
The following paper was originally published in the
Proceedings of the Eleventh Systems Administration Conference (LISA ’97)

San Diego, California, October 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

How to Control and Manage Change
in a Commercial Data Center
Without Losing Your Mind

Sally J. Howden and Frank B. Northrup – Distributed Computing Consultants, Inc.

ABSTRACT

Most computer system problems today are caused by change. Change is an innate
characteristic of an active computer system. This paper presents an approach whose goal is to
minimize and control the impact of problems by controlling and managing change. It is geared
towards the system administrator’s role in meeting this goal in a commercial data center
environment.

System administrators have been given the task of providing reliable, available and
supportable computing environments for their clients. A system which does not meet these
requirements results in, at the very least, lost productivity, but may also cause a financial loss,
and in the worst cases may result in injury to the customers which the business serves (see [1]
for an example). In order to provide a reliable, available and supportable computing system it is
necessary to minimize the impact on the system’s users when problems occur. Almost all
computer system problems today are caused by change: changes in hardware components;
changes in system or application software; and to a lesser extent changes in processes and/or
procedures, or in personnel. The extent to which a system administrator is able to control and
manage change is the extent to which they are able to provide a reliable, available and
supportable computing system to their client(s).

This paper describes a platform independent approach for pro-actively managing problems
in a computing system by managing change well. This approach includes: the process of
documenting the computer system’s current state; the process of documenting the change; and
the process and conditions under which the change is first implemented in a test environment,
then in a pre-production environment and finally in a production environment. This approach
saves time and effort in the long-term administration of computer systems. The documentation
necessary to facilitate this approach is described and some examples provided. This approach is
currently being used by Distributed Computing Consultants, Inc. (DCCI) with its clients.

Introduction

Almost all computer system problems today are
caused by change. A computer system is defined as a
collection of people, hardware, software, and docu-
mentation that provides a particular service to cus-
tomers. Hardware components of a computer system
tend to fail during one of two times: the initial burn-in
period – shortly after having been added to the system;
or after having been in operation for greater than five
years. However, in today’s rapidly evolving comput-
ing environment hardware is often replaced with new
and improved components well before five years pass.
Furthermore, the failure of a hardware component
may have little or no effect on users due to the increas-
ing number of vendors who provide systems with
redundant components such as CPUs, power supplies
and fans; disks with automatic failover capabilities;
and hot swappable disks (coupled with mirroring or
other RAID approaches). Thus, the hardware failure
which is most likely to impact users is that which
occurs when a change is made to the hardware.

Likewise, the majority of software failures occur
(or in the case of bugs are discovered) when the soft-
ware is first used following initial installation, after a
version update or in a way which is different than
originally intended. Again, a problem occurs when a
change is made.

When a problem or failure occurs within a com-
puting environment, the first question an experienced
system administrator will ask is: What changed? Was
something added? Was something modified? Is some-
one trying to use the system in a way different from
the defined use? Has something in the computing sys-
tem’s environment changed? Was there a recent power
outage? Is there a problem with the environmental
controls? This course of investigation – figuring out
what change has occurred – will often lead the system
administrator to the cause of the failure.

So, if change is the problem in many cases, a
logical course of action would be to minimize the
number and length of disruptions to the computer sys-
tem caused by change. Why should a system adminis-
trator be concerned with pro-actively managing

1997 LISA XI – October 26-31, 1997 – San Diego, CA 43

How to Control and Manage Change . . . Howden & Northrup

changes to a computer system? Why not just react to
change by fixing the problems as they occur?

Today, computer processes are integral to almost
every aspect of a company’s business. An outage can
impact product research, development, marketing,
time to market, accounting, finances, regulations, pay-
roll, etc. In several of these areas, any outage directly
impacts a company’s bottom line and ability to com-
pete effectively in the open market.

Document Management
Production Server - US

Key

Differential Wide SCSI
Fibre Channel

cisco FDDI
Console Monitor

Fast SCSI Buffered Ethernet

CF:
CM:
DS:
FC:
SE:����

����
����
����
����
����
����

����
����
����
����
����
����
����

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�
�
�
�

C2
8mm Tape Drive

C2
CD-ROM Drive

Docsvrus1

1

2

3

0

C0C0
O.S.

S
E

D
S

S
E

C2

F
C

C
F

C1

C6

D
S

F
C

F
C

F
C

C0C4 C3

F
C

C
M

C5

CPU
Mem

1
256

1
256

2
512

2
512

Docsvrus1 Information

Platform: Sun SPARCserver 2000E
CPU: 6 60MHz SuperSPARC
Memory: 1.5 GBytes
Disk: 0.5 TBytes
Operating System: Solaris 2.5.1
Major Software:

SSA 3.9
Solstice DiskSuite 4.0
Oracle 7.3.3
Documentum 3.1.2
Docsys 1.2

C0
O.S.

C0 C0

SS-2000E
C1

SSA 200
C3

SSA 200

DLT
Drive

C4
SSA 200

C5
SSA 200

C6
SSA 200

�
�
�
�
�
�
�

0123456789

Figure 1: Example of a Server Configuration.

In a commercial data center every day matters. In
pharmaceutical companies, from the time the company
submits an application for a new drug to the United
States Federal Drug Administration (FDA) it has
seven years during which it owns exclusive rights to
the drug. However, the company can not sell the drug
in the United States until the FDA approves it. After
the seven year period, other companies are free to
copy and market the drug. The time between the FDA

approval and the end of the seven year period can be
highly profitable for the pharmaceutical company (i.e.,
hundreds of thousands of dollars per day). Therefore,
any computer outage that lengthens the time between
application to and approval by the FDA has significant
detrimental impact.

Now suppose the company has several drugs at
this same stage when the outage occurs.

And the financial well-being of a company is not
the only concern. With hospitals, insurance compa-
nies, doctors’ offices, pharmaceutical companies and
pharmacies the loss of information access can directly
impact a person’s life.

In many ways universities are very similar to
commercial entities. A key product for most universi-
ties is education. At many universities major changes
are scheduled during breaks. The university’s ability

44 1997 LISA XI – October 26-31, 1997 – San Diego, CA

Howden & Northrup How to Control and Manage Change . . .

to deliver its product to market would be greatly ham-
pered if its computer system was unavailable during
the term.

So, if an unavailable computer system can have
such a drastic affect on the client, it is vitally impor-
tant to the client that the computer process not be
interrupted. For this reason it is important that the sys-
tem administrator do as much as possible to insure that
the computer process is not interrupted.

d0

d4

d5

d2

d1

d3

t0

��
��
��
��
��
��
��t1 t2 t3 t4 t5

Databases (/db d21,d23)

�
�
�
�

Unbundled Software (/optdev/
ms26 d24,d26)

�Home Dirs. (/homedev/r20 d20)�Oracle Data (dbdev/ms29 d27,d29)

�
Oracle Indexes (dbdev/ms32
d30,d32)

�
Oracle Arch (/dbdev/ms44
d42,d44)�DM Content (/dbdev/ms62
d60,d62; /dbdev/ms68 d66,d68)

��
��NFS - PS (/nfsdev/ms65 d63,d65)

��
Oracle RBS (/dbdev/ms41
d39,d41)

��Oracle Temp (/dbdev/ms53
d51,d53)��Oracle Redo (/dbdev/ms33
d33,d35)

��
Oracle System (/dbdev/ms38
d36,d38)

��
Oracle Tools (/dbdev/m56
d54,d56)��Oracle Users (/dbdev/m59
d57,d59)

Docsvrus1 c1 Disk Array Storage Map

��
��

ms29

��
ms53

��
��ms41

��
��

ms62

��
��

ms68
��
��

ms65

��
��ms26

��r20

��
ms44

��
��ms32

Hot
Spare

��
��

ms62

��
��

ms68
��
��

ms65

��r20

Hot
Spare

��
ms44

��
��ms32

��
��

ms62

��
��

ms68
��
��

ms65

��r20

��
��ms35

��m59��
ms38

��
ms44

��
��ms32

��
��

ms62

��
��

ms68
��
��

ms65

��r20

��
��

ms29

��
��

ms62

��
��

ms68
��
��

ms65

��
ms53

��
��ms41

��
��db

��r20

��
��

ms29

��
��ms35

��m56��
ms38

��
��

ms62

��
��

ms68
��
��

ms65

��
��ms26

��r20

Figure 2: Disk Layout Example.

The truth is, even a seemingly insignificant
change can cause a problem which requires valuable
time (including a system outage) to correct. This does
not imply that we should never make changes to pro-
duction systems. Today, change is the rule, not the
exception. Therefore system administrators need to
think carefully about where, when and how changes
are performed. The rest of this paper presents one

approach for proactively managing problems by man-
aging change well throughout the life of a computer
system [2] rather than reactively dealing with changes
as they occur. This approach advocates the following
[3]:

1. Establishing & documenting the system’s base-
line.

2. Understanding the change.
3. Testing the change on test and pre-production

systems.
4. Documenting the change before, during and

after implementation.
5. Reviewing the change with peers, manager and

client before, during and after implementation.
6. Defining a back-out strategy for the change.
7. Training all individuals impacted by the

change.

1997 LISA XI – October 26-31, 1997 – San Diego, CA 45

How to Control and Manage Change . . . Howden & Northrup

8. Revisiting the defined roles and responsibilities
of system personnel.

Establishing & Documenting the System’s Base-
Line

Before a change is made to a production environ-
ment the current state of that environment must be
well understood and documented. If the current state is
not documented, then all work on the change imple-
mentation must halt and the current system state must
be documented. It is important to know the state of the
computer system in order to properly evaluate the
effects of the change. It is just as important to have a
defined state to which the system can be restored
should it become necessary to back out the change.
The documentation specifying a system’s base-line
should include at least the following:

• Server Configuration. This includes the server
component layout, disk layout, platform type,
amount of memory, number of CPUs, etc. The
example in Figure 1 shows a server component
layout, platform type, amount of memory, and
number of CPUs. An example disk layout is
provided in Figure 2 for one of the disk arrays
in Figure 2.

• Software List. This list includes all major soft-
ware which has been installed on the system
including versions and patch levels. The exam-
ple in Figure 1 lists the major software pack-
ages installed on the system.

• Roles and Responsibilities. Each role required
to support the computer system is included in
this document and its responsibilities defined.
The roles should include staff, system adminis-
trator(s), dba(s), client(s), application adminis-
trator(s), etc.

• Network Diagram. The network diagram
shows how the system’s various nodes are
related to each other and the communication
path(s) between them. This includes all devel-
opment, pre-production and production clients
and servers, as well as support systems.

• Installation Steps and Logs. This documenta-
tion includes the steps taken for installing the
current operating system and major software
applications, and the logs of the actual proce-
dures.

• Standard Operating Procedures. A SOP
defines the procedure for accomplishing a spec-
ified, encapsulated task. It includes all relevant
information and instructions detailed enough
for an entry level system administrator to per-
form the procedure. A SOP is written for all
common changes to and procedures performed
for the computer system. An example of the
former is replacing a faulty disk. An example
of the latter is performing routine monitoring of
the system. Figure 3 shows A SOP template.

• Change Control Form. A change control form

(CCF) is created to document any change not
covered by a SOP if that change has a reason-
able chance of impacting use of the computer
system. Figure 4 presents a CCF template.

Procedure Name
Standard Operating Procedure

Author
Date

I Procedure Description
II Scope of This SOP

III Complexity
IV Estimated Outage Time
V Backout Contingency Plan

VI Note(s)
VII Supporting Documentation

VIII Procedure
Step 1
Step 2
. . .
Step N

IX Test Plan
Figure 3: Standard Operating Procedure Template.

Change Name
Change Control Form

Author
Date

I Problem Definition
II Solution

III Scope of This Change
IV Project Team
V Complexity

VI Impact of Not Making Change
VII Estimated Outage Time

VIII Priority
IX Re-Validation Recommendation
X Backout Contingency Plan

XI Status
XII Note(s)

XIII Supporting Documentation
XIV Procedure

Step 1
Step 2
. . .
Step N

XV Test Plan
XVI Notes on Implementation
Engineer: Date:
Customer Rep: Date:
QC Specialist: Date:

Figure 4: Change Control Form Template.

• Backup Procedure. This document includes a
backup schedule indicating the backup levels, a
retention schedule, and off-site storage arrange-
ments.

• Disaster Recovery Procedure. The list of
potential disasters ranges from losing or cor-
rupting data and failure of a system component

46 1997 LISA XI – October 26-31, 1997 – San Diego, CA

Howden & Northrup How to Control and Manage Change . . .

to losing an entire site. While not every con-
ceivable disaster can be reasonably accounted
for, there should be (3-5) procedures that cover
various, reasonable points within that range.
Given such a set, it should be possible to find a
procedure which addresses a disaster similar in
nature to an actual disaster.

• Test Scripts. The application Quality Assur-
ance/Quality Control [4] (QA/QC) group
should provide an appropriate set of test scripts
to be run after any change which impacts the
application. As Figure 5 shows, a test script is a
list of tests to be performed and for each test
the expected results, a place to indicate the out-
come of the test, and a comment section.

Test Script Name
Test Script

Author
Date

Test List
Test 1
Description
Expected Results
Actual = Expected? (Responsible Initials):

Yes: No:
Comments

:
:
Test N
Description
Expected Results
Actual = Expected? (Responsible Initials):

Yes: No:
Comments

Figure 5: Test Script Template.

Additional items that may be documented are dis-
cussed in [5]. Once a system’s base-line has been
established and documented, attention can be turned to
understanding the change to be made.

Understanding the Change

Before a change is implemented on the produc-
tion system, it is necessary to understand the change.
The better a change is understood, the better it can be
implemented and maintained. Many questions need to
be answered. What problem is being solved? How
does the change solve it? What are the side effects of
making this change? What are the implications of not
making this change? Who is affected? How are they
affected? What is the reliability of this change? What
training will be needed as a result of implementing the
change? What is the best way to make the change?
What is the scope of the change? Who is experienced
in this area, with this change? That is, who can help if
an unforeseen problem occurs during or after the
change? All changes should be well thought out
beforehand. This process can be greatly facilitated by
having a change control form (see Figure 4) which

brings these questions/issues, as well as other’s, into
consideration. Once a change has been thought out it
is tested on a non-production system.

Testing the Change

Testing the Change on a Test System
In order to fully understand a change, including

how best to implement it and the effect it will have, it
is necessary to make the change. First, all appropriate
documentation is read, including any vendor provided
information. Then, an initial Work Plan (WP) is devel-
oped. Finally, the change is implemented on a non-
production system by following the initial WP, an
example of which is given in Figure 6.

At this phase a separate test system is preferred
over a common test system or a development system
in order to minimize the change’s impact on others.
However, a common test or development system may
be used as long as the impact on users of this system is
taken into consideration. This initial testing of the
change is not performed on a production system as the
change’s impact may not be fully understood at this
time.

Testing the Change on a Pre-Production System
Once the change itself is well understood and the

work plan has been updated from the previous stage,
the change needs to be tested within the production
environment. However, the test at this stage is per-
formed on a separate pre-production system. This sys-
tem should exactly match the production system in
every way possible, certainly in every way that mat-
ters. The development or test system can not be used
for this purpose because there are usually numerous
differences between these systems and the production
system. Developers and system administrators need
an environment where they have the freedom to learn
and implement new systems, subsystems, ideas, etc.
On the other hand, production users need an environ-
ment that is reliable, available and supportable [6].
These are very different environments and should be
kept separate.

Since the development or test system is signifi-
cantly different than the production system, this final
testing of the change is completed on a pre-production
system. This testing includes executing the appropriate
QC generated test scripts. These test scripts should
provide evidence that the system resulting after imple-
mentation of the change still meets the specified QC
requirements. Once all testing is complete, the final
work plan is created.

Documenting the Change

To keep the current state of the production sys-
tem documented we must document all changes. Con-
trol of a system is kept only to the extent of detail with
which each change is documented [7]. This is best
done with a combination of a change control form,
SOPs, work plans and change logs. Before the change

1997 LISA XI – October 26-31, 1997 – San Diego, CA 47

How to Control and Manage Change . . . Howden & Northrup

is implemented on the pre-production system the
change control form is filled out and the initial work
plan is created. The change control form and work
plan differ in that the change control form is written
for the client and reviewers and contains a high level
description of the change implementation. The work

Updating DocMgmt Solaris 2.5.1 Patches
Work Plan

3-September-1997

Project: Updating DocMgmt servers Solaris 2.5.1 patches.

Scope: The patches will fix known operating system problems.

Purpose: To make DocMgmt production servers more reliable.

System Engineers: Frank Northrup (DCCI)

Estimated Outage Period: 4 hours.

Plan :

Preparation

Verify that backups are good the morning before starting the patches update.

Create list of patches to install. Create patchinfo and patchlist files for "installpatches"
script. Keep the order relationship used on other servers.

Create list of patches to uninstall. Create backout_patchinfo and backout_patchlist files for
"backoutpatches" script. Reverse the order relationship used to install the patches

Compare current patches to new patches to be certain all are covered as needed.
[<server>: ls /var/sadm/patch compared to docsvrus1:/opt/adm/Sol251/Patches/]

Schedule outage to update patches.

5.

4.

3.

2.

1.

Updating the Patches

Move automatic Documentum and Oracle start/stop links to Hold directories.2.

Mount the administration filesystem from Docsvrus1 and go to appropriate bin directory:
mount docsvrus1:/opt/adm/Sol251 /mnt; cd /mnt/<server>/bin

3.

Stop the Documentum and Oracle processes.
/etc/init.d/dbdm stop
/etc/init.d/dbdmbroker stop
/etc/init.d/dbora stop

1.

Backout the patches:
./backoutpatches < backout_patchinfo-full-path-name>

14.

4.

Reboot system:
shutdown -y -i6 -g0 "Rebooting to remove old patches."

5.

Checkpoint: If reboot fails in any way, diagnose and resolve, or return to base-line state.6.

Mount the administration filesystem from docsvrus1:
mount docsvrus1:/opt/adm/Sol251 /mnt

7.

8. Install new patches:
cd /mnt/<server>/bin; ./installpatches <patchinfo-full-path-name>

...
Checkpoint: Make sure Oracle and Documentum systems started properly. Make certain
client application runs fine. If not, diagnose and fix, or return to base-line state.

Figure 6: Example of a Work Plan.

plan is written for the system administrator(s) who
will be executing the implementation and is a much
more detailed description of the procedure. Before the
change is implemented on the production system the
final work plan is created. As the change is imple-
mented on the production system the actual steps
taken, which may differ from the final work plan for
unforeseen reasons, need to be logged. Afterwards all
other impacted documentation (for example, SOPs)
needs to be checked and updated as necessary.

Reviewing the Change

It is always a good idea to have a change
reviewed by peers, manager and client via the change
control form, work plan and a presentation. Peers are
usually the best at understanding, and hence cri-
tiquing, the computer system’s technical aspects of the
change and the overall approach. Furthermore, the bet-
ter that peers understand the change, the better they
will be able to assist in making the change. A manager
brings to the table a global view concerning the impact
of the change. Furthermore, it is important to have a
manager ’s support of the process. A client representa-
tive knows well how the change will impact the
client’s specific processes and environment, as well as
the relative priority with which the client views the
change. The more involved a client is in the change
process, the more confident they and the system

48 1997 LISA XI – October 26-31, 1997 – San Diego, CA

Howden & Northrup How to Control and Manage Change . . .

administrator will be in the reliability and consistency
of the resulting system. This will, in turn, foster a
good working relationship between system administra-
tor and client.

Change Name
Change Management Checklist

Author
Date

Date CommentsItem

Change control form

Test on test system

Test on pre-production system

Work plan - Initial

Work plan - Final

Review - Peers

Review - Manager

Review - Client

Back-out strategy

Training - affected individuals

Roles and responsibilities revisited

Implemented on production system

Test scripts

Base-line established

Server configuration

Software list

Roles and responsibilities

Network diagram

Installation steps and logs

Standard operating procedures

Change control form

Backup procedure

Disaster recovery procedure

Figure 7: Example of a Change Management Checklist.

Defining a Back-Out Strategy

Although following the change control processes
mentioned above greatly reduces the chance of the
change causing problems on the production system,
something may still go wrong. Thus a back-out strat-
egy needs to be defined prior to implementing the
change on the pre-production system. This back-out
strategy should take the system back to its base-line
state. The back-out strategy itself should be well-doc-
umented as part of the change control form and work
plan.

Training All Individuals Impacted by the Change

All folks affected or potentially affected by a
change need to have training on what the change is
and how it impacts them. If a change results in a cor-
responding change in how clients use the system, then
they will need training so that the time it takes to use
the system again at the same level or better (if the
change resulted in an enhancement to the system) is
minimized. Support personnel (staff, system adminis-
trators, operators, etc.) need training so that they can
continue a high level of maintaining the system and
supporting users of the system.

1997 LISA XI – October 26-31, 1997 – San Diego, CA 49

How to Control and Manage Change . . . Howden & Northrup

Revisiting Roles and Responsibilities

Finally, the roles and responsibilities which were
defined with respect to the production computing sys-
tem must be re-evaluated. Some roles may have been
obsoleted by the change and/or new responsibilities or
roles may need to be filled. In any case, all those
affected by the change need to be involved in the eval-
uation and redefinition of the roles and responsibili-
ties.

Discussion

There are several elements to the approach pre-
sented in this paper. In order to help keep track of the
completion of these elements a Change Management
Checklist is provided in Figure 7. This approach is
being used successfully by DCCI with its clients. At
one site there have been only five unscheduled out-
ages in 2.5 years for 17 production, pre-production
and training UNIX servers with 44 CPUs, 9.5 GBytes
of RAM and 1.7 TBytes of disk space. This set
includes: one production server with 8 CPUs, 1.5
GBytes of RAM and 0.3 TBytes of disk space; a sec-
ond with 8 CPUs, 1.0 GBytes of RAM and 0.5 TBytes
of disk space; and a third with 6 CPUs, 1.5 GBytes of
RAM and 0.5 TBytes of disk space.

At first, it seemed that this approach would
improve reliability and availability of production sys-
tems, but with the trade-off of significantly increasing
the amount of time and effort spent by the system
administrator on any given change. However, what we
have found is that while the initial effort is greater, we
actually save time and effort:

• when repeating a change a month or more after
a previous occurrence;

• when transferring knowledge to other system
administrators performing the same or similar
change;

• when filling in for the primary system adminis-
trator;

• by assisting in promoting site consistency;
• by assisting in promoting site standards;
• when diagnosing problems (because everything

is already documented).

Conclusion

Bug-free software and transparent changes are a
system administrator’s ideal scenario. Unfortunately,
these are rare occurrences. Further complicating mat-
ters is an environment in which employers are reduc-
ing their computing system support personnel while
increasing the number of systems which need to be
supported. It becomes increasingly important that sys-
tem administrators take and keep control of the sys-
tems for which they are responsible. The extent to
which a system administrator is able to control and
manage change is the extent to which they will be able
to provide a reliable, available and supportable com-
puting system to their clients and maintain their sanity.

This paper describes a platform independent approach
for doing just that.

Acknowledgements

Special thanks to Kevin Suboski, owner and
President of DCCI, for leading us down this path.
Thanks to Kevin, fellow DCCI employees and Phar-
macia & Upjohn, Inc. employees for encouraging us
during the writing of this paper. Many thanks to Phar-
macia & Upjohn, Inc. for providing an environment in
which this approach could be developed, tested and
refined. Thanks also to our LISA ’97 reviewers for
their insightful comments and suggestions. Thanks to
both of our families for their loving support.

Author Information

Sally J. Howden is currently an Open Systems
Consultant with DCCI. She has worked as a UNIX
system administrator or consultant for six years. She
earned a B.S. in Computer Science and Mathematics
from Calvin College, a M.S. and a Ph.D. in Computer
Science from Michigan State University. Sally can be
reached via email at sallyj@distcom.com .

Frank B. Northrup is currently an Open Systems
Consultant with DCCI. Previously he managed the
computing facilities for the CS and CIS departments at
Michigan State University and Ohio State University,
respectively. He has managed UNIX systems for ten
years. He earned a B.S. in Computer and Information
Science from Ohio State University. Frank can be
reached via email at frank@distcom.com .

References

[1] Armour, J. and W. S. Humphrey, ‘‘Software
Product Liability,’’ Software Engineering Insti-
tute, TR CMU/SEI-93-TR-13, ESC-TR-93-190,
August, 1993.

[2] ‘‘Quality Systems: Part 13. Guide to the applica-
tion of BS (British Standard) 5750: Part 1 to the
development, supply and maintenance of soft-
ware,’’ BS 5750: Part 13: 1991, ISO 9000-3:
1991, BSi Standards.

[3] ‘‘Computer Validation Policy for Pharmacia &
Upjohn,’’ Pharmacia & Upjohn, Inc., Version
1.0, April, 1996.

[4] ‘‘IEEE Standard for Software Quality Assurance
Plans,’’ IEEE Std. 730-1984.

[5] Nemeth, E., G. Snyder, S. Seebass and T. Hein,
UNIX System Administration Handbook, Second
Ed., Prentice Hall PTR, Upper Saddle River, NJ,
ISBN 0-13-151051-7, 1995, pp 10, 741-742.

[6] Kern, H. and R. Johnson, Rightsizing the New
Enterprise – The Proof, Not the Hype, Sun
Microsystems, Inc., Mountain View, CA, U.S.A.,
ISBN 0-13-132184-6, 1994.

[7] Agalloco, J., ‘‘Computer System Validation –
Staying Current: Change Control,’’ Pharmaceu-
tical Technology, January, 1990.

50 1997 LISA XI – October 26-31, 1997 – San Diego, CA

Howden & Northrup How to Control and Manage Change . . .

1997 LISA XI – October 26-31, 1997 – San Diego, CA 51

52 1997 LISA XI – October 26-31, 1997 – San Diego, CA

