
The following paper was originally published in the
Proceedings of the Eleventh Systems Administration Conference (LISA ’97)

San Diego, California, October 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Monitoring Application Use
with License Server Logs

Jon Finke – Rensselaer Polytechnic Institute

ABSTRACT

One feature of our campus-wide UNIX service is the wide selection of scientific and
engineering applications such as AutoCad, Pro/ENGINEER, Maple, etc. We currently have 32
‘‘major application packages’’ site licensed, representing an annual cost of almost $300,000. A
number of the licenses were based on concurrent usage, so around budget time, people started to
ask if we had an appropriate number of licenses.

By adapting some previously developed software for tracking workstation use, we were
able to determine who was using which applications, and concurrent usage information for these
products and to reduce the number of concurrent users allowed to reflect actual use (plus some
headroom). By applying these figures to just four applications, we were able to obtain a savings
of $43,000 without cutting any service to our users.

This paper discusses the methods we used to collect, process, and display this information,
as well as some of the problems we encountered.

Introduction

Three years ago, we presented a paper on moni-
toring workstation usage with a relational database
[4]. This system worked by going to each machine and
reading the /var/adm/wtmp files, and storing the
contents in the database. When faced with the task of
collecting application usage information, this system
looked to provide a good starting point. We briefly
examined at least one commercial product, but it did
not take advantage of user demographic information –
and the real show stopper at an educational site – it
cost money.

While some of the applications we license are
node locked,1 a number of them rely on some sort of
license server. One of our objectives is to have every
application available on any of our machines. This
way, rather than having to get a license for every
machine, the license servers allow us to license a lim-
ited number of concurrent active copies of the applica-
tion. As part of this process, the license servers often
wrote log files with session information. While these
log files were much different in format from the
WTMP files, they were recording similar information.
We were able to adapt our existing Wtmp_Collec-
tor program to pick up application usage information
from these logs, and save them in database tables. This
code was definitely worth keeping.

On the other hand, the original WTMP analysis
program had some serious limitations; one of the big

1A fun process where we have to supply a list of host ID
numbers to the vendor, and they in turn return a list of magic
numbers which we load into some file, and if the planets are
aligned just right, things actually work. Doing this for hun-
dreds of workstations is worthy of a paper in its own right.

problems was the command line user interface. Each
processing run required a number of parameters to be
set, resulting in longer and longer command lines.
Some common setting combinations were grouped
together, but adding or changing them required recom-
piling the program. Even changing just one of the
parameters would require rerunning the program,
which repeated the database query step, obtaining the
demographic information again. It was generally just a
slow process, and it was just not ready to accommo-
date the demands placed on it to handle many different
types of license server information. It also had to do
much of the graphics processing. Although it was
using jgraph [5] for actual postscript generation, there
was still a lot of work involved, and there were some
limits to what jgraph2 could do for us. Given these
limitations, as well as the need to accommodate
changes in the data storage, we decided to replace the
processing program. An X-based spreadsheet pro-
gram we had already installed had an API that allowed
us to load data directly into the spreadsheet, and build
on the spreadsheet command menus. This also
allowed us to use the graphics capability of the spread-
sheet for output, as well as allow people to manipulate
the data in a familiar spreadsheet environment.

With the updated data collector in place, and the
new interface using the spreadsheet, we are now able
to track the usage of many of our applications in addi-
tion to our workstations. This also simplifies the
preparation of reports and graphs for management on
a timely basis, without too much time or effort.

2Jgraph is a program that reads a stream of simple drawing
instructions, and generates PostScript on stdout. It works
nicely in batch environments but it could not handle pie
charts.

1997 LISA XI – October 26-31, 1997 – San Diego, CA 17

Monitoring Application Use with License Server Logs Finke

Taking License with Servers – Data Problems

Column Type Table Notes

Username char(8) Both Unix username.
Owner Number Both Internal DB key for that username.
Host_ID Number Wtmp Host_ID of the machine where the session took place.
Host_ID Number License Host_ID of the user’s machine, if available.
Lsrv_Host_ID Number License Host_ID of the license server.
Application char(4) License A short tag to identify which license server recorded

the record.
On Time Date Both The time and date when the session started.
Off Time Date Both The time and date when the session terminated.
Line char(12) Wtmp The TTY of the session, used to match disconnects

with connects.
Line char(12) License A tag to match session start with session end.
Type char(1) Wtmp A code indicating the TYPE of session (telnet, ftp,

etc.)
Type char(1) License A code indicating subtypes for a license server.
Remote_Host char(16) Both Machine where user originated the session if not the

same as the host in host_ID above.
Rem_Host_ID Number Both The host_ID of the remote host if it can be deter-

mined and is local.

Table 1: License Log Table Layout

The first step in the process of monitoring appli-
cation use was to extract the raw data from the license
server3 log files and load it into the relational database
tables. Although the information in the license server
log files was in many ways similar to what we were
getting from the WTMP logs, there were some signifi-
cant differences as well. In addition, each type of log
file had a different record format.

Database Record Format
One of the gains of this project was to put all

license server records into a consistent format thereby
simplifying later analysis and allowing us to compare
usage of different applications. In determining the
table layout, we started with the original WTMP table
layout, redefined some columns, and added some new
columns as seen in Table 1. We continued attempts to
normalize some of the data at collection time, convert-
ing host names to host_IDs4 and user names to owner
ID5.

3A note on the term License Server. From an operational
standpoint, we often say that ‘‘machine xxx is a license serv-
er ’’. That means that it is running one or more license server
processes. However, in this paper, when we refer to a license
server, we are generally referring to a specific process on a
machine, providing licensing for one specific application or
set of applications.

4A host_ID is an internal database key that identifies a par-
ticular host. Since all hosts of interest are already in the
database, this key is easy to obtain.

5Like the host_ID, the owner_ID is a database key that
uniquely identifies the user, even if the UNIX username is
eventually re-used.

The first difference we had to accommodate
between WTMP records and license server logs, was
that while all of the WTMP records on a particular
host applied to only that host, there may be more than
one license server running on a given machine. In
order to determine where in the particular log file it
needed to resume processing, we needed to use both
the Lsrv_Host_ID and Application columns
to determine when we last collected records.

An additional complication was that some
license servers provided license serving for more than
one application; this required the addition of a subtype
field in each record to differentiate between applica-
tions served by a particular license server process. To
do this, we simply redefined the Type column, and
for each license server (as defined in the Applica-
tion column), would use one or more subtypes. Due
to the number of different applications, both the
Application and Type columns are required for
the identification of a particular program product.
This distinction would be significant for the data
extraction process. It may have been preferable to
make the Type column globally unique.

The last major change was the addition of a third
host field in the record. In the wtmp records, we
recorded from which host the record came, and for
remote sessions, the host from which the user had con-
nected to the target machine. With license servers, we
also had to record the license server host in addition to
the host on which the user was running the applica-
tion, and in some cases, the actual location of the user.

18 1997 LISA XI – October 26-31, 1997 – San Diego, CA

Finke Monitoring Application Use with License Server Logs

Care and Feeding of License Server Logs
In order to provide a handle on the use of disk

space by system log files, many of our log files are
‘‘rolled’’ on a periodic basis. That is, the existing file
(named filename) is renamed to filename.1, file-
name.1 is renamed to filename.2, and so on for some
number of generations6 until the oldest one is deleted.
This is normally done via cron and everyone is happy.
As it turns out, many of the general UNIX log files are
written via syslog, and fortunately, one of these ‘‘roll
log file’’ cron jobs also kill -HUPs syslog so the
new files are used. Other files, such as WTMP, are
opened before each use, so the new file is used right
away.

Unfortunately, the license servers generally do
not write their log files via syslog, and so that while
the log files might get rolled, the server keeps the file
handle open and continues to write to the old file,
leaving the newer files empty. To make matters worse,
we found some cases of license servers that had been
up long enough that the active file was rolled off the
end and deleted. This resulted in no information being
available, and the space being held by the still open
log file until the license server was restarted or the
machine rebooted.

This was not a good state of affairs. As a short
term work around, we moved the roll code into the
startup script for each license server, and set the num-
ber of generations to a moderately large number. We
then scheduled a weekly reboot of each license server
machine. This would ensure that each license server
would get restarted (and the log files rolled) at least
once a week. The collection process is still done on
an occasional basis, and the large number of genera-
tions lets us get away with not collecting data fre-
quently. The actual deletion of old log records is
hopefully now being done by the collection process,
rather than the log file rolling process.

Operation of the Collection Program
We periodically run the license server log collec-

tion program on all of our license serving machines.
The general mode of operation is to scan all license
server logs (and wtmp logs), and clean up when done.
For testing, we generally run the program for just one
specific type and without the clean option.

In scan mode, the collection program looks for a
log file for each of the defined license servers and, if it
finds one, checks in the database for the last time we
collected records for that particular license server on
that particular host. It then reads through the rolled log
files until it finds the appropriate place to start. It next
reads and processes the records, moving up through
the rolled log files until it has read all the available
records. If clean mode is also enabled, it will delete all

6Actually, they are done in reverse order for obvious rea-
sons.

but the most recent rolled log file. This leaves a little
bit of a record behind on the machine, as well as the
current active log file.

A structure built into the program stores the list
of known license servers. This structure includes the
application name for the license server (which is
stored in the Application column of the
database), the log file name, a time conversion routine,
a parsing routine, and a list of valid subtypes (for
translation into the Type column). Since many of the
record formats are similar, this allows for a lot of code
sharing between different log formats. While it might
be preferable to store this information in a file instead
of hard coding it, the parsing of the different formats
is tricky enough that it is easier to hard code things
than to encode the parsing information into a file.

Since the collection program deals with many
different sources for the records, it is useful to convert
the time and date into an easy to work with standard
format. Internally, all date fields are converted to a
standard form of seconds since 1 Jan 1970. Not count-
ing the binary log file formats, we found four different
date formats7 that we had to handle.

Most of the logs are in a readable text format.
You can read in a record, check the timestamp with the
time conversion routine, and if you are interested in
the record, call a sub-parse routine that returns point-
ers to username, remote host, record type, etc., which
are then inserted into the database. The actual pro-
cessing is based on the type of record. There is no
standard for records types of course; each server uses
its own keywords to indicate the type of record. So far,
we have seen ‘‘OUT:’’, ‘‘IN:’’, ‘‘issued’’, ‘‘returned’’,
‘‘connect to’’, ‘‘closed connection to’’, and others
along those lines.

The first record type is a session start. Before we
insert a new record into the database, we check to see
if there is a session open on that Lsrv_Host_ID,
Application and Line combination; if there is,
we terminate it on the assumption that we must have
missed the session end record, since someone else is
now using that same Line. This might happen in the
case of an application that does not terminate cleanly,
and so does not notify the license server on termina-
tion. We then insert a new session record into the
database.

The second type of record is for a session end.
For this case, the database is searched for a record for
the same Lsrv_Host_ID, Application and
Line that does not have an Off_Time set. Ideally
there is only one, and the record is updated to reflect
the end of the session. If we find more than one, we
mark all of them as done, although we should set an
error flag in the record.

7We wrote time conversion routines to handle: MM/DD
HH:MI:SS, MM/DD HH:MI, MON DD HH:MI:SS (but no
year!), and MM/DD/YY HH:MI:SS.

1997 LISA XI – October 26-31, 1997 – San Diego, CA 19

Monitoring Application Use with License Server Logs Finke

The third record type is a server restart. In this
case, we go through and close all open records for that
Lsrv_Host_ID and Application. The
assumption here is that we will not get proper session
end records, since the server state has most likely been
lost.

Some license servers also generate time stamps.
This is especially nice when you have backup servers
running. For example, a server may be up for a long
time, but may never be handling any requests since it
is a backup server and the primary has stayed up. In
such an instance, the timestamp records allow you to
record that you at least checked the server.

Problem Data

We have run into some problems with attempting
to process these log files. In one case, we were
attempting to catch up on some old records (before we
had implemented rolling for that particular license
server), and discovered that the time stamps did not
include the year, and we had three years’ worth of data
in the one file. The code that normally made a guess
about the year ended up in a time warp. Fortunately,
that was a minor service.

Some of the log files actually use multiple differ-
ent formats in the file, and this can be very annoying
when attempting to extract times or parse the fields.
Other files are not in a text format. In some cases,
such as the WTMP files, the record format is defined
in a library. In other cases, such as the NETLS license
server, the files are written in a proprietary database
format, and instead of a record definition, they give
you a program to extract data on demand. Although I
was tempted to use this program, they had no facility
to read an alternate database file, so all rolled informa-
tion was lost.

Since we could not locate any documentation as
to the file format, we had to reverse engineer the log
file format. We were eventually able to figure out
enough to eventually decode the records. A vendor
supplied struct definition would have made things
a lot easier.

Another source of error was with the assumption
that keys we picked to identify session terminations
were in fact unique. We had the case where one appli-
cation was pretty slow to start up. Some users would
double click on the application name, starting two
copies. Sometimes they would even do it again, start-
ing two more. Eventually, the first copy would appear,
and then the second would appear right on top of the
first. From the user point of view, they double clicked,
and finally the application appeared and was opera-
tional. What the user did not know was that they had
extra copies running in the background.)

We also had some license servers (or applica-
tions, we never determined who was not cooperating),
that would not report the machine name on which the
user was working. For example, if a user was using

two workstations, or just had two sessions going, we
faced the possibility of marking the wrong sessions as
closed. We also had cases where the actual username
and hostname that got logged was anyuser@any-
host; not very helpful.

Another potential source of problems comes
from software upgrades. We have experienced prob-
lems with our WTMP logging after OS upgrades. On
several occasions, we discovered that although we
were successfully recording the start of a session, we
were missing the end of a session, making it impossi-
ble to determine usage of labs. We could possibly see
similar problems when we upgrade license servers.

In another case, we stopped getting session
records from console users altogether, making it very
difficult to determine if the workstation labs were
being used. On reporting this to the vendor, we were
told that it was not a bug, but rather that there was no
interest in tracking console users. Finding this expla-
nation unacceptable, we have since modified the login
procedure to capture the information we need.

As we identified these various problems, we
attempt to get help from the vendors in correcting
them. We have also standardized our log file rolling
script, and seem to be getting better at operating in a
consistent manner.

Demographic Breakdowns or Breakdowns in
Demographics

All of our user accounts are managed with a rela-
tional database, which can provide all sorts of demo-
graphic information about each userid, such as status
(Student, Employee, Alumnus, etc.), departmental
affiliation, campus address, and so forth. We are able
to access this data when processing the log records
from the WTMP database to provide additional infor-
mation about the type of user.

We still faced some of the same problems with
the demographic analysis, that we did with the original
WTMP project. Specifically, while we do record the
UNIX userid, the demographic information is obtained
dynamically from the relational database, and that
information is the current data, rather than the infor-
mation that was in force at the time of the actual ses-
sion. This results in what appears to be an increasing
amount of use of our facilities by upperclassman and
alumni as we examine older log records.

One approach to solving this problem is to add
some additional fields. For example, when updating
the demographic tables, rather than just making the
change such as changing Class_Year from ‘‘fresh-
man’’ to ‘‘sophomore’’, you could set an End_Date
field in the current record to the current date and insert
a new record with the Start_Date also set to the
current date and the Class_Year field set to
‘‘sophomore’’. Similarly, when doing demographics
lookups, instead of reading the latest demographic
information, you select the record that matches the

20 1997 LISA XI – October 26-31, 1997 – San Diego, CA

Finke Monitoring Application Use with License Server Logs

appropriate time frame. In this way, you get the cor-
rect class year (or other desired demographic informa-
tion) that applied at the time the session took place.
This does however, involve changing the methods
used to maintain the demographic data, and will cause
the demographic tables to grow, rather then stay at a
steady state size (since we will be adding records
rather than just changing them.)

Figure 1: Default Xess Screen

A second approach would be to record the demo-
graphic information of interest in the actual log
records. This might be especially worthwhile if there a
few fields that will be needed on a repeated basis, or
that change frequently. Clearly however, some
thought needs to go into the type of reports and break-
downs that will be needed. Another drawback to this
approach is the delay between writing the record to the
log file, and the eventual collection. If you are not
collecting records on a timely basis, the demographics
may change between the time of use and the time of
collection.

Unlike the WTMP collection, which was con-
fined just to hosts under central control, some of the
licensed software is available for use by machines run
by other departments. Unfortunately, there is no
requirement that they use the same usernames that we
use in the central systems. Although we can provide
breakdowns of usage by machine and even by depart-
ment, the user demographics are not valid for these
‘‘foreign’’ systems. We need to add a check in the col-
lection program to determine if the user host is legal
for demographic breakdowns or not, and include that
status in record. Since the list of hosts where we can
get valid demographics is subject to change as hosts
are added to (or removed from) the central system
over time, a Demographics_Valid flag needs to
be set at data collection time.

Even if we are not able to determine valid demo-
graphic information on the users of a particular ser-
vice, this data can still be of use. For one particular
application, we were able to generate a pie chart
showing usage by users in a particular department

(based on host domain), versus the general population.
With this, the administrators in the other department
were able to justify paying for part of the cost of the
application license, reducing the load on our software
budget.

Programming to Xess – Talking to a Spreadsheet

One of the licensed applications we had for our
UNIX workstations, was an X-based spreadsheet
called Xess. One of the interesting features of this
was an API toolkit [1] that allowed us to write a pro-
gram that could connect to a running copy of the
spreadsheet, add new menus and menu items, load
data into the spreadsheet, and generate graphs.

Right out of the box, Xess looks like a normal
spreadsheet, with tool bars and pull-down menus, and
so on (see Figure 1). By opening the Connections
menu, you can enable external connections8 to the
spreadsheet, which follow the X security rules. The
external application is able to invoke many of the
functions available to the console user, as well as
insert data and formula into cells and read information
back out. More importantly, it allowed us to define
additional menus that could then invoke event-han-
dling routines to perform the desired functions. This
‘‘dual control’’ feature was very useful during the
development process, as we were able to have the pro-
gram load some data into the spreadsheet, we could
manually manipulate it, figure out pretty graphs and so
on, and then encode the desired graphs and functions
into one of our own menu items.

The data analysis generally consists of two
phases, data selection followed by data processing. In
the data selection phase, you need to specify the type
or types of records you want, and the time period of
interest. You may also want to specify additional con-
ditions on the records. Once this is done, you then
query the database for the desired records. As you can

8This can also be defaulted to enabled with an X resource
setting.

1997 LISA XI – October 26-31, 1997 – San Diego, CA 21

Monitoring Application Use with License Server Logs Finke

see in Figure 2, we have added a number of additional
menus to the spreadsheet session. Most of the selec-
tion phase is handled via the Select menu.

Figure 2: Enhanced Xess Screen

Date 00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 . . .

12/02/96 5.471 1.480 0.096 0.300 0.001 0.000 0.024 1.524

12/03/96 5.114 5.108 3.794 2.000 1.408 1.194 0.534 1.769

12/04/96 5.816 2.973 3.604 2.053 1.056 1.000 1.200 1.768

Mean(n=3) 4.995 3.848 3.537 2.794 1.741 1.244 1.124 1.336

% Load 71.4 55.0 50.5 39.9 24.9 17.8 16.1 19.1

Avg Load 0.714 0.550 0.505 0.399 0.249 0.178 0.161 0.191

Table 2: Sample Spreadsheet Data.

Once you have set the desired selection options,
the last item you pick from the Select menu is the
Search Database option, which extracts the data
from the Oracle database. Once this is done, the
Select menu is inactivated9 and the Process
menu is activated. At this point, you can select the
type of data processing you want. The spread-
sheet/menu interface made it easy to add more con-
trols and options to the program. For the most part, the
rest of the new menus just set flags and values in the
program and modify the actions of the Process
menu items. We frequently want to compare different
demographic elements, and the Column and Row
menus let us set what we put in the columns and what
we put in the rows of the spreadsheet. We use the
DataType menu to select what values we put into
the spreadsheet (such as duration, number of sessions,
etc.). A lot of different switch settings go into the
Options menu. Unlike the previous three menus
which act like radio buttons (selecting one deselects
the others), the options are all set and cleared indepen-
dently. During development, the Debug menu pro-
vided a handy place to put commands to provide
debugging information, as well as to increase or
decrease the verbosity level of the program.

9Inactive menus and menu items are indicated by being
grayed out. In Figure 2, the Process menu is currently in-
active.

The current version of Xess does not support
cascading menus. This became a problem when deal-
ing with some of the license servers that had a lot of
sub-codes. We got around this in the Select menu,
by prefixing each license server name with a fraction
made up of the number of selected sub-codes over the
total number of sub-codes for that particular server.
The extraction program would also create (or rename)
a new menu for that server, with each of the individual
sub-code entries available for selection as desired.
This approach might not be as elegant as cascading
menus, but it works.

We frequently want to see usage as a function of
the time of day, and often we want that to be an aver-
age for more than one day of use. To this end, we
added a Time In Columns option to the
Datatype menu. When this is selected, the columns
of the spreadsheet each represent a specific time
period. For example, in Table 2, we have few days of
usage data.10

Although we could include the date with the
time, and use more than 24 columns, we instead wrap
the data at midnight and start the next day (we actually
duplicate midnight at the other end). Once we have
wrapped all of the data, we can simply insert a func-
tion to calculate an average load. In cases where there
is a maximum number of concurrent sessions (such as
a set number of licenses, or a fixed number of
machines in a room for WTMP records) we were able

10This happens to be usage in a workstation lab, but the
same processing applies to license server stats. Some data
excluded for formatting reasons.

22 1997 LISA XI – October 26-31, 1997 – San Diego, CA

Finke Monitoring Application Use with License Server Logs

figure a Site Load; the percentage of the resource
in use, in this case, workstations. At this point, it is a
trivial matter to have the spreadsheet generate a graph
of average usage versus the time of day.

We often want to compare usage patterns over
different time periods. To facilitate this, we added an
option that, after the data is displayed, and the desired
graphs are produced, it logically resets the origin of
the spreadsheet (cell A1) to the row after the last
active row, and then prompts for a new date range or
search target. You can then select new data, load it
into the spreadsheet, and generate new graphs for that
selection. The program keeps track of the summary
line of the past graphs, and combines them with the
current summary, and generates a new graph with the
different data sets displayed on the same axis. In Fig-
ure 3 for example, we have four weeks of data for two
different labs, displayed on the same axis.

00
:0

0
01

:0
0

02
:0

0
03

:0
0

04
:0

0
05

:0
0

06
:0

0
07

:0
0

08
:0

0
09

:0
0

10
:0

0
11

:0
0

12
:0

0
13

:0
0

14
:0

0
15

:0
0

16
:0

0
17

:0
0

18
:0

0
19

:0
0

20
:0

0
21

:0
0

22
:0

0
23

:0
0

00
:0

0

Time of Day

0

20

40

60

80

100

S
ite

 L
oa

d
(P

er
ce

nt
)

Compare Date ranges for Cary and Nugent
 03/31−04/03/97 C

 04/07−04/11/97 C

 04/14−04/18/97 C

 04/21−04/25/97 C

 03/31−04/03/97 N

 04/07−04/11/97 N

 04/14−04/18/97 N

 04/21−04/25/97 N

Figure 3: Combining Graphs on one Axis

We added options to dump data in a raw form, and
with selected demographic information added in case
the researcher wants to do some other types of analy-
sis. We were also able to dump session information to
generate histograms of session duration, using the
histogram graph option of Xess. Since all of the
original functions of Xess are still available, after
someone selects and processes data, does additional
calculations, figures out what graphs they want and so
on, they can then save the spreadsheet, using the
options in the standard file menu, and allow others
to look at the information at a later date. In fact, the
data in Table 2 and graph in Figure 3 were taken from
a run done months ago, and reloaded into Xess for this
paper.

It’s Easier the Second Time Around

In the original WTMP analysis, we were able to
convert session data to load information, by creating a
time-line, divided up into discrete segments of time,
and ‘‘adding’’ in sessions to the appropriate bucket.
Since this worked well, we decided to keep it. A

distinct advantage we had in this rewrite is that we
were building a new application from the ground up,
yet we had a pretty clear idea of where we wanted to
go, and what problems we had encountered in the first
implementation. This helped us with designing data
structures and the data flow through the program.

In the original program, it was sometimes diffi-
cult to break down the data by any arbitrary demo-
graphic value. There was a lot of special case code,
and adding new types was tricky. In addition, we often
wanted to break down records by two keys at once,
which did not work at all well (you could break down
in one direction, but not the other).

The new program needed to be much more flexi-
ble, and ideally, all data should be an abstraction. We
also had a solid idea of what we were going to do with
the data; specifically, dump it into a spreadsheet for
display. This gave us three ways to break down the
data; just provide a total in a single cell, which would
be a zero axis case, break down by one demographic
item, producing a single row or column, which would
be the one axis case, or break it down by two demo-
graphic items, which would be a two axis case, essen-
tially a mesh.11 The determination as to how to divide
the data, is controlled by the Row and Column
menus.

As a record is read in, the row and column demo-
graphic elements are determined, and then they are
compared to existing entries in a multiply-linked
structure, and inserted or added to existing entries. In
Table 3, we are looking at the number of sessions of
Data Explorer, and breaking it down by the school
affiliation in the rows, and the class year in the
columns. Each entry is added in three times; once for

11The code to manage all of the data elements in the mesh
was a good exercise in pointers and linked lists. I was able to
successfully handle the three cases of n=0,1 or 2. I never
tried to take it into more dimensions, although that might be
possible.

1997 LISA XI – October 26-31, 1997 – San Diego, CA 23

Monitoring Application Use with License Server Logs Finke

the school, once for the class year, and once for that
combination of school and class year. In this case, we
can see the students in the school of science make the
most use of the application, but that is mostly by Ph.D.
candidates, whereas the Engineering students use it at
the Masters and Undergraduate level as well.

Sum DOC MAS SR

Cat Value 540331 54698 53852

Sci 460870 460354 0 516

Eng 188011 79977 54698 53336

Table 3: Data Explorer use by School and Class.

When we query the database, we currently get back a
linked list of database rows. This is due to our current
use of our RSQL12 interface to Oracle. When process-
ing the selected data, each row is in turned loaded into
a mesh data element, and passed along for processing
into the mesh. Although this does increase memory
usage, keeping the original query results in memory
allows for very fast processing when changing demo-
graphic choices – all of the data is already extracted
from the database. This is a big improvement over the
old program, by caching all of the raw data and demo-
graphic information, we can readily play with the data
and try different types of analysis without much of the
delay we used to have.

Since this is one of the few places that we actu-
ally interact with the database, this routine provides a
clean place to change the database API. While the
RSQL is great for small queries, you do pay a perfor-
mance penalty for larger queries. One area for future
work is to replace this with a PRO*C13 interface to
allow block transfers of data. This can result in much
better data transfer rates from the database.

If time-of-day processing is enabled, each mesh
element also gets a pointer to an array of buckets, rep-
resenting a time-line. This will hold session duration
information that can later be extracted to produce the
concurrent usage graphs shown earlier. I did not spend
any time with changing the bucket size, although this
could prove meaningful later on.

Space, the Final Frontier

In the original WTMP logging project, all
WTMP records were stored in a single table. While
this worked at first, after a year or so, this ever-grow-
ing table was becoming more difficult to manage.
During system upgrades, we would have to export this

12We developed a layer that runs on top of the Oracle Call
Interface that simplifies writing applications that need to in-
terface with Oracle, it handles network authentication, space
management and many other details of coding with Oracle.

13PRO*C is the Oracle pre-compiler for embedding SQL
queries (and other calls to the database) directly in a C pro-
gram.

single, multi-million record table to a single file, and
finding single chunks of disk space big enough was
becoming a definite challenge.

To work around this problem, we decided to
break up the data into one-month sections, determined
by the start date of the record. We now create a
database table for each month, basically appending
_YY_MM onto the table name. At collection time,
insertions are easy; you just take the connect time and
generate the table name. Session terminations are a bit
trickier, as a long session may have started in the pre-
vious month, or even earlier. We therefore currently
look back two months for a session start record.

The change for the analysis program was also
moderately simple. Instead of just taking the date
range and returning a table name, we return a list of
table names. The selection process then queries each
table in turn, returning a set of record for each month.
These are then processed into the mesh in turn. The
only challenge remaining is to be sure to have the new
tables created ahead of time so there is a place to
receive new data.

In addition, we also had started systematic back-
ups of the Simon database [2, 3], and the WTMP data
became the bulk of the data being backed up. The Ora-
cle database maintains a record of all transactions
since the last full backup. These transaction files mul-
tiplied quickly with the log collection, requiring more
frequent full backups, and a lot more free disk space
on the database machine to hold transaction files
between backups.

The Simon database is used to manage all of our
UNIX accounts, disk accounting, and many other
aspects of our operation. Since the operational need
for the WTMP and license server data was much less
than the rest of the Simon data, we decided to move
the WTMP data into a different database instance that
was not being backed up. This removed the load on
the backup system, while still allowing us to back up
the mission critical Simon data.

Although the log record tables could continue to
grow in size, in practice, we have not always reloaded
the older data when moving the database between
machines. Also, as the data ages, the problems with
demographics get worse.

24 1997 LISA XI – October 26-31, 1997 – San Diego, CA

Finke Monitoring Application Use with License Server Logs

Findings and Losses

Although we had continued to collect WTMP
data, until the license server collection project had
started to heat up, no one had really spent much time
doing analysis of the WTMP data. When we started
planning for some workstation lab upgrades, we went
to generate some nice reports with the new tools and
discovered that as a result of an OS upgrade, we did
not have accurate termination information for most of
our public workstations labs. As a fallback position,
we did some analysis on just the session start times
and we were able to draw some conclusions on work-
station usage.

Despite the problems with the workstation usage
statistics, we were able to use them in some decision
making process. In addition, the very concrete benefits
from the license server analysis has brought a good
deal of attention and support to the statistic collection
and analysis project. Additional staff have been
assigned to work with the system on an ongoing basis,
and session data collection will be integrated into our
existing session management software.

The information collected allowed us to measure
the actual usage of a number of our licensed applica-
tions, and in some cases, we could reduce the number
of copies licensed, resulting in significant savings in
license fees. This savings should help maintain inter-
est and support for the project. We also need to find
ways to measure the usage of applications that do not
use this type of license server.

This actually opens up other questions about
measuring application usage. Given that this project
grew out of measuring workstation use, essentially
seat time, most of the information has a bias to session
duration. This makes a lot of sense for an interactive
program such as autocad, but makes less sense for an
application that might remain open but unused for
most of a session such as a mail reader. Recording ses-
sion duration is just about meaningless for applica-
tions such as compilers and text processors; the fact
that someone spends a lot of time running latex may
be more a reflection on the speed of their machine and
not on the type of work they are doing.

References and Availability

All source code for the Simon system is avail-
able for anonymous FTP. See ftp://ftp.rpi.
edu/pub/its-release/simon/README.simon
for details. In addition, all of the Oracle table defini-
tions are available at http://www.rpi.edu/
campus/rpi/simon/misc/Tables/simon.
Index.html .

Although this system benefits from being able to
extract demographic information from Simon, and
from actually storing the raw data in the database,
both of these areas are pretty well isolated, so other

databases, or even flat files could be used in place of
the connections to Simon.

Xess is a commercial spreadsheet product avail-
able for many UNIX platforms and WindowsNT.
More information on Xess can be obtained from:

Applied Information Systems, Inc.
100 Europa Drive Chapel Hill, NC 27514 USA
1-919-942-7801
1-800-334-5510
1-919-493-7563 FAX
info@ais.com.
http://www.ais.com

Acknowledgments
Many thanks to Adam S. Moskowitz and Debra

Wentorf for their help in editing several drafts of this
paper (although I still take full responsibility for all
misplaced commas and poor grammar) and also to
Jackie Blendell for her help with the original abstract.
Thanks also to my manager, Kathy Bursese, who
encouraged preparation and submission of the paper.

Author Information

Jon Finke graduated from Rensselaer in 1983,
where he had provided microcomputer support and
communications programming, with a BS-ECSE. He
continued as a full time staff member in the computer
center. From PC communications, he moved into
mainframe communications and networking, and then
on to Unix support, including a stint in the Nysernet
Network Information Center. A charter member of the
Workstation Support Group he took over printing
development and support and later inherited the Simon
project, which has been his primary focus for the past
six years. He is currently a Senior Systems Program-
mer in the Server Support Services department at
Rensselaer, where he continues integrating Simon
with the rest of the Institute information systems, and
also deals with information security concerns. Reach
him via USMail at RPI; VCC 319; 110 8th St; Troy,
NY 12180-3590. Reach him electronically at
finkej@rpi.edu. Find out more via http://www.rpi.edu/
˜finkej.

Bibliography

[1] Applied Information Systems Inc, Chapel Hill,
NC. Xess Connections API Toolkit Guide – Ver-
sion 3.1, 1996. http://www.ais.com.

[2] Jon Finke. Automated userid management. In
Proceedings of Community Workshop ’92, Troy,
NY, June 1992. Rensselear Polytechnic Institute.
Paper 3-5.

[3] Jon Finke. Relational database + automated
sysadmin = simon. Boston, MA, July 1993. Sun
Users Group. Invited Talk for SUG-East 93.

[4] Jon Finke. Monitoring usage of workstations
with a relational database. In USENIX Systems
Administration (LISA VIII) Conference Proceed-
ings, pages 149-158. Rensselear Polytechnic

1997 LISA XI – October 26-31, 1997 – San Diego, CA 25

Monitoring Application Use with License Server Logs Finke

Institute, USENIX, September 1994. San Diego,
CA.

[5] James S. Plank. Jgraph – a filter for plotting
graphs in postscript. In USENIX Technical Con-
ference Proceedings, pages 61-66. Princeton
University, USENIX, January 1993. San Diego,
CA.

26 1997 LISA XI – October 26-31, 1997 – San Diego, CA

