
The following paper was originally published in the
Proceedings of the Eleventh Systems Administration Conference (LISA ’97)

San Diego, California, October 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org



Shuse At Two: Multi-Host
Account Administration

Henry Spencer – SP Systems

ABSTRACT

The Shuse multi-host account administration system [1] is now two years old, and clearly a
success. It is managing a user population of 20,000+ at Sheridan College, and a smaller but
more demanding population at a local ‘‘wholesaler ’’ ISP, Cancom. This paper reviews some of
the experiences along the way, and attempts to draw some lessons from them.

Shuse: Outline and Status

Shuse [1] is a multi-host account administration
system designed for large user communities (tens of
thousands) on possibly-heterogeneous networks. It
adds, deletes, moves, renames, and otherwise adminis-
ters user accounts on multiple servers, with functional-
ity generally similar to that of Project Athena’s Ser-
vice Management System [2].

Shuse uses a fairly centralized architecture. All
user/sysadmin requests go to a central daemon
(shused) on a central server host, via gatekeeper pro-
cesses on that host, which handle network interaction
and authentication, and insulate the daemon from user
misbehavior. Shused itself handles all database
updates, regenerates derived files like the passwd file
as necessary, and makes calls to various helper pro-
cesses. Shused is single-threaded using an event-loop
organization; long-running operations (e.g., updates to
‘‘slave’’ servers) are done by an auxiliary daemon
(shuselace, which talks to shused using roughly the
same command interface employed by users), so that
shused itself is not tied up and unresponsive during
such operations. Shuselace performs operations on a
slave server by invoking (via telnet and inetd) a
shusetie process there.

Shused keeps the entire user database in memory
for fast response (RAM is cheaper than database pack-
ages). Crashproofing, initial startup, and emergency
manual changes require a copy of the database on
disk, but the presence of the memory copy allows
optimizing the disk copy for quick updates rather than
rapid bulk access. The disk copy is stored as one file
per user, using a simple text format with each line
containing a field name and a field value.

Shuse was written essentially entirely in Expect
[3, 4] (an extended version of Tcl [5, 6]), a decision
we have not regretted. A few tiny auxiliary programs
written in C do jobs that are not feasible in Expect,
and there are some shell files around the periphery as
well. Performance has been quite satisfactory after a
few early problems were resolved. Maintenance and
enhancement have been greatly eased, and portability
has been trivial.

After some trying moments early on, Shuse is
very clearly a success. In mid-autumn 1996, Sheridan
College’s queue of outstanding help-desk requests was
two orders of magnitude shorter than it had been in
previous years, despite reductions in support man-
power. Favorable comments were heard from faculty
who had never previously had anything good to say
about computing support. However, there was natu-
rally still a wishlist of desirable improvements.

At around the same time, ex-Sheridan people
were involved in getting Canadian Satellite Communi-
cations Inc. (‘‘Cancom’’) into the ISP business as a
‘‘wholesaler ’’ ISP, supplying connectivity and
resources to a network of retail dealers in mostly-
remote areas. They decided they wanted to use Shuse.

Evolution

Cancom’s use of Shuse required tracking slightly
different information and generating slightly different
outputs. This exposed a fair number of Sheridan-spe-
cific assumptions, some of which were easier to cure
than others.

Merely adding new fields to the database was
fairly trivial, thanks to the early decision to adopt a
highly extensible format.

Changes to the Shuse code were also required,
however, and since the Sheridan version was
inevitably evolving in parallel, periodic code merges
have been required ever since. This has been a bit
tedious but not fundamentally difficult; we’re still dis-
covering which things need to be parameterized so
that configuration files can customize them to cus-
tomer needs. We don’t think we could reasonably have
anticipated most of them; indeed, some of the early
attempts at such anticipation have gone unused.

Assorted additional facilities also had to be
added, such as a Shuse implementation of the pop-
passd interface that lets non-shell users change their
passwords. (This was originally done for Cancom, but
turned out to be of considerable interest to Sheridan as
well – a pattern that has held for a number of the
changes.) We initially tried to make the usual freeware
poppassd implementation talk to Shuse, but after a

1997 LISA XI – October 26-31, 1997 – San Diego, CA 65



Shuse At Two: Multi-Host Account Administration Spencer

number of problems (including one security breach via
a core dump!), we gave up in disgust and wrote our
own in Expect. It turned out to be shorter and much
more robust and versatile than the original C code
(which is basically trying to do an Expect-like job
without the proper tools).

A more substantial user interface that also had to
be added was a menu-oriented interface for Cancom’s
dealers, so that routine account administration could
be delegated (subject to appropriate restrictions) to
them. Original ideas of GUIs based on Tk [6] had to
be shelved in favor of a very simple text-based menu
system because of a tight schedule, unpredictable vari-
ations in user equipment, and the limitations of ‘‘long
thin’’ communications links.

The dealer interface is not glossy and elegant,
but it has worked out well. We were worried about
response time, especially given those communications
links, but the dealers have been so happy at being able
to do their administration themselves – getting results
in seconds instead of hours or days – that a bit of
slowness hasn’t yet elicited any critical comment. The
one real blemish of the current design is that the dealer
program knows too many things that shused also
knows, so any change to such things has to be made in
several places. Fixing that will require more complex
provisions for user interfaces to obtain such informa-
tion from shused, perhaps as downloaded Tcl code – a
promising approach, but also a complicated one.

The text-based dealer interface naturally speaks
English. This being Canada, soon after the dealer
interface went into operation we got asked ‘‘what
about a French version?’’ Intense distaste for the
thought of maintaining two separate versions of the
same code, plus a slight possibility of needing more
languages in future (Cree has been mentioned...) led
us to invent a more general solution: a message-cata-
log system for Tcl [7]. This hasn’t seen enough use yet
for a good evaluation, but it seems adequate to do the
job.

We note that although it was originally envi-
sioned that there would be multiple user-interface pro-
grams talking directly to shused, in practice all inter-
faces to date have been built on top of the shusedo
program, which simply sends a single command to the
daemon and outputs the response. A simple command-
line interface like this lends itself well to the construc-
tion of more complex and more interactive interfaces;
the reverse is not true.

Decentralization

The original Sheridan version of Shuse relied
very heavily on NFS – in particular, it shared the
/usr/local/shuse tree that way – and distributed the
passwd file (etc.) using NIS/YP. Cancom did not par-
ticularly want to do either, mostly for reasons of secu-
rity. Sheridan wanted to continue using NIS but was

having second thoughts about having an important
administrative area widely NFS-mounted. Consider-
able effort was needed to adapt Shuse to a more
loosely-coupled environment.

We had to make a concerted search for places
where Shuse components explicitly or implicitly relied
on shared filesystems or NIS, and fix them all.
Inevitably, one or two were discovered only after the
code was put into service. (One particular complica-
tion was that Sheridan was still running with a shared
/usr/local/shuse temporarily. It was not enough that
the new code work correctly with a non-shared
/usr/local/shuse: it had to work whether /usr/local/
shuse was shared or not, and NFS’s odd treatment of
root caused minor difficulties here.)

The telnet connection which shuselace uses to
give orders to shusetie is unsuited to bulk data trans-
mission, which originally was done via NFS file shar-
ing. Bulk data transfers are now done by FTP, using
Expect to drive the Unix ftp utility.1 We picked FTP
because it was already installed and the networks
involved are reasonably well controlled; a future shift
to cryptographic authentication, e.g., via ssh/scp, is
being considered for Cancom in particular.

Finding and fixing the more subtle dependencies
on shared files and NIS was tedious, but it has had
useful side effects. For example, fixing Shuse’s pass-
word changers to consult shused for the old encrypted
password, rather than doing their own accesses to the
passwd file or invoking ypmatch, has also made them
compatible with shadow password files.

The original Shuse updated the passwd file by
simply generating a copy of the new file in a known
location, whence a cron job regularly picked it up and
shoved it into NIS. Without NIS, Shuse had to do its
own updates of the passwd file on slave servers, which
is harder than it sounds because of the shortage of
decent programming interfaces for this.2 We ended up
telling vipw to use ed as its text editor, and driving ed
via Expect. This had a few problems of its own (such
as discovering that we could easily overdrive a
BSD/OS pseudo-tty to the point where it would lose
characters), but with careful checking and some judi-
cious use of some of Expect’s more obscure features,
in the end it worked. (The pseudo-tty overdriving
problem, in particular, was solved by insertion of a
1 ms delay every 40 characters, which is easy with
Expect.) The resulting code is so paranoid that it has

1The ftp program is another one of those wonderful utilities
which knows, by God, that it is running interactively, and
completely neglects to provide any sort of reasonable pro-
gramming interface. Fortunately, Expect deals with this rea-
sonably well, at the cost of some tedious experimenting to
uncover all the likely interactive messages.

2As with FTP and quotas, the passwd-file user interfaces
are a disgrace to Unix, since they typically insist on running
interactively and cannot be programmed without resorting to
Expect.

66 1997 LISA XI – October 26-31, 1997 – San Diego, CA



Spencer Shuse At Two: Multi-Host Account Administration

caught various unanticipated problems (e.g., vipw run-
ning out of disk space).

The lack of shared filesystems necessarily means
replicating the Shuse software on the various hosts.
This has been somewhat error-prone, and we’ve been
working on reducing its problems. We’ve been pro-
gressively eliminating shared control files that have to
be kept consistent: about the only ones remaining are
authentication keys and Shuse’s configuration files.
Some of the eliminated files never really had to be
shared; others are necessary but are small enough to
be transmitted each time. We’ve also been making an
effort to reduce the number of code files that have to
be present on a slave server, although there are limits
to this.

More fundamentally, Shuse is now taking on the
responsibility of updating the remote copies of itself!
This is arguably a re-invention of the wheel, since
existing software packages like rdist [8] can handle
this sort of thing. However, one of the customers
wanted it and was willing to pay for it, so we did it. It
was quite straightforward, using FTP for data trans-
fers, except for the need to make careful provision for
backing out of an update that happens to break the
slave-server side of the software.

Since the remote-update facility now exists, it’s
also being used as a substitute for other inter-machine
propagation mechanisms. For example, Cancom is
using it to propagate updates to /etc/group.

Could all this effort have been avoided with
greater forethought about loosely-coupled systems?
Probably most of it, yes, but there were good reasons
why it wasn’t done that way the first time. For one
thing, priorities have changed with experience: some
of the original approaches had apparent advantages
that have not proved significant in practice.3 For
another, the new mechanisms have added substantial
complexity in places, and time constraints weighed
heavily in the early development of Shuse [1].

Internal Cleanup

Every time we’ve put effort into cleaning up and
generalizing Shuse’s innards, we’ve regretted not
doing it sooner. Many things have become easier this
way; many of the remaining internal nuisances are
concentrated in areas which haven’t had such an over-
haul lately.

The most fundamental area of internal change
has been the protocols used to request updates on the
slave servers. The original Shuse design envisioned a
very simple and appealing approach: shused would
distribute a description of the way things were

3For example, we’d originally hoped to avoid having to use
shared secrets for authentication, by relying on permissions
of shared directories instead. Shared secrets proved neces-
sary for other reasons.

supposed to be, and the slave servers would compare
this to the actual situation and do any changes needed
to make reality match the description. This has the
advantage of being extremely robust in general, and
completely crash-proof in particular: no matter who
crashes and when, if everybody is eventually up for
long enough, the slave servers will synchronize with
shused’s current opinion on how things should look.

Unfortunately, too many details of real account
maintenance did not fit this description-based model
very well. There were a few early signs of difficulty,
but the real killer was the need for coordinated activity
by two slave servers when moving a user from one
server to another.

A number of difficulties were cleared up by
breaking down and conceding that some operations
would simply have to be done in tight lockstep, with
shused retaining a to-be-done list and checking items
off as they were completed. Making such operations
crash-proof is not fundamentally difficult, given the
facility for planting ‘‘at commands’’ (to be executed at
specific times) in a user’s database entry, although the
details unfortunately ended up being rather complex.4

This was first done for user moves, and has since been
extended to renames and quota settings. User deletion,
implemented originally using the description-based
model, will probably move to a lockstep implementa-
tion.

On the other hand, serious consideration is being
given to moving back towards the description-based
model for some things. In particular, disk-quota
updates are currently done as lockstep operations, but
this falls down badly in situations like restoring a user
filesystem from a backup. Quotas probably should be
handled with the description-based model, and we’re
going to look harder at this.

The moral we draw from this is that one should
not overlook the need for feedback: the key oversight
in the original description-based model was that even
though shused is always leading and the slave servers
are always following, some operations do require
shused to know exactly when a change takes place on
a slave server.

Much of the other internal-cleanup work has
been focused on what might be called improving the
software engineering of Shuse’s innards. Useful facili-
ties have been generalized and encapsulated to make
them easier to use for multiple purposes. Shared
knowledge has been eliminated, e.g., by making data-
transmission formats self-describing. Bright ideas that
turned out to be mistakes have been ripped out and
replaced by simpler approaches. None of this should

4Getting a single lockstep operation done in a fully crash-
proof way involves four or more at-commands interwoven
in a pattern resembling a database two-phase-commit proto-
col. The internals documentation calls this process ‘‘The
Dance of the At-Commands.’’

1997 LISA XI – October 26-31, 1997 – San Diego, CA 67



Shuse At Two: Multi-Host Account Administration Spencer

really require comment, except that it’s so seldom
actually done on real software. We’ve found that effort
spent on this typically pays off handsomely, by mak-
ing later changes easier.

Administration

Although it would be nice if automated-sysad-
min software didn’t itself require administration, it
does. The interfaces used for this are sometimes
skimped on. Shuse has needed improvements in sev-
eral areas of its administrative interfaces.

One area that fortunately hasn’t needed much
improvement is operational robustness. There is an
obvious vulnerability in a single central server process
running on a single central server host: what happens
if the process or the host crashes? We originally
decided that it was better to spend effort on eliminat-
ing process and host unreliability than to devise elabo-
rate distributed protocols to cope with it. This decision
has been amply vindicated.

Making the host reliable hasn’t required much
effort. Making the shused process reliable did take
some. In particular, early development versions of
shused died whenever their innards signalled an error,
on the theory that it might have caused corruption of
the database. This got fixed before entry into produc-
tion: while there is potential for database corruption,
most real error signals denote nothing more funda-
mental than a minor bug in the particular request being
executed, and logging the problem and carrying on is
vastly preferable to falling over dead.

Given this, shused has proved reliable enough
that we’ve done nothing at all about automated recov-
ery from catastrophic failures: if it happens, the staff
notice and restart the daemon. While new versions of
shused have occasionally fallen over suddenly, once
such last-minute problems are resolved, reliability has
been high. The shused process running at the time this
is being written, in early September, has been running
since a development-induced restart at the end of July.

A related but more subtle problem is that early
versions of shuselace occasionally died under mysteri-
ous circumstances. This was much more subtle than
having shused die, because shused was still handling
interactive commands and database updates properly,
only the updates didn’t propagate out to the slave
servers. Although the problem hasn’t happened
recently, shused now guards against this and other
shuselace failures by ‘‘pinging’’ shuselace regularly
and complaining if there is no response. Again, the
problem hasn’t been frequent enough to justify auto-
mated handling (which would be slightly awkward
due to implementation details); the fix is to shut down
and restart shused.

An area that was, for a long time, rather less sat-
isfactory was trouble reporting. The original shused
design lacked any orderly way of reporting difficulties
to the sysadmins. Theoretically one could regularly

inspect the log file, but in practice this didn’t get done
very much.

The problem was greatly aggravated with the
arrival of lockstep operations like renaming a user,
where the need for slave-server cooperation means
that actual execution of the operation may be arbitrar-
ily delayed pending availability of the necessary slave
servers. The command executed by the user merely
queues up the operation, and originally there was no
systematic way of reporting success or failure of the
ultimate execution. This was particularly troublesome
because such operations usually succeed quickly, and
so one gets out of the habit of checking on them.

After a period of just muddling along, this got
fixed in the obvious way: the results of delayed opera-
tions, and independently-discovered indications of
trouble, are reported by mail messages. This wasn’t
quite as simple as it looked, because an administrator
who moves 500 users (not at all unusual in a user pop-
ulation of 20,000+) does not want to get 500 separate
mail messages reporting success. An ambitious design
for merging similar messages was thought out but
shelved (although there are implementation hooks for
it) in favor of a simple timeout mechanism, which just
holds onto non-urgent reports briefly in hopes of being
able to send more than one report in a single message.
The details are still being tuned, but this seems gener-
ally adequate. We should really have thought about
this, and done it, at the time the first delayed opera-
tions appeared (if not earlier).

While the shused log file (which incorporates log
entries sent in by other components of the software,
like shusetie) is useful for debugging, it’s large, and
less than ideal when it comes to answering questions
like ‘‘who last changed user xyz’s disk quota?’’ A lit-
tle bit of historical information is kept in user database
entries as it stands – for example, there is a timestamp
field identifying the time and instigator of the last
password change – but this isn’t always adequate.
Work is now underway on a general facility for hold-
ing a configuration-specified amount of command his-
tory in each user database entry, so that information on
at least the recent changes will be conveniently avail-
able when needed.

Conclusion

Shuse continues to evolve, partly because we’re
still learning what it needs to do. Expanding opera-
tions to a second user community has made a lot of
learning happen fairly suddenly. We’re also belatedly
recognizing things we should have noticed a while
back, such as the need for better administrative inter-
faces.

Acknowledgements

Sheridan College in general, and Cheri Weaver
in particular, got Shuse started. John Barber of Sheri-
dan and Doug Berry of Cancom have supported its

68 1997 LISA XI – October 26-31, 1997 – San Diego, CA



Spencer Shuse At Two: Multi-Host Account Administration

continuing evolution. A number of people, most
notably Trevor Stott and Doug Berry, have used Shuse
at length and have been patient as problems were
found and fixed.

Availability

Bad news: it’s still not freely available, alas.
Sheridan continues to be interested in the possibility
of commercial marketing, although nothing organized
has happened yet. If you’re interested in getting
Shuse, contact the author, and he’ll pass your inquiry
on to the right people.

Author Information

Henry Spencer is a freelance software engineer
and author. His degrees are from University of
Saskatchewan and University of Toronto. He is the
author of several freely-redistributable software pack-
ages, notably the original public-domain getopt, the
redistributable regular-expression library, and the awf
text formatter, and is co-author of C News. He is cur-
rently immersed in the complexities of implementing
POSIX regular expressions. He can be reached as
henry@zoo.toronto.edu .

References

[1] Henry Spencer, ‘‘Shuse: Multi-Host Account
Administration,’’ Proceedings of the Tenth Sys-
tems Administration Conference (LISA X),
September 1996 (Chicago), Usenix Association
1996.

[2] Mark A. Rosenstein, Daniel E. Geer, & Peter J.
Levine, ‘‘The Athena Service Management Sys-
tem,’’ Proceedings of the Usenix Technical Con-
ference, Winter 1988 (Dallas), Usenix Associa-
tion 1988.

[3] Don Libes, ‘‘Expect: Curing Those Uncontrol-
lable Fits of Interaction,’’ Proceedings of the
Usenix Technical Conference, Summer 1990
(Anaheim), Usenix Association 1990.

[4] Don Libes, Exploring Expect, O’Reilly & Asso-
ciates 1995.

[5] John K. Ousterhout, ‘‘Tcl: An Embeddable Com-
mand Language,’’ Proceedings of the Usenix
Technical Conference, Winter 1990 (Washing-
ton), Usenix Association 1990.

[6] John K. Ousterhout, Tcl and the Tk Toolkit, Addi-
son-Wesley 1994.

[7] Henry Spencer, ‘‘Simple Multilingual Support
for Tcl,’’ Proceedings of the Fifth Annual Tcl/Tk
Workshop, July 1997 (Boston), Usenix Associa-
tion 1997.

[8] Michael Cooper, ‘‘Overhauling Rdist for the
’90s,’’ Proceedings of the Usenix Technical Con-
ference, Winter 1987 (Washington), Usenix
Association, 1987.

1997 LISA XI – October 26-31, 1997 – San Diego, CA 69



70 1997 LISA XI – October 26-31, 1997 – San Diego, CA


