
The following paper was originally published in the
Proceedings of the Eleventh Systems Administration Conference (LISA ’97)

San Diego, California, October 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org



Extensible, Scalable Monitoring
for Clusters of Computers

Eric Anderson and Dave Patterson – U. C. Berkeley

ABSTRACT

We describe the CARD (Cluster Administration using Relational Databases) system1 for
monitoring large clusters of cooperating computers. CARD scales both in capacity and in
visualization to at least 150 machines, and can in principle scale far beyond that. The
architecture is easily extensible to monitor new cluster software and hardware. CARD detects
and automatically recovers from common faults. CARD uses a Java applet as its primary
interface allowing users anywhere in the world to monitor the cluster through their browser.

Introduction

Monitoring a large cluster of cooperating com-
puters requires extensibility, fault tolerance, and scala-
bility. We handle the evolution of software and hard-
ware in our cluster by using relational tables to make
CARD extensible. We detect and recover from node
and network failures by using timestamps to resyn-
chronize out system. We improve data scalability by
using a hierarchy of databases and a hybrid push/pull
protocol for efficiently delivering data from sources to
sinks. Finally, we improve visualization scalability by
statistical aggregation and using color to reduce infor-
mation loss.

We have designed and implemented a system for
flexible, online gathering and visualization of statistics
and textual information from hundreds of data
sources. CARD gathers node statistics such as CPU
and disk usage, and node information such as execut-
ing processes. We will describe the system we devel-
oped to monitor our cluster, explain how we solved
the four problems described above, and show how we
synthesized research from other fields and applied
them to our problem.

To make CARD flexible and extensible, we have
chosen to gather data and store it in a relational
database [Codd76]. New subsystems can access the
data through SQL [Cham76] without requiring modifi-
cation of old programs. We use SQL to both execute
ad-hoc queries over the database, and to extract data
for visualization in our Java [Gosl95] applet. Rela-
tional tables make CARD naturally extensible because
new data can go into a new table without affecting old
tables. In addition, new columns can be added to
tables without breaking older programs. The column
names also help users understand the structure of the
data when browsing. We have used additional tables
of descriptions to further assist in browsing.

1CARD is available from http://now.cs.berkeley.edu/
Sysadmin/esm/intro.html .

We use timestamps to detect and recover from
failures in CARD and the cluster. Failures are
detected when periodic data updates stop. Changing
data is synchronized using timestamp consistency con-
trol. Stale data is expired when the timestamps are too
old.

We have achieved data scalability, which is the
ability to handle more data as machines are added, by
building a hierarchy of databases. The hierarchy
allows us to batch updates to the database, specialize
nodes to interesting subsets of the data, and reduce the
frequency of updates to the higher level nodes. This
increases the scalability of the database, but the last
two approaches reduce either the scope or the fresh-
ness of the data. Users of the data may then need to
contact multiple databases, to gain data coverage or to
get the most up to date information.

We have improved the network efficiency, and
hence the data scalability by creating a hybrid push-
pull protocol for moving data from sources to sinks.
Our protocol sends an initial SQL request and a repeat
rate. The query is executed repeatedly, and the results
are forwarded to the requestor. The hybrid protocol
achieves the best of both a request-response (pull) pro-
tocol and an update (push) protocol.

We increase visualization scalability, which is the
ability to gracefully increase the amount of data dis-
played without having to increase the screen space,
through statistical aggregation of data, and the result-
ing information loss is reduced by using different
shades of the same color to display dispersion. These
two techniques have allowed us to meaningfully dis-
play multiple statistics from hundreds of machines.

The remainder of the paper is structured as fol-
lows. The next section describes our four solutions,
the Implementation section describes our experience
with our implementation, and the next section
describes the related work. The last section summa-
rizes our conclusions from building the system.

1997 LISA XI – October 26-31, 1997 – San Diego, CA 9



Extensible, Scalable Monitoring for Clusters of Computers Anderson and Patterson

Four Problems and Our Solutions

We will now describe our solutions to four prob-
lems of monitoring large clusters. First, we will
explain how we handle the evolution of software and
hardware in a cluster. Second, we will explain how we
deal with failures in the cluster and our software.
Third, we will explain how we increase data scalabil-
ity. Fourth, we will explain how we display the statis-
tics and information from hundreds of machines.

Single
Node DB

Single
Node DB

Single
Node DB

Single
Node DB

Node Cluster
DB

Global DBCPU & Process DB

Figure 1: A hierarchy of databases. At the lowest level are single node databases. These hold information gathered
from a single node. The top level shows a few forms of specialization. The node cluster database gathers infor-
mation about all the single nodes in its cluster. The CPU and process database stores a subset of the data at the
full frequency and takes advantage of the batching possible because of the node cluster database. The global
database stores all the information about the cluster at a reduced frequency.

Handling Rapid Evolution using Relational
Databases
Cluster software is evolving at a rapid pace, so a

monitoring system needs to be extensible to keep up
with the changes. This means that new data will be
placed in the system, and usage of the data will
change. Hence a system with only one way of storing
or querying data will have trouble adapting to new
uses.

We believe that flexibility and extensibility can
be achieved by using a relational database to store all
of the data. The database increases flexibility by
decoupling the data users from the data providers,
which means that arbitrary processes can easily put
information into the database, and arbitrary consumers
can extract the data from the system. The database
also improves flexibility by supporting SQL queries
over the data. SQL queries can combine arbitrary
tables and columns in many ways, and the database
will automatically use indices to execute the queries
efficiently. As the use of the database changes, new
indices can be added to maintain the efficiency of the
queries. The database increases extensibility because
new tables can be easily added, and new columns can
be added to old tables without breaking old applica-
tions. Queries only address columns in tables by
name, and hence the new columns do not affect the
old queries.

Using a database is a significant departure from
previous systems [Apis96, Dolphin96, Fink97,
Hans93, Hard92, Scha93, Schö93, Seda95, Ship91,
Simo91, Walt95], which all use a custom module for
data storage and few provide any external access to
the data. While building an integrated module can

increase efficiency for a single consumer of the data,
some of that improvement is lost with multiple con-
sumers. Furthermore, the flexibility of the system is
reduced because adding new data producers and con-
sumers is more difficult.

Recovering from Failures using Timestamps
The second problem we address is detecting and

recovering from failures. We use timestamps to detect
when parts of the system are not working, identify
when data has changed, and determine when data has
become old and should be rechecked or removed.

Timestamps help detect failures when data
sources are generating periodic updates. If the times-
tamp associated with the data is not changing, then the
check has failed, which indicates that the remote node
is either slow or broken. This solution works even if
the updates are propagating through multiple
databases in the hierarchy because the timestamps are
associated with the data and don’t change as the data
moves.

We also use timestamps for consistency control
[Chan85]. Timestamps allow quick comparisons of
data to determine if it has been updated. We have a
timestamp associated with both the data, and the time
for when the data was placed in the database. Remote
processes maintain a last timestamp (t0). To synchro-
nize with the database, they get a new timestamp from
the database (t1), get all the data that was added since
t0, and set t0 to t1. By repeating this process, the
remote process can be kept weakly synchronized with
the database. Moreover, if the machines’ time is syn-
chronized [Mill95], then the remote process also
knows the freshness of their data. Timestamp consis-
tency control is very simple to implement in compari-
son to other consistency protocols [Gray75], and if the
database is accessible, then the data is always avail-
able regardless of other failures in the system, whereas
other protocols may deny access to ensure stricter con-
sistency.

Finally, we use timestamps to eliminate stale
data. Stale data can occur because of failures or
removals. The timestamps allow the data to be auto-
matically removed after a table specific period, which

10 1997 LISA XI – October 26-31, 1997 – San Diego, CA



Anderson and Patterson Extensible, Scalable Monitoring for Clusters of Computers

means that the system will automatically recover to a
stable state. Multiple timers allow slowly changing
data like physical memory to be updated infrequently
yet not be declared stale.

Data Scalability using Hierarchy
Systems that can take advantage of multiple

machines are usually more scalable. We have
designed a hierarchy (Figure 1) of databases in order
to make our system more scalable. The hierarchy pro-
vides many benefits.

A hierarchy allows updates to a database to be
batched. This reduces the network overhead by reduc-
ing the number of packets that need to be transmitted.
This allows more operations because the operations
are not serialized and hence the latency of the network
is unimportant. Finally, this allows the database to per-
form more efficient updates.

A hierarchy also allows specialization of nodes.
While a single database may not be able to handle the
full update rate for all of the information that is being
collected, a single database may be able to handle a
useful subset of the data at the full rate. For example,
statistics about CPU usage and processes could be
stored in a single database, allowing it to handle more
nodes.

Furthermore, a hierarchy allows reduction in the
data rate. For example, an upper level database could
keep all of the information gathered at an interval of a
few minutes. As the amount of data gathered grows,
the interval can be reduced. This will allow a single
database to always keep a complete, but more slowly
changing, copy of the database.

Finally, a hierarchy over multiple machines
allows for fault tolerance. Multiple databases can be
storing the same information, and hence if one of the
databases crashes, other nodes will still have access to
the data.

Data Transfer Efficiency using a Hybrid Push/Pull
Protocol
Given a hierarchy of databases, and a number of

additional processes which are also accessing the data,
the system needs an efficient method for transferring
data from sources to sinks. Most systems use polling;
a few also have occasional updates. Both approaches
have disadvantages, so we have developed a hybrid
push-pull protocol that minimizes wasted data deliv-
ery, maximizes freshness, and reduces network traffic.

The canonical pull protocol is RPC [Sun86];
SNMP is a mostly pull protocol. A pull-based system
requires the sink to request every piece of data it
wants from the source. If the sink wants regular
updates, it polls the source. Since the source knows it
wants regular updates, all of the request packets are
wasted network bandwidth. Furthermore, if the data is
changing slowly or irregularly, some of the polls will
return duplicates or no data. However, polling has the
advantage that since the data was requested, the sink

almost always wants the data when it arrives. Between
polls, the data goes steadily out of date, leading to a
tradeoff between the guaranteed freshness of the data
and the wasted traffic.

PointCast [Poin97] and Marimba Castanet
[Mari97] use a push protocol. A push protocol delivers
data all the time and allows sinks to ignore data if they
don’t want it. Multicast [Deer90] uses a pruned push
model, and broadcast disks [Acha97] use a push
model with broadcasts to all receivers. A push system
is ideal when the sink’s needs match the source’s
schedule since the data is current, and the network
traffic is reduced because the sink is not generating
requests. However, as the sink’s needs diverge from
the source’s schedule, a push model begins delivering
data that is wasted because the sink will just ignore it.
Also, sinks have to wait until the source decides to
retransmit in order to get data. The push model trades
off between wasted transmissions and communication
usage.

We use a hybrid model. Sinks send an SQL
request to the forwarder along with a count, and an
interval. The forwarder will execute the query until it
has sent count updates to the requester. The forwarder
will suppress updates that occur more frequently than
interval. By setting the count to one, a sink can get the
effect of the pull model. By setting the count to infin-
ity, a sink can get the effect of the push model. Inter-
mediate values allow requesters to avoid being over-
run with updates by requiring them to occasionally
refresh the query. The interval allows the requester to
reduce the rate of updates. When the updates are no
longer needed, the sink can cancel the request. In both
cases, the sink can use the full power of SQL to pre-
cisely retrieve the desired data. Using SQL reduces
one of the main disadvantages of the push model,
which is that the data delivered is not the desired data.
For example, in multicast, the only selection that can
be made is the multicast address, no sub-selection of
packets from particular sources can be made.

Visualization Scalability Using Aggregation
We have found that we need to use aggregation

to scale the visualization to our whole cluster. We tried
having a stripchart for every statistic we wanted, but
ran out of screen space trying to display all of our
machines. We therefore aggregate statistics in two
ways: First, we combine across the same statistics for
different nodes. For example, we calculate the average
and the standard deviation across the CPU usage for a
set of nodes. We then display the average as the height
in the stripchart, and the standard deviation as the
shade. Second, we aggregate across different statistics.
For example, we combine together CPU, disk and net-
work utilization to get a single statistic we call
machine utilization. Using shade takes advantage of
the eye’s ability to perceive many different shades of a
color [Murc84, HSV]. We also use color to help draw
distinctions and identify important information. For

1997 LISA XI – October 26-31, 1997 – San Diego, CA 11



Extensible, Scalable Monitoring for Clusters of Computers Anderson and Patterson

example, we use different colors for the I/O and user
CPU usage, and we identify groups of down machines
in red. Figure 2 shows a use of the first form of aggre-
gation, and the uses of color as it is a snapshot of our
system in use.

Figure 2: Snapshot of the Java interface monitoring our entire cluster which consists of 115 Ultra 1’s, 45 Sparc 10’s
or 20’s, and 4 Enterprise 5000 SMP’s. Aggregration has been done with averages (height) and standard devia-
tion (shade) across groups of 5 machines except for SMP’s. The darker charts are more balanced across the
group (u50..u54) all are at 100%), and the lighter charts are less balanced (u40..u44 have three nodes at 100%
since the average is 60% and the usage is not balanced). All charts show the system CPU time in blue over the
green user CPU time; u13 has a runaway Netscape process on it. Nodes u105-u109 and dawn35-dawn59 are
down and shown in red. Processes running on selected nodes are shown in the text box in the upper right hand
corner. A color version of this chart is available as http://now.cs.berkeley.edu/Sysadmin/esm/javadc.gif .

gather

gather
node-level DB

forwarder

node-level DB

forwarder
gather

gather
node-level DB

forwarder

node-level DB

forwarder

forwarder

mid-level DB

joinpush

forwarder

mid-level DB

joinpush

forwarder

top-level DB

joinpush

javaserver
visualization applet

visualization applet

Figure 3: Architecture of our system. The gather processes are replicated for each forwarder/node-level database
(DB) group. The top level databases can also be replicated for fault tolerance or scalability. The javaserver acts
as a network proxy for the visualization applets because they can not make arbitrary network connections. The
forwarder and joinpush processes are associated with a database and serve as the plumbing that moves data
through the system.

Implementation & Experience
We chose MiniSQL [Hugh97] for our SQL

database. MiniSQL is freely available to universities,
and has a very slight license for companies. The Min-
iSQL database is sufficient for our needs because we

don’t require complex SQL queries. In addition,
because MiniSQL comes with source, we were able to
extend it when necessary. For example, we added
micro-second timestamps to the database so that we
could extract data changing on a short time-scale. We
also removed the need to wait for a response from the
server after an SQL command, which allows groups of
updates to be sent as a batch. Our use of MiniSQL
also allows other sites to try our system without an
expensive initial investment in a database.

12 1997 LISA XI – October 26-31, 1997 – San Diego, CA



Anderson and Patterson Extensible, Scalable Monitoring for Clusters of Computers

Our experience using an SQL database has been
very positive. We initially stored all of our configura-
tion information in separate, per-program files. Given
our experience with the reliability, and flexibility of
the database, we have now moved the configuration
information into the database.

Figure 3 shows the data flow among the major
components of our system. The forwarder process,
associated with each database, accepts SQL requests
from sinks, executes them periodically and forwards
the results to the sinks. The joinpush process merges
the updates pushed from the forwarder processes into
an upper-level database. The javaserver process acts as
a network proxy for the Java visualization applet
because applets cannot make arbitrary network con-
nections. The visualization applet accepts updates
from the javaserver, and displays them in stripcharts
or a text window for the user. The applet also provides
a simple way to select a pane of information to view.

Resource usage of MiniSQL has not been a prob-
lem. The database uses 1-2% of the CPU on an Ultra
1/170 to update 20-30 statistics a second. Our upper
level databases seem to peak somewhere between
1500 and 2000 updates/second. There are many opti-
mizations we could make to reduce or rebalance the
load if necessary; we have already taken advantage of
the indexing support in MiniSQL.

Initially we were not concerned with getting our
system running, however we discovered after using it
for a little while that making sure all of the pieces
were functioning correctly, especially when we were
changing parts, was tricky. We therefore created a pro-
cess which watches to see if the various components
on a node are reachable, and if they are not attempts to
restart the node. We discovered that making sure that
leftover processes didn’t accumulate required careful
design. We use two methods to ensure that old pro-
cesses terminate quickly. First, each process creates a
pid file and locks the file. The reset-node operation
attempts to lock each file and if the lock fails, the pro-
cess is sent a signal. Using a lock guarantees that we
won’t accidentally try to kill off a second process
which just happens to have the same process id. Sec-
ond, we write an epoch file each time the node is reset.
Processes can check the epoch file, and if it doesn’t
match then they know they should exit. We added the
second approach because we occasionally saw pro-
cesses not exit despite having been sent a signal that
should cause them to exit.

The forwarder, and joinpush processes are both
implemented in C taking advantage of Solaris threads
in order to achieve better efficiency. We initially tried
implementing those processes in Perl, but the code
was too inefficient to support 150 nodes, and using
threads reduced concerns about blocking while recon-
necting. The javaserver is implemented in Perl
[Wall96] to simplify implementation and to support
run-time extension. The applets are implemented in

Java so that users can access our system without hav-
ing to download or compile anything other than a Java
enabled browser.

Data is added to the system by the gather pro-
cess, which is also implemented in Perl. We originally
examined a threaded implementation of the gather
process, but we were unable to get a sufficiently stable
multi-threaded implementation. We therefore use a
multi-process implementation. We have a directory of
files which all get spawned by the first process, which
then waits around and flushes old data from the
database. We currently have threads that extract CPU,
I/O, network, process and machine statistics. We also
have a specialized thread for extracting information
about our high-speed Myrinet [Myri96] network and
our lightweight Active Messages implementation
[Chun97].

accept thread

client threads

client list

DB client thread

DB reply thread

outside
connections

client
requests

DB requests

query state

DB replies

Client updates

Figure 4: Architecture of the forwarder. The left col-
umn shows either threads or important data struc-
tures in the forwarder. The right column shows
the interactions with other processes.

Figure 4 shows the architecture of the forwarder.
The accept thread gets outside connections from
clients and immediately forks a client thread to deal
with each client. The client threads take requests for
updates from the clients, and put those requests in the
structure associated with each client. The use of
threads allows us to easily handle slow clients without
concerns of blocking. The database client thread walks
the list of clients, and issues the requests which are
pending to the database. When the response comes
back from the database, it is matched with the infor-
mation stored at request time, and the reply thread
sends the updates to the appropriate client.

Figure 5 shows the architecture of the joinpush
process. The list of forwarders and the data to request
is configured externally to joinpush to simplify the
implementation. The reconnect thread forks separate
threads to connect to each of the forwarders and issue
a request. When a connection is made, the connection
is added to the connections list, and the update thread
waits around for updates from any of the forwarders.
It generates an appropriate database update. The reply

1997 LISA XI – October 26-31, 1997 – San Diego, CA 13



Extensible, Scalable Monitoring for Clusters of Computers Anderson and Patterson

thread will generate an insert request if the reply indi-
cates that the data was not yet in the table.

forwarder list

reconnect thread

connections list

handle update thread

DB reply thread

config. setup
commands

reconnect to
forwarders

forwarder
updates

DB requests

query state
DB replies

new DB
requests

Figure 5: Architecture of joinpush. The left column
shows either threads or important data structures
in joinpush. The right column shows the interac-
tions with other processes. The configuration
commands are handled analogously to how clients
are handled in the forwarder.

We have found the timestamps associated with
the data to be extremely useful. For example, an early
version of CARD failed to send the timestamp from
the javaserver to the visualization applet. When the
javaserver generated repeated updates of old data, the
client was fooled into thinking the system was per-
forming correctly. Now that we forward timestamps,
we would detect this error.

Because MiniSQL doesn’t support triggers
[Eswa76], our actual implementation of the forwarder
simply executes the query count times every interval
seconds. This implementation is a reasonable approx-
imation of the more optimal hybrid protocol. The main
disadvantage is that the forwarder will sometimes exe-
cute the query and there will have been no updates.
Since the forwarder is on the same node as the
database, and the query restricts the results to new
data, this is a fairly minor problem. A more optimal
implementation would merge the forwarder and the
database into the same process.

The fact that we display information through a
Java applet raises a few privacy concerns. In particu-
lar, outside users can see all of the statistics of the
cluster. Given that we are an academic institution, we
have not been very concerned about maintaining
secrecy of our usage information. However, all of the
standard techniques for improving privacy could be
added to our system. For example, access could be
limited by IP address, or secure, authenticated connec-
tions could be established via the secure socket layer
[Frei96]. To ensure privacy, it would be necessary to
apply this protection to the javaserver, the forwarder,
and the MiniSQL server. To prevent bogus

information from being added into the database, it
might also be necessary to protect the joinpush pro-
cess.

Related Work

The most closely related work is TkIned
[Schö93, Schö97]. TkIned is a centralized system for
managing networks. It has an extensive collection of
methods for gathering data. Because it is distributed
with complete source code, it can be extended by
modifying the program. Since the data is not accessi-
ble outside of the TkIned program, new modules
either have to be added to TkIned, or have to repeat
the data gathering. TkIned provides simple support for
visualization and does not aggregate data before dis-
playing it. TkIned’s centralized pull model limits its
scalability.

Pulsar [Fink97] uses short scripts (pulse moni-
tors) which measure a statistic, and send an update to a
central display server if the value is out of some hard-
coded bounds. Pulse monitors run infrequently out of
a cron-like tool. Pulsar can be extended by writing
additional pulse monitors, and adding them to a con-
figuration file. Pulsar’s centralized design is not fault
tolerant, and only simple support for external access to
updates. Pulsar does not support monitoring of rapidly
changing statistics.

SunNet Manager [SNM] is a commercially sup-
ported, SNMP-based network monitoring program.
Other companies can extend it by writing drop-in
modules to manage their equipment. Using SNMP
version 2 [Case96], or Sun proprietary protocols, it
has some support for multiple monitoring stations to
communicate with each other. As with other mono-
lithic systems, it has poor scalability and weak exten-
sibility.

The DEVise [Livn96, Livn97] system is a
generic trace file visualization tool. DEVise supports
converting a sequence of records (rows in a table) into
a sequence of graphical object, displaying the graphi-
cal objects, and performing graphical queries on the
objects. DEVise uses SQL queries to implement the
graphical queries, and supports visualizing trace files
larger than the physical memory on a machine. Unfor-
tunately, it does not support online updates to visual-
ized data, and so does not directly match our needs,
but we are using a similar idea of translating database
updates into graphical objects.

Conclusion

Decoupling data visualization and data gathering
through the relational database has greatly improved
the flexibility and structure of our system. It led to
our success in using relational tables for flexible data
storage and access. It also led to the idea of using a
hierarchy and a hybrid protocol for efficient data
transfer. Timestamps have been very useful in detect-
ing internal system failures and automatically

14 1997 LISA XI – October 26-31, 1997 – San Diego, CA



Anderson and Patterson Extensible, Scalable Monitoring for Clusters of Computers

recovering from them. Since the machines are used on
a research project [Ande95] exploring how to use hun-
dreds of machines in cooperation to solve complex
problems, aggregation in visualization was required by
the scale and class of the system we wanted to moni-
tor. We expect in the future to monitor more of the
software and hardware in our cluster, including more
research systems. CARD is available for external use
from http://now.cs.berkeley.edu/Sysadmin/esm/intro.html .

Acknowledgements

The authors would like to thank Remzi Arpaci-
Dusseau, Armando Fox, Steve Gribble, Kim Keeton,
Jeanna Matthews, Amin Vahdat, and Chad Yoshikawa
for their help clarifying and condensing the important
contributions of the paper.

Eric Anderson is supported by a Department of
Defense, Office of Naval Research Fellowship. This
work was also supported in part by the Defense
Advanced Research Projects Agency (N00600-
93-C-2481, F30602-95-C0014), the National Science
Foundation (CDA 9401156), Sun Microsystems, Cali-
fornia MICRO, Intel, Hewlett Packard, Microsoft and
Mitsubishi.

Author Information

Eric A. Anderson (University of California at
Berkeley) is a Ph.D. candidate in computer science
working on System Administration. His thesis con-
cerns monitoring and diagnosing problems in a cluster
of computers. Eric’s research interests include com-
bining operating systems, distributed systems, and net-
works to build large systems capable of solving com-
plex problems. Reach him electronically at <eanders@
u98.cs.berkeley.edu> .

David A. Patterson (University of California at
Berkeley) has taught computer architecture since join-
ing the faculty in 1977, and is holder of the Pardee
Chair of Computer Science.
At Berkeley, he led the design and implementation of
RISC I, likely the first VLSI Reduced Instruction Set
Computer. This research became the foundation of the
SPARC architecture, currently used by Fujitsu, Sun,
and Texas Instruments. He was also a leader of the
Redundant Arrays of Inexpensive Disks (RAID) pro-
ject, which led to high performance storage systems
from many companies. These projects led to three dis-
tinguished dissertation awards from the Association
for Computing Machinery (ACM). He is also co-
author of five books and is chair of the Computing
Research Association.
Patterson has won teaching awards from his campus,
the ACM, and the Institute of Electrical and Electronic
Engineers (IEEE). He is a Fellow of both the ACM
and the IEEE, and is a member of the National
Academy of Engineering. Reach him electronically at
<patterson@cs.berkeley.edu> .

References

[Acha97] ‘‘Balancing Push and Pull for Data Broad-
cast,’’ Swarup Acharya, Michael Franklin, and
Stan Zdonik. ACM SIGMOD Intl. Conference
on Management of Data. May 1997.

[Ande95] ‘‘A Case for NOW (Networks of Worksta-
tions),’’ T. Anderson, D. Culler, D. Patterson,
and the NOW team. IEEE Micro, pages 54-64,
February 1995.

[Apis96] ‘‘OC3MON: Flexible, Affordable, High Per-
formance Statistics Collection,’’ Joel Apisdorf, k
claffy, Kevin Thompson, and Rick Wilder. Pro-
ceedings of the 1996 LISA X Conference.

[Case90] ‘‘A Simple Network Management Protocol
(SNMP),’’ J. Case, M. Fedor, M. Schoffstall,
and J. Davin. Available as RFC 1157 from
http://www.internic.net/ds/dspg1intdoc.html

[Case96] ‘‘Management Information Base for Version
2 of the Simple Network Management Protocol
(SNMPv2),’’ J. Case, K. McCloghrie, M. Rose,
S. Waldbusser. Available as RFC 1907.

[Cham76] ‘‘SEQUEL 2: A unified approach to data
definition, manipulation, and control,’’ Chamber-
lin, D. D., et al. IBM J. Res. and Develop. Nov.
1976, (also see errata in Jan. 1977 issue).

[Chan85] ‘‘Distributed snapshots: Determining global
states of distributed systems,’’ M. Chandy and L.
Lamport. ACM Transactions on Computer Sys-
tems, February 1985.

[Chun97] ‘‘Virtual Network Transport Protocols for
Myrinet,’’ B. Chun, A. Mainwaring, D. Culler,
Proceedings of Hot Interconnects V, Auguest
1997.

[Codd71] ‘‘A Data Base Sublanguage Founded on the
Relational Calculus,’’ Codd, E. Proceedings of
the 1971 ACM-SIGFIDET Workshop on Data
Description, Access and Control. San Diego,
CA. Nov 1971.

[Deer90] ‘‘Multicast Routing in Datagram Internet-
works and Extended LANs,’’ Stephen E. Deering
and David R. Cheriton. ACM Transactions on
Computer Systems, May, 1990.

[Dolphin96] ‘‘HP Dolphin research project,’’ Personal
communication with author and some of the
development group.

[Eswa76] ‘‘Specifications, Implementations, and Inter-
actions of a Trigger Subsystem in an Integrated
DataBase System,’’ Eswaran, K. P. IBM
Research Report RJ1820. August, 1976.

[Fink97] ‘‘Pulsar: An extensible tool for monitoring
large Unix sites,’’ Raphael A. Finkel, Accepted
to Software Practice and Experience.

[Frei96] ‘‘The SSL Protocol: Version 3.0,’’ Freier, A.,
Karlton, P., and Kocher, P. Internet draft avail-
able as http://home.netscape.com/eng/ssl3/ssl-
toc.html .

1997 LISA XI – October 26-31, 1997 – San Diego, CA 15



Extensible, Scalable Monitoring for Clusters of Computers Anderson and Patterson

[Gosl95] ‘‘The Java Language Environment: A White
Paper,’’ J. Gosling and H. McGilton, http://java.
dimensionx.com/whitePaper/java-whitepaper-1.html .

[Gray75] ‘‘Granularity of Locks and Degrees of Con-
sistency in a Shared DataBase,’’ Jim Gray, et. al.
IBM-RJ1654, Sept. 1975. Reprinted in Readings
in Database Systems, 2nd edition.

[Hans93] ‘‘Automated System Monitoring and Notifi-
cation With Swatch,’’ Stephen E. Hansen & E.
To d d Atkins, Proceedings of the 1993 LISA VII
Conference.

[Hard92] ‘‘buzzerd: Automated Systems Monitoring
with Notification in a Network Environment,’’
Darren Hardy & Herb Morreale, Proceedings of
the 1992 LISA VI Conference.

[HSV] ‘‘Hue, Saturation, and Value Color Model,’’
http://loki.cs.gsu.edu/edcom/hypgraph/color/colorhs.
htm .

[Hugh97] ‘‘Mini SQL 2.0,’’ http://hughes.com.au/ .
[Livn96] ‘‘Visual Exploration of Large Data Sets,’’

Miron Livny, Raghu Ramakrishnan, and Jussi
Myllymaki. In Proceedings of the IS&T/SPIE
Conference on Visual Data Exploration and
Analysis, January, 1996.

[Livn97] ‘‘DEVise: an Environment for Data Explo-
ration and Visualization,’’ Miron Livny, et. al.
http://www.cs.wisc.edu/˜devise/

[Mari97] ‘‘Marimba Castanet,’’ http://www.marimba.
com/

[Mill95] ‘‘Improved Algorithms for Synchronizing
Computer Network Clocks,’’ David Mills,
IEEE/ACM Transactions on Networking, Vol. 3,
No. 3, June, 1995.

[Murc84] ‘‘Physiological Principles for the Effective
Use of Color,’’ G. Murch, IEEE CG&A, Nov,
1984.

[Myri96] ‘‘The Myricom network,’’ Described at
http://www.myri.com/myrinet/

[Poin97] ‘‘PointCast: the desktop newscast,’’
http://www.pointcast.com/

[Scha93] ‘‘A Practical Approach to NFS Response
Ti m e Monitoring,’’ Gary Schaps and Peter
Bishop, Proceedings of the 1993 LISA VII Con-
ference.

[Sch93] ‘‘How to Keep Track of Your Network Con-
figuration,’’ J. Schönwälder & H. Langendörfer,
Proceedings of the 1993 LISA VII Conference.

[Sch97] ‘‘Scotty Tnm Tcl Extension,’’ Jürgen
Schönwälder, http://wwwsnmp.cs.utwente.nl/̃ schoenw/
scotty/ .

[Seda95] ‘‘LACHESIS: A Tool for Benchmarking
Internet Service Providers,’’ Jeff Sedayao and
Kotaro Akita, Proceedings of the 1995 LISA IX
Conference.

[Ship91] ‘‘Monitoring Activity on a Large Unix Net-
work with perl and Syslogd,’’ Carl Shipley &
Chingyow Wang, Proceedings of the 1991 LISA
V Conference.

[Simo91] ‘‘System Resource Accounting on UNIX
Systems,’’ John Simonson. Proceedings of the
1991 LISA V Conference.

[SNM] ‘‘Sun Net Manager,’’ Sun Solstice product.
[Sun86] ‘‘Remote Procedure Call Programming

Guide,’’ Sun Microsystems, Inc. Feb 1986.
[Wall96] ‘‘Perl 5: Practical Extraction and Report Lan-

guage,’’ Larry Wall, et al., Available from
ftp://ftp.funet.fi/pub/languages/perl/CPAN/ .

[Walt95] ‘‘Tracking Hardware Configurations in a Het-
erogeneous Network with syslogd.’’ Rex Wal-
ters. Proceedings of the 1995 LISA IX Confer-
ence.

16 1997 LISA XI – October 26-31, 1997 – San Diego, CA


