and the industry standard benchmarks
that have emerged (e.g., TPC-C [9], TPC-D [10]) to
allow for system comparisons. As embedded systems
typically perform fairly simple queries and only rarely
require high, sustained transaction rates, such metrics
are not nearly as relevant for embedded database sys-
tems as are ease of maintenance, robustness, and a small
memory and disk footprint. Because of continuously
falling hardware prices, robustness and ease of mainte-
nance are the key issues of these three requirements.
Fortunately, robustness and ease of maintenance are side
effects of simplicity and good design. These, in turn,
lead to a small size, contributing to the third requirement
of an embedded database system.

2.1 The User Perspective

Users must be able to trust the data stored in their
devices and must not need to manually perform any
database or system administration in order for their
gizmo to perform correctly.

In the embedded database arena, it is the ongoing
maintenance tasks that must be automated, not the initial
system configuration. There are five tasks traditionally
performed by DBAs, which must be performed
automatically in embedded database systems. These
tasks are log archival and reclamation, backup, data
compaction/reorganization, automatic and rapid
recovery, and reinitialization from an initial state.

Log archival and backup are tightly coupled.
Database backups are part of any recoverable database
installation, and log archival is analogous to incremental
backup. It is not clear what the implications of backup
and archival are for an embedded system. Consumers do
not back up their telephones or refrigerators, yet they do
(or should) back up their personal computers or personal
digital assistants. For the remainder of this paper, we
assume that some form of backups are required for
gizmo databases (consider manually re-programming a
telephone that includes functionality to compare and
select long-distance services based on the caller’s
calling pattern and connection times). Furthermore,
these backups must be completely transparent and must
not interrupt service, as users should not be aware that
their gizmos are being backed up, will not remember to
initiate the backups explicitly, and are unwilling to wait
for service.

Data compaction or reorganization has traditionally
required periodic dumping and restoration of database
tables and the recreation of indices in order to bound
lookup times and minimize database growth. In an
embedded system, compaction and reorganization must
happen automatically.

Recovery issues are similar in embedded and
traditional environments with two significant
exceptions. While a few seconds or even a minute of
recovery is acceptable for a large server installation,
consumers are unwilling to wait for an appliance to
reboot. As with archival, recovery must be nearly
instantaneous in an embedded product. Additionally, it
is often the case that a system will be completely
reinitialized, rather than performing any type of
recovery, especially in systems that do not incorporate
non-volatile memory. In this case, the embedded
database must be restored to its initial state and must not
leak any resources. This is not typically an issue for
large, traditional database servers.

2.2 The Developer Perspective

In addition to the maintenance-free operation required
of embedded database systems, there are a number of
requirements based on the constrained resources typi-
cally available to the “gizmos” using gizmo databases.
These requirements are a small disk and memory foot-
print, short code-path, programmatic interface (for tight
application coupling and to avoid the time and size over-
head of interfaces such as SQL and ODBC), support for
entirely memory-resident operation (e.g., systems where
file systems are unavailable), application configurability
and flexibility, and support for multi-threading.

A small footprint and short code-path are self-
explanatory; however, what is not as obvious is that the
programmatic interface requirement is their logical
result. Traditional interfaces, such as ODBC and SQL,
add a significant size overhead and frequently add
multiple context/thread switches per operation, not to
mention several IPC calls. An embedded product is
unlikely to require the complex and powerful query
processing that SQL enables. Instead, in the embedded
space, the ability for an application to obtain quickly its
specific data is more important than a general query
interface.

As some systems do not provide storage other than
memory, it is essential that an embedded database work
seamlessly in memory-only environments. Similarly,
many embedded operating systems have a single
address space architecture, so a fast, multi-threaded
database architecture is essential for applications
requiring concurrency.

In general, embedded applications run on gizmos
whose native operating system support varies
tremendously. For example, the embedded OS may or
may not support user-level processes or multi-threading.
Even if it does, a particular embedded application may
or may not need it, e.g., not all applications need more
than one thread of control. An embedded database must
provide mechanisms to developers without deciding
policy. For example, the threading model in an
application is a matter of policy, and depends not on the
database software, but on the hardware, operating
system and library interfaces, and the application’s
requirements. Therefore, the data manager must provide
for the use of multi-threading, but not require it, and
must not itself determine what a thread of control looks
like.

3 Berkeley DB: A Database for Embedded
Systems

The current Berkeley DB package, as distributed by
Sleepycat Software, is a descendant of the hash and B-
tree access methods that were distributed with the 4BSD
releases from the University of California, Berkeley.
The original software (usually referred to as DB 1.85),
was originally intended as a public domain replacement
for thedbm andndbm libraries that were proprietary to
AT&T. Instead, it rapidly became widely used as a fast,
efficient, and easy-to-use data store. It was incorporated
into a number of Open Source packages including Perl,
Sendmail, Kerberos, and the GNU standard C library.
Versions 2.0 and later were distributed by Sleepycat
Software (although they remain Open Source software)
and added functionality for concurrency, logging, trans-
actions, and recovery.

Berkeley DB is the result of implementing database
functionality using the UNIX tool-based philosophy.
Each piece of base functionality is implemented as an
independent module, which means that the subsystems
can be used outside the context of Berkeley DB. For
example, the locking subsystem can be used to
implement general-purpose locking for a non-DB
application and the shared memory buffer pool can be
used for any application performing page-based file
caching in main memory. This modular design allows
application designers to select only the functionality
necessary for their application, minimizing memory
footprint and maximizing performance. This directly
addresses the small footprint and short code-path
criteria mentioned in the previous section.

As Berkeley DB grew out of a replacement for
dbm, its primary implementation language has always
been C and its interface has been programmatic. The C
interface is the native interface, unlike many database
systems where the programmatic API is a layer on top
of an already-costly query interface (e.g. embedded
SQL). Berkeley DB’s heritage is also apparent in its data
model; it has none. The database stores unstructured
key/data pairs, specified as variable length byte strings.
This leaves schema design and representation issues the
responsibility of the application, which is ideal for an
embedded environment. Applications retain full control
over specification of their data types, representation,
index values, and index relationships. In other words,
Berkeley DB provides a robust, high-performance,
keyed storage system, not a particular database
management system. We have designed for simplicity
and performance, trading off the complex, general
purpose support found in historic data management
systems. While that support is powerful and useful in

many applications, the overhead imposed (regardless of
its usefulness to any single application), is unacceptable
in embedded applications.

Another element of Berkeley DB’s programmatic
interface is its customizability. Applications can specify
Btree comparison and prefix compression functions,
hash functions, error routines, and recovery models.
This means that an embedded application is able to
tailor the underlying database to best suit its data
demands and programming model. Similarly, the
utilities traditionally bundled with a database manager
(e.g., recovery, dump/restore, archive) are implemented
as tiny wrapper programs around library routines. This
means that it is not necessary to run separate
applications for the utilities. Instead, independent
threads can act as utility daemons, or regular query
threads can perform utility functions. Many of the
current products built on Berkeley DB are bundled as a
single large server with independent threads that
perform functions such as checkpoint, deadlock
detection, and performance monitoring.

As described earlier, living in an embedded
environment requires flexible management of storage.
Berkeley DB does not require any preallocation of disk
space for log or data files. While typical commercial
database systems take complete control of a raw disk
device, Berkeley DB cooperates with the native
system’s file system, and can therefore safely and easily
share the file system with other applications. All
databases and log files are native files of the host
environment, so whatever standard utilities are provided
by the environment (e.g., UNIXcp) can be used to
manage database files as well.

Berkeley DB provides three different memory
models for its management of shared information.
Applications can use the IEEE Std 1003.1b-1993
(POSIX) mmap interface to share data, they can use
system shared memory, as frequently provided by the
shmget family of interfaces, or they can use per-
process heap memory (e.g.,malloc). Applications that
require no permanent storage on systems that do not
provide shared memory facilities can still use Berkeley
DB by requesting strictly private memory and
specifying that all databases be memory-resident. This
provides pure-memory operation.

Finally, Berkeley DB is designed for rapid start-up,
e.g., recovery happens automatically as part of system
initialization. This means that Berkeley DB works
correctly in environments where gizmos are shut down
without warning and restarted.

4 Extensions for Embedded Environments

All the features described in the previous section are
useful both in conventional systems as well as in embed-
ded environments. In this section, we discuss a number
of features and “automatic knobs” that are specifically
geared toward the more constrained environments found
in gizmo databases.

4.1 Automatic compression

Following the programmatic interface design philoso-
phy, we support application-specific (or default) com-
pression routines. These can be geared toward the
particular data types present in the application’s dataset,
thus providing better compression than a general-pur-
pose routine. Applications can specify encryption func-
tions as well, and create encrypted databases instead of
compressed ones. Alternately, the application might
specify a function that performs both compression and
encryption.

As applications are also permitted to specify
comparison and hash functions, an application can
chose to organize its data based either on uncompressed
and clear-text data or compressed and encrypted data. If
the application indicates that data should be compared
in its processed form (i.e., compressed and encrypted),
then the compression and encryption are performed on
individual data items and the in-memory representation
retains these characteristics. However, if the application
indicates that data should be compared in its original
form, then entire pages are transformed upon being read
into or written out of the main memory buffer cache.
These two alternatives provide the flexibility to choose
the correct relationship between CPU cycles, memory
and disk space and security.

4.2 In-memory logging & transactions

One of the four key properties of transaction systems is
durability. This means that transaction systems are
designed for permanent storage (most commonly disk).
However, as described above, embedded systems do not
necessarily contain any such storage. Nevertheless,
transactions can be useful in this environment to pre-
serve the semantic integrity of the underlying storage.
Berkeley DB optionally provides logging functionality
and transaction support regardless of whether the data-
base and logs are on disk or in memory.

4.3 Remote Logs

While we do not expect users to backup their television
sets and toasters, it is certainly reasonable that a set-top
box provided by a cable carrier will need to be backed

up by the cable carrier. The ability to store logs remotely
can provide “information appliance” functionality, and
can also be used in conjunction with local logs to
enhance reliability. Furthermore, remote logs provide
for true catastrophic recovery, e.g., loss of the gizmo,
destruction of the gizmo, etc.

4.4 Application References to Database
Buffers

In typical database systems, data must be copied from
the data manager’s buffer cache (or data pages) into the
application’s memory when it is returned to the applica-
tion. However, in an embedded environment, the robust-
ness of the total software package is of paramount
importance, and maintaining an artificial isolation
between the application and the data manager offers lit-
tle advantage. As a result, it is possible for the data man-
ager to avoid copies by giving applications direct
references to data items in the shared memory cache.
This is a significant performance optimization that can
be allowed when the application and data manager are
tightly integrated.

4.5 Recoverable database creation/deletion

In a conventional database management system, the cre-
ation of database tables (relations) and indices are
heavyweight operations that are not recoverable. This is
not acceptable in a complex embedded environment
where instantaneous recovery and robust operation in
the face of all types of database operations are essential.
Berkeley DB provides transaction-protected file system
utilities that allow us to recover both database creation
and deletion.

4.6 Adaptive concurrency control

The Berkeley DB package uses page-level locking by
default. This trades off fine-grained concurrency control
for simplicity during recovery. (Finer-grained concur-
rency control can be obtained by reducing the page size
in the database or the maximum number of items per-
mitted on each page.) However, when multiple threads
of control perform page-locking in the presence of writ-
ing operations, there is the potential for deadlock. As
some environments do not need or desire the overhead
of logging and transactions, it is important to provide
the ability for concurrent access without the potential
for deadlock.

Berkeley DB provides an option to perform coarser
grained, deadlock-free locking. Rather than locking on
pages, locking is performed at the interface to the
database. Multiple readers or a single writer are allowed

to be active in the database at any instant in time, with
conflicting requests queued automatically. The presence
of cursors, through which applications can both read and
write data, complicates this design. If a cursor is
currently being used for reading, but will later be used to
write, the system will be deadlock-prone unless special
precautions are taken. To handle this situation, the
application must specify any future intention to write
when a cursor is created. If there is an intention to write,
the cursor is granted an intention-to-write lock, which
does not conflict with readers, but does conflict with
other intention-to-write and write locks. The end result
is that the application is limited to a single potentially
writing cursor accessing the database at any point in
time.

Under periods of low contention (but potentially
high throughput), the normal page-level locking
provides the best overall throughput. However, as
contention rises, so does the potential for deadlock. At
some cross-over point, switching to the less concurrent,
but deadlock-free locking protocol will ultimately result
in higher throughput as operations must never be retried.
Given the operating conditions of an embedded database
manager, it is useful to make this change automatically
as the system detects high contention in the
application’s data access patterns.

4.7 Adaptive synchronization

In addition to the logical locks that protect the integrity
of the database pages, Berkeley DB must synchronize
access to shared memory data structures, such as the
lock table, in-memory buffer pool, and in-memory log
buffer. Each independent module uses a single mutex to
protect its shared data structures, under the assumption
that operations that require the mutex are very short and
the potential for conflict is low. Unfortunately, in highly
concurrent environments with multiple processors
present, this assumption is not always true. When this
assumption becomes invalid (that is, we observe signifi-
cant contention for the subsystem mutexes), Berkeley
DB can switch over to a finer-grained concurrency
model for the mutexes. Once again, there is a perfor-
mance trade-off. Fine-grained mutexes impose a penalty
of approximately 25% (due to the increased number of
mutex acquisitions and releases for each operation), but
allow for higher overall throughput. Using fine-grained
mutexes under low contention would cause a decrease in
performance, so it is important to monitor the system
carefully, so that the change happens only when it will
increase system throughput without jeopardizing
latency.

4.8 Source code availability

Finally, full source code is provided for Berkeley DB.
This is an absolute requirement for debugging embed-
ded applications. As the library and the application
share an address space, an error in the application can
easily manifest itself as an error in the data manager.
Without complete source code for the library, debugging
easy problems can be difficult, and debugging difficult
problems can be impossible.

5 Footprint of an Embedded System

Embedded database systems compete on disk and mem-
ory footprint as well as the traditional metrics of fea-
tures, price and performance. In this section of the
paper, we focus on footprint.

Oracle reports that Oracle Lite 3.0 requires 350 KB
to 750 KB of memory and approximately 2.5 MB of
hard disk space [7]. This includes drivers for interfaces
such as ODBC and JDBC. In contrast, Berkeley DB
ranges in size from 75 KB to under 200 KB, foregoing
heavyweight interfaces such as ODBC and JDBC. At
the low end, applications requiring a simple single-user
access method can choose from either extended linear
hashing, B+ trees, or record-number based retrieval and
pay only the 75 KB space requirement. Applications
requiring all three access methods will observe the 110
KB footprint. At the high end, a fully recoverable, high-
performance system occupies less than a quarter
megabyte of memory. This is a system you can easily
incorporate in a toaster oven. Table 1 shows the per-
module breakdown of the Berkeley DB library. (Note,
however, that this does not include memory used to
cache database pages.)

6 Related Work

Every three to five years, leading researchers in the data-
base community convene to identify future directions in
database research. They produce a report of this meet-
ing, named for the year and location of the meeting. The
most recent of these reports, the 1998 Asilomar report,
identifies the embedded database market as one of the
high growth areas in database research [1]. Not surpris-
ingly, market analysts identify the embedded database
market as a high-growth area in the commercial sector
as well [5].

The Asilomar report identifies a new class of
database applications, which they term “gizmo”
databases, small databases embedded in tiny mobile
appliances, e.g., smart-cards, telephones, personal
digital assistants. Such databases must be self-
managing, secure and reliable. They will require plug

and play data management with no database
administrator (DBA), no human configurable
parameters, and the ability to adapt to changing
conditions. More specifically, the Asilomar authors
claim that the goal is self-tuning, including defining the
physical and logical database designs, generating
reports, and executing utilities [1]. To date, few
researchers have accepted this challenge, and there is a
dearth of research literature on the subject.

Our approach to embedded database administration
is fundamentally different from that described by the
Asilomar authors. We adopt their terminology, but view
the challenge in supporting gizmo databases to be that
of self-sustenanceafter initial deployment. We find it,
not only acceptable, but desirable to expect application
developers to control initial database design and
configuration. To the best of our knowledge, none of the
published work in this area addresses this approach.

As the research community has not provided
guidance in this arena, most work in embedded database
administration has been done by the commercial
vendors. These vendors can be partitioned into two
groups: companies selling databases specifically
designed for embedding or programmatic access and the
major database vendors (e.g., Oracle, Informix, Sybase).
The embedded vendors all acknowledge the need for
automatic administration, but normally fail to identify
precisely how their products accomplish this. A notable
exception is Interbase, whose white paper comparison
with Sybase and Microsoft’s SQL servers explicitly

addresses features of maintenance ease. Interbase states
that as they use no log files, there is no need for log rec-
lamation, checkpoint tuning, or other tasks normally
associated with log management. However, Interbase
uses Transaction Information Pages, and it is unclear
how these are reused or reclaimed [6]. Additionally,
with a log-free system, they must use a FORCE policy
(flushing all modified pages to disk at commit), as
defined by Haerder and Reuter [4]. This has serious per-
formance consequences for disk-based systems. Berke-
ley DB does use logs and therefore requires log
reclamation, but provides interfaces such that applica-
tions may reclaim logs safely and programmatically.
While Berkeley DB requires checkpoints, the goal of
tuning the checkpoint interval is to bound recovery time.
The checkpoint interval can be expressed as an amount
of log data written. The application designer sets a target
recovery time, and selects the amount of log data that
can be read in that interval and specifies the checkpoint
interval appropriately. Even as load changes, the time to
recover does not.

The backup approaches taken by Interbase and
Berkeley DB are similar in that they both allow online
backup, but rather different in their effect on
transactions running during backup. As Interbase
performs backups as transactions [6], concurrent queries
potentially suffer long delays. Berkeley DB uses native
operating system utilities and recovery for backups, so
there is no interference with concurrent activity, other
than potential contention on disk arms.

There are a number of other vendors selling
products into the embedded market (e.g., Raima,
Centura, Pervasive, Faircom), but none of these
highlight the special requirements of embedded
database applications. On the other end of the spectrum,
the major vendors (e.g., Oracle, Sybase, Microsoft), are
all clearly aware of the importance of the embedded
market. As discussed earlier, Oracle has announced its
Oracle Lite server for embedded use. Sybase has
announced its UltraLite platform for “application-
optimized, high-performance, SQL database engine for
professional application developers building solutions
for mobile and embedded platforms” [8]. We believe
that SQL is fundamentally incompatible with the gizmo
database environment and the truly embedded systems
for which Berkeley DB is most suitable. Microsoft
research is taking a different approach, developing
technology to assist in automating initial database
design and index specification [2][3]. As described
earlier, such configuration is, not only acceptable in the
embedded market, but desirable so that application
designers can tune their entire applications for the target
environment.

Subsystem
Object Size (in bytes)

Text Data Bss
Btree-specific routines 28812 0 0

Recno-specific routines 7211 0 0

Hash-specific routines 23742 0 0

Memory Pool 14535 0 0

Access method common
code

23252 0 0

OS compatibility 4980 52 0

Support utilities 6165 0 0

Full Btree 77744 52 0

Full Recno 84955 52 0

Full Hash 72674 52 0

All Access Methods 108697 52 0

Locking 12533 0 0

Recovery 26948 8 4

Logging 37367 0 0

Full Package 185545 60 4

Table 1. Berkeley DB memory footprint.

7 Conclusions

The coming wave of embedded systems poses a new set
of challenges for data management. The traditional
server-based, large footprint systems designed for high
performance on big iron are not the correct technical
answer for this environment. Instead, application devel-
opers need small, fast, versatile data management tools
that can be integrated easily within specific application
environments. In this paper, we have identified several
of the key issues in designing these systems and shown
how Berkeley DB provides many of these requirements.

8 References

[1] Bernstein, P., Brodie, M., Ceri, S., DeWitt, D.,
Franklin, M., Garcia-Molina, H., Gray, J., Held, J.,
Hellerstein, J., Jagadish, H., Lesk, M., Maier, D.,
Naughton, J., Pirahesh, H., Stonebraker, M., Ull-
man, J., “The Asilomar Report on Database
Research,”SIGMOD Record 27(4): 74–80, 1998.

[2] Chaudhuri, S., Narasayya, V., “AutoAdmin ‘What-
If’ Index Analysis Utility,” Proceedings of the ACM
SIGMOD Conference, Seattle, 1998.

[3] Chaudhuri, S., Narasayya, V., “An Efficient, Cost-
Driven Index Selection Tool for Microsoft SQL
Server,”Proceedings of the 23rd VLDB Conference,
Athens, Greece, 1997.

[4] Haerder, T., Reuter, A., “Principles of Transaction-
Oriented Database Recovery,”Computing Surveys
15,4 (1983), 237–318.

[5] Hostetler, M., “Cover Is Off A New Type of Data-
base,” Embedded DB News, http://
www.theadvisors.com/embeddeddb-
news.htm , 5/6/98.

[6] Interbase, “A Comparison of Borland InterBase 4.0
Sybase SQL Server and Microsoft SQL Server,”
http://web.interbase.com/products/
doc_info_f.html.

[7] Oracle, “Oracle Delivers New Server, Application
Suite to Power the Web for Mission-Critical Busi-
ness,”http://www.oracle.com.sg/part-
ners/news/newserver.htm , May 1998.

[8] Sybase, Sybase UltraLite, http://
www.sybase.com/products/ultralite/
beta .

[9] Transaction Processing Council, “TPC-C Bench-
mark Specification, Version 3.4,” San Jose, CA,
August 1998.

[10]Transaction Processing Council, “TPC-D Bench-
mark Specification, Version 2.1,” San Jose, CA,
April 1999.

