
The following paper was originally published in the
Proceedings of the Large Installation System Administration of Windows NT Conference

Seattle, Washington, August 5–8, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Compaq’s New Engineering Compute Farm Environment:
Moving Forward with Windows NT

Don Brace, Andrew Gordon, and Scott Teel
Compaq Computer Corporation

Compaq’s New Engineering Compute Farm Environment:
Moving Forward with Windows NT

Don Brace (Don.Brace@compaq.com)
Andrew Gordon (Andrew.Gordon@compaq.com)

Scott Teel (Scott.Teel@compaq.com)

Compaq Computer Corporation

Abstract

In the past, Compaq's design and verification distrib-
uted compute farm consisted of UNIX-based often
times expensive proprietary hardware and operating
systems. In addition, internal developers created site-
specific load distribution software for the management
of design verification compute intensive processing
jobs. This environment offered Compaq design engi-
neers (DEs) a finely tuned site-specific environment,
where the benefits included on-site developers pro-
viding quick user-required modifications, in addition
to a mature operating system environment. The down-
side included higher hardware purchasing and mainte-
nance costs. However, with the emergence of Win-
dows NT, Platform Computing's Load Sharing Facility
(LSF) for Windows NT, the availability of Electronic
Design Automation (EDA) applications for Windows
NT, and high-end Intel-based workstations, a Compaq-
based Windows NT LSF compute farm proved to be a
viable solution. Compaq's internal systems engineers
(SEs) and application engineers (AEs) began the pro-
cess of developing a Windows NT-based compute
farm environment that would provide a robust dis-
tributed compute farm to be used to facilitate the de-
signing and verification of future Compaq products.
This paper describes the issues encountered and the
solutions required to bring the Compaq-based
Windows NT LSF compute farm online and into pro-
duction.
1. Compaq’s UNIX-based Compute Farm

Compaq's compute farm evolved over a period of time
dynamically changing to meet the needs of its DEs.
The path to the current compute farm configuration
was built with hard work and innovative ideas that
have helped to make it an operational success. Com-
paq DEs have come to rely on its stability and robust-
ness to process their EDA designs.

1.1. History and Motivation

Components used in designing a computer system
were simulated in software, starting an evolution in
computer design. DEs were able to select components
from a database and assemble them into simulated
boards. These simulated boards could then be tested
with other software, reducing the number of times that
the designs needed to be sent to the board manufactur-
ers. This in turn reduced design costs and shortened
the design cycle.

Before compute farms, each EDA DE used powerful
UNIX workstations to run the EDA applications. DEs
soon outgrew their workstations requiring more mem-
ory and faster CPU speeds. It was not cost effective to
replace each and every desktop workstation, so the
next step was to purchase powerful servers. Each DE
X-termed into one or more of their departmental serv-
ers to run their EDA applications. Frequently, these
servers became overloaded, drastically reducing job
throughput and slowing down the engineering design
cycle. Conversely, there were times when these servers
went unutilized by those assigned to them when others
could have used them. The departmental server prob-
lem grew worse over time as EDA applications de-
manded more resources.

Attempts were made to do some rudimentary load bal-
ancing, meaning DEs called each other and reserved
time slots on the servers. This was only a partial solu-
tion since problems often arose that caused them to
overrun their time slots. The next step was to either
purchase or design software, which would manage
access to the departmental servers allowing for greater
job throughput. Figure 1 illustrates a time-line that
depicts the historical evolution of Compaq's EDA en-
vironment.

1990

Independent UNIX
RISC Workstation

•Independent work
•little file sharing
•Design requirements exceeding desktop power
•high administrative overhead for desktop support
•all applications and libraries on local disk

•Independent working groups
•Work group server for larger design jobs
•lulls in design cycles cause much underutilization of group resources
•work group compute servers bogged down by fileserving
•high administrative overhead

UNIX RISC
Work Group
Compute Server

UNIX RISC Workstation

Specialized UNIX
NFS File Server

UNIX Compute Farm

•Transitioned shared files and projects to NFS fileservers
•Work group servers become incapable of sustaining computing load
•lulls in design cycles cause much underutilization of group resources
•high administrative overhead
•Engineering groups trade resources trying to meet peaking needs

UNIX RISC
Work Group
Server

UNIX RISC Workstation

UNIX RISC Workstation

1991

1992

1993-1997

UNIX NFS File Server

Xterminal or
 X on NT PC

•Shared compute pool handles peak usage
•Less underutilization of resources
•Hardware failures less consequential
•cookie cutter approach to admininstration
•redundant queue managers handle failures
•users now able to run hundreds of jobs
•jobs displayed back to user’s workstationCompute Farm

Queue Managers

Figure 1. Evolution of Compaq’s UNIX-based Compute Farm

1.2. Why UNIX

EDA applications started and have continued on
UNIX-based systems at Compaq for the following
reasons:

• UNIX was the best-supported OS by EDA ven-
dors.

• UNIX workstations provided high-resolution
graphics.

• UNIX supported a large memory model.
• UNIX adopted the X-protocol for GUI support.
• UNIX adopted the Network File System protocol

(NFS).

Early on UNIX-based workstations were configured
with high-resolution graphics and a larger memory
capacity than a normal DOS PC. Later on both the
NFS protocol and the X-protocol added functionality
in the areas of filesharing and distributed graphics.

Due to enhancements provided by UNIX vendors, of-
ten times it was easier to maintain a homogeneous set
of hardware platforms and operating systems rather
than a heterogeneous one. Once a specific hardware
platform and operating system was chosen, it was
much harder to adopt another.

Each UNIX vendor selected a different CPU architec-
ture with which to run their UNIX operating system
on. This meant that application vendors had to port
their applications to each hardware and operating sys-
tem type.

1.3. In-house Developed Batch Queuing
System

At the time job management systems were researched,
there were no viable third party solutions that met
Compaq's needs. Thus an in-house solution was devel-
oped with the following requirements:

• Provide DEs with the ability to submit an unlim-
ited number of both batch and interactive jobs.

• Provide secure access to the batch queuing sys-
tem.

• Balance the compute farm load.
• Create a virtual environment for each job.
• Create a fault-tolerant batch scheduling system.
• Provide fair access to the compute farm.
• Provide an efficient administrative interface.

DEs typically ran regression tests that amounted to
thousands of job submissions to the queuing environ-
ment. DEs automated their job submissions since the
command line interface was developed to support this

Solaris Compute Servers: 68 200Mhz UltraSparc-class
CPUs with average of 500 - 1000 MB RAM/CPU

SunOS Compute Servers: 71 50 MHz Sparc-class CPUs
with average of 256 MB RAM/CPU

Job Submitter’s Workstation

Redundant
Compute Farm
Queue Managers

Router

Router

Project and
Application
NFS fileservers

Corporate
Backbone

Project and
Application
NFS fileservers

Application
license
Server

Application
license
Server

Router

 UNIX COMPUTE FARM ATTRIBUTES:

•physicall y distributed com pute resources
•centralized file and a pplication servers
•redundant queue mana gers
•redundant access to cor porate net
•redundant license mana gers
•700,000 jobs (1997)

•average job re quirements:
• 230 MB memor y
•132 Minutes runtime
•remote dis play and control

Figure 2 Compaq's UNIX-based Compute Farm

functionality. Jobs that ran in the batch queuing system
ran with the engineer's UNIX identity, thus protecting
the project information.

Load balancing was an important feature of the batch
queuing system. From benchmark testing of the actual
applications, it was found that running one job per
CPU maximized job throughout. Also, the scheduler
tracked the amount of memory currently in use on
each compute server, weighted by the projected
amount of memory its running jobs would need over
their lifetime.

The batch queuing system used two machines to pro-
vide instant fail-over. The scheduling mechanism was
a rather complicated token fairness algorithm. DEs
were assigned to various projects and the goal was to
avoid giving one project priority over another. Ties
were broken using round robin. The token costs were
determined by benchmarking the compute servers and
giving higher token costs to the faster machines.

The administrative interface was GUI based and al-
lows modifications to be made to the running system.
Users could be added and deleted from queues and
projects, and machines and queues could be added or
deleted from the system.

1.4. Compaq's Current UNIX-based Com-
pute Farm

The UNIX compute farm has been in use for over five
years and has been quite reliable. In 1997, over
700,000 jobs were run through the UNIX compute
farm. The compute farm consists of a collection of
Sun, Tatung and Solbourne compute servers and two
major user queues. One queue is for batch oriented
jobs and the other queue is for interactive jobs.

The compute server hardware consists of 3 Ultra En-
terprise 4000 machines each with 8 GB of memory, 21
Tatung Ultra-2 machines each with 1.2 GB of mem-
ory, 15 Solbourne 900 machines with 1.2 GB of mem-
ory, and 2 SPARC 20 machines with 128 MB of mem-

ory. The Ultra class machines use Solaris 2.5 as the
operating system and the Solbourne and SPARC 20s
run SunOS 4.1.3_U1. In total, there are 142 job slots
available for DEs to use. The entire batch queuing
management system is managed from 2 Sun SPARC
20 machines.

2. Motivations for Establishing a Windows
NT-based Compute Farm

As the UNIX-based compute farm matured, it became
an integral part of Compaq’s time-to-market engi-
neering strategy. The memory size and complexity of
jobs in the compute farm continued to grow. Older
UNIX resources in the farm were becoming obsolete.
Compaq SEs needed to continue the success of the
compute farm while reducing costs and administrative
overhead.

2.1. History & Motivation

When the time came to replace aging UNIX hardware
and expand compute farm capacity, all available solu-
tions were considered. While reports indicated that an
Intel-based hardware platform would provide the best
total cost of ownership, easiest maintenance, and high-
est price/performance ratio, this had yet to be proven.
Selecting a hardware platform proved the easiest
choice. Current Compaq hardware ran engineering
jobs 2-3 times faster than the older SPARC-based
hardware, and was comparable in performance to
newer UNIX hardware choices for a lower purchase
cost. Memory prices were similarly competitive. Re-
jecting RISC-based UNIX hardware for the less expen-
sive Intel-based platform would allow Compaq’s De-
sign Environment to expand compute farm resources.

When considering operating systems (OSs), Solaris led
the pack. Sun’s Solaris X86 was available for Compaq
hardware, was a mature product, and had the advan-
tage of easing the task of porting administrative and
engineering scripts and utilities. However, Microsoft’s
Windows NT boasted solid support from a growing
number of engineering application software providers,
which had no plans to port their tools to Solaris X86.
Encouraging results from initial internal UNIX to
Windows NT porting efforts established a confidence
level that applications, scripts, and utilities could be
ported. Hardware, operating system, and EDA appli-
cations indicated Windows NT as the OS of choice. It
became clear that Intel-based hardware running Micro-
soft Windows NT would become the core of Compaq’s
future engineering computing farm.

2.2. Off-the-Shelf Load Sharing Product

Though Compaq’s DEs had been enjoying the benefits
of a locally developed load balancing, fault-tolerant
job queuing system, the cost of those benefits were
being weighed against the purchase of an off-the-shelf
product. The development, testing, and support re-

sources required to produce a system specifically tai-
lored to Compaq’s business, computing and engineer-
ing needs were growing, directly in contrast to the
compute farm goals of shrinking administrative over-
head.

Compaq required a commercially available, supported
product capable of being configured to meet Compaq’s
very specific needs. A research project starting in early
1997 identified Platform Computing’s Load Sharing
Facility (LSF) as the only product on the Windows NT
platform that would meet Compaq’s needs for per-
formance, reliability, flexibility, and support.

SEs looked at several products including an internally
developed batch scheduler before selecting LSF’s
batch queuing software for Windows NT. Most of the
products where mainly built for calendar event-driven
scheduling, and our requirements could not be fulfilled
by these types of products. However, the LSF software
provided all of the basic requirements and most of the
flexibility of the Compaq-developed compute farm
system. LSF would leave SEs free to develop and tune
other parts of the environment without having to port
the internal batch scheduling system.

2.3. EDA Applications Migrating to Win-
dows NT

As the Windows NT compute farm plan developed
through the first half of 1997, EDA software vendors
announced their support for the Windows NT plat-
form. By August of 1997, a key application in ASIC
chip design became available on Windows NT, in-
creasing the desire for a Windows NT-based comput-
ing farm. Cadence Design Systems’ Verilog-XL, the
main EDA application in use in the UNIX-based com-
pute farm, was now supported on Windows NT, and
exhibited comparable performance to its UNIX-based
cousin. Eventually, other EDA software tool vendors
would announce support for the Windows NT plat-
form.

Adding a Windows NT Compute Farm would expand
Compaq’s engineering computing capabilities without
the purchase of additional non-Compaq hardware. It
would make more job processing power available in
the UNIX compute farm by allowing some work to
shift into the Windows NT farm. Cost savings would
be realized in initial purchase, hardware maintenance,
support, and local development. Engineering applica-
tion support was growing.

3. Setting up a Windows NT Compute
Farm: Investigation, Testing, and Planning

After an initial internal proof-of-concept evaluation for
a Windows NT compute farm using LSF, Compaq SEs
recommended to continue on with an in-depth evalua-
tion. SEs continued to evaluate the Windows NT com-
pute farm concept extensively in addition to laying the
foundation for a production-ready compute farm
through investigation, testing, and planning. Due to the
lack of experience with Windows NT in a batch-
processing application environment, Compaq SEs
worked through each of the following areas recording
their results during each phase.

3.1. Defining the Compute Farm Environ-
ment Requirements

At the highest level, the project plan defined the major
compute farm requirements:

• Compaq Hardware

• Windows NT-based Operating System

• Configurable Fault-tolerant Batch Scheduling
Mechanism

• Real Time and Historical Usage Reporting System

• Distributed Graphics for Interactive Jobs

• Remote Capabilities for Dial-Up Users

• Remote Administration Capabilities

One of the most important goals of this project was to
use Compaq-based hardware during the EDA design
verification phase of Compaq’s products. In a search
for the right hardware, SEs evaluated all Compaq-
based hardware for price/performance, and its proc-
essing granularity to reduce the compute farm’s single
point-of-failures. The Compaq Workstation and ProLi-
ant products fulfilled these requirements.

Due to an existing user installed base of Windows NT
on Compaq-based products and the availability (or
planned availability) of EDA applications on the Win-
dows NT platform, SEs agreed that Windows NT
would be the operating system of choice.

Like the internally developed scheduler, the Windows
NT compute farm scheduler would need to provide
flexible configuration parameters to allow for the im-

plementation of site-specific scheduling policies. Due
to the criticality of internal schedules of EDA verifi-
cation projects, the batch scheduling mechanism
would need to provide the following functionality:

• Easy configuration capabilities.

• Fault tolerant across network or server failures.

• Scheduling based on resource needs such as mem-
ory.

• Load-balancing.

• Access control to batch queuing system.

• Access control to administration commands.

Once the compute farm reached production status,
compute farm usage statistics, both real-time and his-
torical, would provide critical resource planning in-
formation. EDA management defined the need for
usage reports, both real-time and historical, for this
compute environment.

During the initial stages of the ASIC verification proc-
ess, engineers debug large verification jobs working
out problems in both the design and the regression
tests. The debugging process requires an interactive
session with the regression software. As such, if an
engineer wanted to debug a verification job using a
compute farm resource, the engineer would need to
interact with the remote job. Historically, some sort of
distributed graphics mechanism provided this func-
tionality. As a result, EDA engineers identified the
need for interactive capabilities during large regression
setup and debugging from within the compute farm.

Once ASIC verification engineers have worked
through problems within their regression suite, they
will submit a large set of regression jobs to the com-
pute farm. This can be literally hundreds or even thou-
sands of jobs per submission setting. Often times dur-
ing time-critical regression, engineers will need to log
in from off-site locations and check the status of a re-
gression suite. As a result, engineers identified the
need for remote access capabilities including job sub-
mission and job monitoring.

As with any distributed computing environment, there
exists the need to administer machines in an efficient
manner, especially when machines are physically lo-
cated in separate locations. Simply, the time of trav-
eling to the different computing facilities can be ex-

pensive. In addition, after the compute farm reached
production status, hotline SEs who are normally tied to
a phone line would need to remotely log onto the
problem compute server and understand the cause of
any problems. This was a definite requirement.

3.2. Selecting Initial Windows NT Compute
Farm Applications

EDA AEs identified an initial set of design verification
tools to be used within the Windows NT compute farm
based on several factors:

• Availability on Windows NT

• Ability to run in batch mode

• Functionality during the verification process

Not only did the EDA applications need to be avail-
able on Windows NT, but certain internal verification
libraries would need to be ported over to Windows
NT. These modules are linked in at runtime. Further-
more, the verification tool would have to have the op-
tion to run in batch-mode. After identifying a small set
of possible EDA applications, Verilog-XL would be-
come the first application to run in the compute farm
environment.

In order to run any EDA application on a Windows NT
machine, the environment had to be setup correctly,
and once EDA AEs establish a working environment,
this environment would need to be transferred to the
compute farm server at job submission time. During
the initial application setup, AEs chose to install the
EDA applications onto a centralized file-serving setup
in which application binaries and libraries would re-
side in a single file-serving location. This would re-
duce the administration burden.

To help facilitate the job submission process, EDA
AEs developed submission tools that submit jobs dur-
ing the design verification process. A portion of these
tools required the batch job to run from the submission
(network drive) directory—this was added to the list of
application requirements.

3.3. Researching the Major Issues

Having defined the requirements of the Windows NT
compute farm environment, project members turned to
discussing the issues that needed to be resolved. The
following list enumerates the major issues that had

been identified before and during the initiation of the
compute farm project:

• Identifying the optimal compute farm hardware
configuration (compute model) for our EDA ap-
plications: #CPU’s/machine, Memory/CPU, net-
work bandwidth.

• Identifying an initial optimal LSF batch-queuing
configuration setup: #queues, scheduling parame-
ters.

• Identifying an optimal UNIX-NT file sharing so-
lution for our environment to access existing proj-
ect information on UNIX-based fileservers.

• Identifying a flexible remote administration tool
to allow remote access to compute servers used
during administration or debugging.

• Identifying or developing a dynamic Windows NT
drive-mounting mechanism needed by in-house
developed EDA application tools.

• Identifying and reviewing the Windows NT file
serving infrastructure configuration and setup.

• Identifying EDA application environment prob-
lems.

• Testing GLOBEtrotter’s FLEXlm license mecha-
nism from Windows NT using UNIX-based li-
cense servers.

• Identifying and installing UNIX-based develop-
ment and scripting tools within the centralized
Windows NT file-serving environment.

• Identifying administration tasks that could be
automated.

• Identifying administration and support documents
that needed to be developed.

3.4. Extensive Evaluation and Testing

To identify or resolve certain issues in addition to veri-
fying previously made decisions, SEs spent a consid-
erable amount of time testing, especially with regards
to the LSF products, UNIX-NT file sharing products,
and EDA applications. The following sections describe
the test results.

3.4.1. LSF Product Evaluation and Testing

After an in initial proof-of-concept evaluation, the SEs
identified the LSF batch-scheduling product as the
only real possibility other than porting their internally
written job scheduler. However, even though Platform
provided a flexible batch queuing mechanism on Win-
dows NT, SEs needed to extensively test the product,
trying to understand its strengths and weaknesses es-
pecially on the Windows NT platform. As such the
SEs prepared an extensive test plan to exercise the
LSF product in the following areas:

• Administration, Manageability, & Usability

• Fault-tolerance

• Reliability

• Batch Scheduling Features and Capabilities

• Platform Computing’s Support Capabilities

3.4.1.1. Administration, Manageability, and
Usability Evaluation

Administration and manageability of a LSF cluster
was fairly simple after completing the initial setup and
configuration. Initially, the LSF 3.0 installation was
not wrapped up inside of a simple Install Shield
mechanism as most Windows-based applications, but
Platform added this type of capabilities with the LSF
3.1 product. The administrative burden can be re-
duced when application binaries and configuration
files are centralized. The LSF product incorporates this
feature quite naturally having ported their product
from a UNIX environment.

For administrators, the LSF product provides an ad-
ministrative command suite that can stop, start, restart,
and shutdown each respective service and/or daemons.
The most difficult part of the Windows NT LSF ad-
ministration is administrating the Windows NT itself.
The limited number of debugging tools makes problem
solving more difficult.

One administration example is adding a machine to the
LSF cluster. Although there is no current Windows NT
GUI that provides an editing interface, the process of
adding a machine can be summarized in about five
steps, each step being intuitive for a knowledgeable
systems administrator.

From a user perspective, most LSF commands mimic
the functionality of those used within the internally
developed batch queuing system. In addition, the LSF
product contains some functionality, such as the ability
to view the history of a job. A job history provides
historical job information: how long a job waited, the
LSF server it executed on, the final exit status, along
with other useful information.

3.4.1.2. Fault-tolerance Testing

SEs tested LSF's ability to recover from simulated
network outages, simulated cluster failures, and simu-
lated network file system failures. SEs simulated a
network outage by unplugging the network connec-
tions to several LSF cluster machines. Likewise,
members simulated a cluster failure by powering down
the currently running master LSF cluster server. SEs
simulated file system failures by shutting down the
appropriate file share server.

Since there are two LSF layers—the LSF Base and
Batch—one requiring the services of the other (Batch
requires the services of the Base software), recovering
from major network or cluster errors occurs in two
phases. First, the lim (LSF Base software) daemons
must determine if the master lim has gone away and if
so, pick a new one. Secondly, the sbatchd (LSF Batch
software) must determine if a master batch daemon has
gone down, and if so, pick a new one. The lim dae-
mons are considered functional once the lshosts com-
mands reports a full list of LSF cluster servers, while
the sbatchd daemons are considered functional after
the bhosts command reports a full list of LSF batch
cluster servers.

While either the lim or sbatchd layers are non-
functional, both user commands and normal schedul-
ing activities will cease; however, previously scheduled
user jobs will continue to run. User commands will
continue to try and contact the master scheduler until a
specified time-out valued has been reached. If the time-
out value is reached, the user command exits with a
failure; otherwise, the user command will complete the
task when it is able to finally contact either the master
lim server or the mbatchd (depending on the type of
user command). Tests indicate 30 to 45 seconds cluster
reorganization. During reorganization, no user lim or
sbatchd commands will complete successfully until
each respective layer has regrouped itself.

3.4.1.3. Reliability Testing

With most out-of-the-box products, there exists certain
stress conditions under which the application will stop
functioning in a production quality manner. Knowing
these conditions can be very beneficial to system ad-
ministrators or managers. SEs essentially tried to find
out how to break LSF. One such example was the
MBD_SLEEP_INTERVAL parameter located in the
lsb.params configuration file. Setting this interval too
small causes the master batch server to spend too much
time trying to schedule jobs, unable to respond to new
requests from client machines.

3.4.1.4. Batch Scheduling Features Evalua-
tion

SEs experimented with several scheduling parameters
available in the LSF Batch software. In general, all
parameters worked as expected. Jobs were scheduled
on the correct resource based on the requested resource
requirements. For Compaq's design verification com-
puting environment, a batch scheduler's memory man-
agement capabilities are critical to efficient memory
and CPU utilization. LSF provides this by means of a
resource requirement selector with different selection
possibilities. SEs implemented the memory resource
requirement selector with a linear decay duration
value specified at job submission time by either the
user or a pre-determined default value. The linear de-
cay duration value indicates how long the job will exe-
cute before it has consumed its total memory require-
ment. Initially, the default value will be set to 30 min-
utes, but SEs urged users to set this value using a
command line option

SEs tested the Dispatch Window mechanism by run-
ning user jobs on certain team member's desktop ma-
chines at night. SEs configured these desktop machines
to accept jobs from 7PM until 5AM the next morning.
This feature worked, but SEs do not plan on imple-
menting this feature in any initial release due to certain
manageability issues such as remote administration
and controlled downtime.

Fairshare testing pointed out the possibility of one
group being temporarily starved of slots due to their
past excessive use of the cluster. The window of accu-
mulated CPU and wall clock time is a configurable
option in the lsb.params file. Although the Fairshare
mechanism does not exactly mimic the Token Fairness
algorithm used within the Compaq’s internal-
developed scheduler, it does provide a fairness policy
based on user groups. The LSF scheduler implements

fairness by setting up "fair-shares" which indicate how
much usage units should be given to each user or user-
group. The scheduler keeps track of past CPU and
wall-clock job usage, and uses this information on fu-
ture scheduling decisions.

Finally, SEs tested the scheduler’s ability to scale by
increasing the number of nodes in the cluster and re-
peating some of the earlier tests. Even with 10000 jobs
queued up, the scheduler continued to respond to client
requests in a constant predictable time.

3.4.1.5. Platform Computing’s Support
Capabilities

SEs tested Platform Computing's ability to provide
quality support in a timely manner. Project staff con-
centrated on four specific types of problems often en-
countered within a production-computing environ-
ment: high-priority installation problem, dead-in-the-
water problem, enhancement request, and a possible
bug problem.

For all test cases, Platform Computing provided quick
support response, usually resolving within 15 minutes.
Due to the small size of the company, SEs could
quickly access the actual LSF code to determine if a
bug existed or if we had accidentally configured LSF
incorrectly. And if online SEs could not resolve the
problem, LSF support members would summon the
Windows NT developers to the phone for help.

3.4.2. UNIX-NT File Share Testing

Since Compaq’s design files resided on UNIX file-
servers, it was important to identify a method for
sharing those project files with Windows NT systems.
Making copies to an Windows NT server and keeping
them synchronized was not an option, nor was using
ftp to transfer files as needed. A true filesharing solu-
tion enabling simultaneous access from both platforms
was required.

Filesharing options are limited to either client-side
NFS or server-side SMB/CIFS interpreters. The PC
NFS client products allow an Windows NT PC to con-
nect directly to remote NFS filesystems using NFS
protocol through an add-on protocol stack. The server-
side solutions are SMB interpreters, which cause the
NFS fileserver to appear as an Windows NT server to
Windows NT clients. None of the filesharing products
have coordinated file locking between Windows NT
and UNIX, so there is some danger that files may be
corrupted or overwritten if accessed at the same time

by both platforms. Since file-naming conventions are
different between Windows NT and UNIX, there are
also some things to look out for in this area. Some files
created with perfectly legal filenames in UNIX be-
come inaccessible from Windows NT. Case sensitivity
is an issue that has been worked around in most prod-
ucts, but not solved. Filesharing users must be aware
of the limitations of each platform’s filenaming con-
ventions. Windows NT and UNIX have different secu-
rity ID and file permission models, so there were is-
sues here too.

The filesharing product evaluation revealed that there
was no product yet that provides a seamless file shar-
ing solution. It would be up to engineers and admin-
istrators to use filesharing carefully, and avoid the
known problems until better solutions become avail-
able.

3.4.3. EDA Application Testing

EDA AEs spent considerable amount of time testing
Windows NT EDA applications both on the their Win-
dows NT desktops and also in the Windows NT com-
pute farm. It was not until just recently that certain
EDA vendors had started porting their tools over to
Windows NT and certain bugs were still being worked
in parallel to bugs in our compute farm environment.
EDA AEs first worked to provide a production desktop
environment that would allow certain EDA applica-
tions to run from a single application server as done
historically with the UNIX desktop and compute farm
environment.

After EDA engineers worked through desktop support
issues, they moved on to getting applications to cor-
rectly run in the compute farm. The number one issue
centered on making sure the desktop environment was
correctly mapped to an LSF server during job initiali-
zation. The LSF software appeared to have been writ-
ten to transfer only certain environment variables
based on their interpretation of the Windows NT envi-
ronment. After working through the environment is-
sues, SEs updated the already internally developed
LSF wrapper script to work-around these items.

EDA AEs had developed a suite of submission and
verification tools to augment the testing functionality
that already existed in the vendor product such as
Verilog-XL. As such, internal EDA AEs worked on
porting their submission tools over to Windows NT
and changing their submission modules to use the new
LSF-based job submission mechanisms. Once AEs had
worked through issues both from a desktop issue and a

compute farm perspective, large scale job submissions
commenced and application load testing began to
identify any stress-related problems during intense
processing by real EDA applications.

3.5. Windows NT Compute Farm Envi-
ronment Version 1.0

After internal discussion about the compute farm re-
quirements and impending issues, SEs constructed a
project plan that defined reasonable project mile-
stones. The initial release of the compute farm as a
production system fulfilled only the following previ-
ously listed compute farm requirements:

• Compaq Hardware

• Windows NT-based Operating System

• Configurable Fault-tolerant Batch Scheduling
Mechanism

SEs will complete the other compute farm require-
ments in subsequent phases.

4. Compaq’s Initial Windows NT Compute
Farm Environments

SEs installed and configured all hardware into a cli-
mate controlled computing facility. This section de-
scribes the actual compute farm setup and current so-
lutions to the previously mentioned issues.

4.1. Compute Farm Hardware

As of the writing of this paper, SEs successfully con-
figured a 60 CPU LSF cluster running Windows NT
4.0 with SP3 cluster consisting of the following list of
Compaq Workstation and ProLiant machines (see fig-
ure 3):

• 20 Professional Workstation 8000 with 3 x 200
MHz Pentium Pro CPUs and 3 GB of total mem-
ory used as LSF Batch servers all using 100 Mbs
FDDI connections.

• 3 ProLiant 5000 fileservers with 2 x 166 MHz
CPUs each with 128 MB of total memory using
100 Mbs FDDI connections.

• 3 ProLiant 2500 fileservers with 100 Mbs FDDI
connections.

 At the start of this project, the Professional Worksta-
tion 8000s provided the largest expandable memory
option of up to 3 GB of total configurable memory. As
a result, the main core of the compute farm consists of
20 Workstation 8000s each configured with 3 GB of
total memory using 100 Mbs FDDI connections.

Before the compute farm project, SEs designed a cen-
tralized fileserver model for the Windows NT desktop
infrastructure. This allowed for EDA applications to be
stored and executed from one central location—a
similar UNIX environment already existed. The com-
pute farm jobs access binaries, configuration files, and
project data located on 2 ProLiant 5000 fileservers—a
(primarily read-only) application server and a (read-
write) project server.

During the evaluation phase, occasional network, ap-
plication, and operating system errors caused problems
for the master LSF batch scheduler. SEs recommended
setting up two separate LSF server machines to be used
only as schedulers and not as compute servers, pre-
venting rogue jobs from causing a system failure on the
master scheduler.

4.2. Batch Queuing Software

NT Compute Farm HardwareNT Compute Farm Hardware
Compaq Workstation Racks

24 - Professional Workstation 8000s
 (20-production, 1-standby, 3-test)

Each rack with monitor includes:

• 6 - Professional Workstation 8000s

• 18 CPUs Total

• 18 GB RAM Total

100 Mb FDDI
Collapsed Ring
Concentrator

Workstation 8000
• 3 Pentium Pro 200MHz
• 3 GB RAM
• 4 GB Disk

Proliant 5000 Project
Data Server

• 2 Pentium Pro 200MHz
• 128 MB RAM
• 52 GB Disk

Proliant 5000 Application
Server

• 2 Pentium Pro 166MHz
• 128 MB RAM
• 16 GB Disk

Figure 3. Compaq’s Windows NT Compute Farm Configuration

SEs deployed LSF 3.0b version onto the compute farm
resources. From an architectural view, the LSF soft-
ware is cleanly divided into two layers:

• A Load Information Management layer (LIM)
discretely manages the load indices of all ma-
chines in the cluster.

• A batch application layer uses a LIM API to de-
termine the correct resources to dispatch jobs to.

Each layer provides a suite of commands for viewing
or changing the cluster.

4.3. Remote Windows NT Administration

SEs had looked at several different products, including
Microsoft’s System Management Server (SMS), which
was also being tested as an application installation tool.
As such, the team tried using the SMS remote control
tool, but the SMS remote control tool would often stop
working very early into the remote connection, in ad-
dition to being slow in general. Next, SEs started test-
ing PCI Ltd’s PC-Duo product. The PC-Duo product
had good response along with an access control
mechanism to provide some security control. As a re-
sult, SEs decided to use PC-Duo as their remote ad-
ministrative tool of choice.

4.4. Hardware Monitoring

To provide a hardware monitoring mechanism, SEs
installed and configured the Compaq Information
Management (CIM) agents on all of the compute
server resources. The CIM agents provide hardware
state information and errors to a CIM management
application.

With regards to monitoring in general, SEs setup a
separate monitoring machine to run the CIM manage-
ment GUI application continuously. In addition, sev-
eral other monitoring programs run on this designated
machine.

4.5. Time Synchronicity

As with most distributed compute farm or cluster sys-
tems, synchronized clocks are critical to distributed
algorithms. In addition, the application themselves can
be time-dependent, relying on a common time-stamp
for project files. Furthermore, licensing mechanisms
such as FLEXlm rely on a consistent clock between
server and requesting client.

In the current UNIX compute farm environment, SEs
had already setup xntpd time servers used by XNTP
clients updating their system clocks. Since the infra-

structure already existed, SEs ported the xntp software
code to Windows NT and deployed on all Windows
NT machines accessing the compute farm environ-
ment. This proved to be a critical element as several
problems were traced down to the xntpd client not
running correctly on the problem-related compute
farm server.

4.6. File System Infrastructure and Appli-
cation Setup

SEs reduced administrative efforts by centralizing the
LSF configuration files. This provided a large admin-
istrative gain by having only one location for updates.
To simplify initial compute farm requirements, EDA
AEs conceded to running jobs that would only access
Windows NT files and not UNIX-based files via a
UNIX-NT file sharing solution. However, due to the
already large investment of UNIX-based file servers,
some form of UNIX-NT solution will become a future
requirement.

SEs had already established a common primarily read-
only application server for EDA applications and sup-
porting tools as done in the similar UNIX environ-
ment. In addition, SEs configured several data servers
for project-based file storage.

4.7. Administration Scripts and Services

As part of the compute farm production release, SEs
developed scripts and services to automate some ad-
ministrative tasks:

• LSF job output file renamer—this utility changes
the output file names to coincide with those gen-
erated by an in-house batch-scheduling UNIX-
based system. This reduced certain EDA submis-
sion tool porting efforts.

• LSF output directory cleanup—this utility would
manage the user’s job output directory com-
pressing and archiving job files at specific inter-
vals.

4.8. LSF Wrapper Submission Script

Early in the evaluation, the SEs deveoped a bsub
wrapper script for the following reasons:

• To reduce the LSF administrative burden of LSF
by centralizing the file job scripts and output files.

• To implement control measures with regards to
resource requirements and usage.

• To implement a dynamic Windows NT file-
sharing solution on the LSF servers when needed.

The wrapper script takes the user’s job and does the
following:

• Checks the command line options for valid mem-
ory estimates.

• Checks for valid project names and project access
rights.

• Inserts network drive mount and un-mount com-
mands.

• Submits the newly created job via standard bsub
command.

4.9. Automatic Mounting Utilities

The EDA AEs had created a suite of EDA application
tools. When executed in the UNIX compute farm envi-
ronment, these tools relied on the batch job running
from the initial submission directory. As a result,
Windows NT compute farm jobs would need to do the
same. SEs placed hooks into the LSF wrapper script to
automatically mount the network submission drive at
job startup, move to the submission directory, and re-
verse the procedure during job cleanup. One caveat
became the ability to cleanly kill a job without leaving
drive mounts around—eventually running out of drive
letters. Later on SEs looked to a special job killing
mechanism to keep leftover drive letters from collect-
ing on a compute resource.

4.10. Windows NT Configuration

SEs examined the Windows NT Workstation vs.
Server decision and decided to build compute farm
machines using the Windows NT Server product. SEs
loaded Windows NT 4.0 server with Service Pack 3 on
all machines to be used within the compute farm and
left the default performance settings.

During system and application testing using UNC
paths, SEs identified a Windows NT Redirector prob-
lem. After working with Microsoft SEs, Microsoft
provided a patch that fixed the problem and is now
applied during the build process for all LSF compute
servers and other Windows NT machines (Q179983
and Q179873).

As per the LSF documentation, SEs configured LSF
compute servers with static IP addresses. Although our
Windows NT environment primary consists of DHCP
clients, the persistency of the leases allowed our LSF
clients to work successfully within the LSF cluster
even though the LSF documentation recommended
only static IP addresses.

4.11. License Management

Licensing issues were addressed and resolved before
the application could correctly run in the Windows NT
compute farm environment, including the batch queu-
ing software itself. EDA applications and LSF’s batch
queuing software used the industry standard FLEXlm
software for license management. This facilitated the
initial setup for two reasons:

1. UNIX-based FLEXlm license servers could man-
age (issue) client license checkouts from Windows
NT clients.

2. SEs had already established redundant UNIX-
based FLEXlm servers for applications that ran in
the UNIX-based desktop and compute farm envi-
ronment.

As such, SEs and AEs setup the new Windows NT
application license features and keys on the already
established UNIX-based license servers, thus reducing
the overall setup effort.

4.12. Web-based User and Support Docu-
ments

Like all products or projects, the final deliverables
must include good documentation. For the Windows
NT compute farm, AEs and SEs updated support pro-
cedures that helped both users and administrative staff
to understand the new system. Due to its simplicity
and usability, SEs chose to create web-based docu-
mentation and place on local (departmental) web-sites
for easy accessibility and searching capabilities.

The final documentation included several deliverables
including evaluation reports, administrative setup pro-
cedures, administrative trouble shooting guides, ad-
ministrative test procedures, bug tracking lists, user
guide, user FAQs, and future project plans.

4.13. Compute Farm Test Environments

Test environments are essential for improving the
compute farm without risk to production job activity.
As a completely separate environment, the test farm
insulates the production farm from harmful events.
New versions of utilities, scripts, computer hardware,
and even the job queuing and load sharing facility it-
self may be tested without affecting production jobs.
Coupled with a detailed test plan and bug tracking, the
test farm environment ensures a stable production
compute farm. Operating systems, utilities, applica-
tions, and hardware must be kept at the same revision
levels as the production environment

Compaq SEs setup several test compute farm envi-
ronments to allow SEs and AEs to test applications
and compute farm tools independently without affect-
ing each other or the production compute farm envi-
ronment.

5. Future Windows NT Compute Farm
Goals

As mentioned previously, SEs had only reached cer-
tain compute farm goals, leaving some for future com-
pute farm releases. Work continues on the remaining
initial requirements and some additional goals that will
improve the robustness and functionality:

• Intelligent Job Terminator

• LSF Hardware and Software Monitoring System

• UNIX-NT File Sharing Solution

• Job Profiling Service

• Real Time and Historical Usage Reporting System

• Remote Capabilities for Dial-Up Users

• Remote User Control for Interactive Jobs

5.1. Intelligent LSF Job Terminator

The LSF wrapper script created by SEs is treated by
the LSF system as a job component, it does not know
that it should not kill this process whenever a user kills
a running job. Thus the kill command kills the wrapper
script as well, leaving behind mounted systems and
used drive letters. A local kill command, called cbkill
was developed as a workaround to this problem. The
cbkill utility behaves similarly to LSF's kill utility,
however it does not kill the wrapper script.

LSF has a rich set of APIs that enabled the cbkill util-
ity to obtain the necessary information about a running
job from the LSF server. The kill command is sent to
the compute server though the use of a DCOM execu-
table that starts up upon demand searches for the target
processes and kills them.

5.2. Compute Farm Monitoring System

SEs are designing a compute farm monitoring solution
to automate problem identification and resolution
within the compute farm. Hopefully, this system will
ease the administration burden, allowing administra-
tors to accomplish productive tasks as opposed to fire-
fighting compute farm problems.

Initially, the monitoring system will try to identify
various system and LSF job-related problems:

• Jobs that are “stuck” or consuming considerably
more resources than requested.

• Jobs with password problems. On Windows NT,
the impersonation issue is resolved with the Win-
dows NT application storing the user password
encrypted in some hidden file and performing the
LogonAsUser Win32 API call. The service control
manager is a good example of a program storing
an encrypted password to achieve a separate iden-
tification at startup time.

• Available drive letter problems. Currently, the
setup wrapper script will mount drives for the job.
These jobs can die abnormally and cause leftover
mounts to accumulate. The Microsoft Windows
Terminal product will help out here.

• LSF daemon problems such as an abnormal termi-
nation. Although LSF is fault-tolerant and will
bypass a malfunctioning LSF server, SEs want to
bring the compute server back into the cluster
ASAP.

5.3. UNIX-NT File Sharing Solution

While Microsoft has announced plans for a PC NFS
product in an add-on pack for enhancing UNIX/NT
interoperability, current plans for the future compute
farm call for using a server-side solution. Server-side
solutions are easier to administer, debug, and license.
Compaq plans to use Auspex Systems’ NeTservices
product on its Auspex NFS file servers to give engi-
neers access to a common project directory from both
Windows NT and UNIX computing platforms.

This strategy will assist engineering teams that are in
transition from UNIX to Windows NT, preventing the
need for a drastic, all-or-nothing transition from UNIX
to Windows NT. Engineering teams that have already
completed the transition to Windows NT will have less
need of file sharing between platforms, and will have
their project and home directories located on Compaq
ProLiant fileservers running Windows NT Server.

5.4 Job Profiling Service

Engineers need performance information about their
jobs to accurately predict the execution time and re-
sources required for other jobs. A service program that
runs on each compute server was created that periodi-
cally runs through the list of running processes and
records statistical information which is appended to
each job logging file. Applications Engineers have

written utilities that take this information and store it
in a database that is used in setting up job parameters
for subsequent job submissions.

The information gathered is basically the same as what
the task manager displays, however, only those proc-
esses that belong to the job stream are recorded in the
logging file for the job. The code for this service was
taken from the tlist utility found in the NTRESKIT.

5.5. Real Time and Historical Usage Re-
porting System

The compute farm is currently running real EDA ap-
plication jobs, and there exists a need for both real-
time trending and historical statistics that describe the
general usage of the cluster. Historical and real-time
statistical reports will be imperative for future capacity
planning or current reallocation. LSF provides an LSF
Analyzer product that may provide the necessary re-
ports that SEs are requiring. Real-time statistics go
beyond just providing a simple snapshot. These need
to provide a trending ability to understand the overall
load of the cluster over short dynamically configurable
interval.

At this time, SEs are beginning to evaluate the LSF
Analyzer and its ability to generate specified reports.
SEs will begin to define the real-time statistical re-
quirements and determine the need for an in-house
developed solution.

5.6. Remote Capabilities for Dial-Up Users

Future plans include providing a dial-up solution for
engineers wanting to access the compute farm from
home or other remote sites. So far, the LSF software
has been the biggest obstacle in that all LSF client and
server machines within the cluster must be name-
resolvable during configuration initiation for security
reasons, which causes problems for dial-in users. Dial-
in users do not generate an IP-name map until dial-up
time via DHCP.

We are currently looking into several possible solu-
tions:

• Using PC-Duo to allow engineers to access their
desktop machines and the LSF compute cluster.

• Getting Platform Computing to make software
modifications to allow this type of user to use the
compute farm. At this time, LSF cannot handle
this type of client machine.

5.7. Remote User Control for Interactive
Jobs

DEs have requested the need for a remote interactive
job control solution for jobs submitted to the Windows
NT compute farm. Providing a solution has been dif-
ficult due to Windows NT’s desktop only philosophy.
Porting UNIX-type tty functionality over to Windows
NT has been difficult due to a lack of process signals
within Windows NT process model. Currently, SEs are
looking at other remote terminal applications, such as
Microsoft’s Windows Terminal Server, to provide this
functionality for interactive compute farm jobs. Micro-
soft's Windows Terminal Server may support a com-
mand line interface, which would allow its terminal
sessions to be automatically started from a job stream
and incorporated into the LSF software.

6. Summary

This paper describes the solutions required to bring the
Compaq-based Windows NT LSF compute farm into
production. Reasons for creating a Windows NT LSF
compute farm include cost-effectiveness, migration of
EDA tools to NT, and processor performance levels
comparable to UNIX RISC machines.

Aging UNIX hardware and the need for expanded
compute farm capabilities at a reduced cost triggered a
series of hardware evaluations, seeking to upgrade
existing platforms or adopt another. These evaluations
resulted in the adoption of Compaq hardware running
Windows NT. Lessons learned from UNIX-based
compute farm were brought over to the Windows NT
compute farm. Presently, the Windows NT compute
farm consists of Compaq hardware, Platform Com-
puting's LSF software, remote administration tools,
and the main EDA tools that DEs use in the design
process. Some issues remain and will be resolved in
the future through projects that are in place to provide
required solutions.

Compaq, ProLiant, Professional Workstation 8000,
registered U.S. Patent and Trademark Office. Product
names mentioned herein may be trademarks and/or
registered trademarks of their respective companies.
©1998 Compaq Computer Corporation. All rights re-
served. Printed in the U.S.A.

