
The following paper was originally published in the
Proceedings of the Eleventh Systems Administration Conference (LISA ’97)

San Diego, California, October 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org



Managing PC Operating Systems with
a Revision Control System

Gottfried Rudorfer – Vienna University of Economics and Business Administration

ABSTRACT

During the lifetime of a workstation the system administrator is faced with constant change
in system configuration (updates, new software). The users of a workstation, too, may change
the system configuration. We describe the necessary concepts for maintaining many similar
configured PC clients in a lab environment. The main software component consists of fsrcs, a
revision control system similar to RCS and SCCS. The revision control software is available
without charge.

Motivation

This paper was motivated by the need to reduce
the huge administrative effort for running a computer
training room at the Department of Applied Computer
Science. It is the first attempt at our university of a
fully automatic client installation and update solution
using free software. The students can handle the fol-
lowing from the boot-prompt of the PC client without
assistance of the system administrator:

1. Repair or install Linux software (operating sys-
tem and applications) on the PC.

2. Repair or install Microsoft Windows 95 soft-
ware (operating system and applications) on the
PC.

3. The installation can be requested by the user at
any time.

4. The user can decide to update both operating
systems or just Windows 95 or just Linux.

Administration tasks are reduced because the
system administrator installs new software only on
one PC. After installation a set of programs help the
system administrator to define a new master copy for
all clients on the server.

Comparison with other tools

There are many tools available for managing
software environments [CW92, Fut95, Har94, Jam94,
PS94, Rid94, VCV92]. A new draft standard for soft-
ware administration tries to define interfaces and for-
mats for the administration of a network of heteroge-
neous systems [Arc93]. Many tools use software pack-
ages and supply commands for the administration of
these packages. Microsoft’s Systems Management
Server (SMS) distributes software packages (i.e.,
Microsoft Office) and runs unattended installation.
Limited functionality is provided for automatic checks
of an existing package on the PC. Installation scripts
have to be written for local customizations, patches,
and not SMS aware software. This is a very complex
task.

Other approaches just extract a ZIP- or a com-
pressed tar-archive. This approach is not well suited

for checking the correct installation of the software.
Files on the PC which are not part of the software
installation might remain after the extraction of the
archive. Unfortunately, many of the above tools only
provide a partial solution for our software distribution
problem. We often have a situation where the software
is already installed, but then a user modifies some files
of the installation. We need a system that checks and
repairs an already existing installation as fast as possi-
ble. Users may not accept the system if this process is
too time-consuming.

Our approach is based on the fact, that the same
software packages installed on PCs result in a very
similar set of files even if the PCs have a different
hardware configuration. Compared to the above
approaches, our approach tries to replicate already
installed software to other PCs. The necessary config-
uration of the software is done afterwards. Our
approach just distributes files without looking at the
semantics, if possible. However, we have to look into
files if they contain parameters to configure for proper
operation of the software. The operating system Linux
has many tools and concepts for software management
of PCs available [Tro96]. Therefore, we decided to
develop our programs under Linux.

Implementation

The management software consists of three parts
(see Figure 1):

• a set of programs for downloads from the
server to the clients

• a set of programs for uploads from the clients
to the server

• a revision control system for file trees

Implementation of the download programs
On the PC Client Side

The root file system of the installation program
is loaded into the main memory to avoid any conflict
with the hard disk. This is done by loading the file
system as initial ram disk [AL96]. If the PC cannot
boot from a prior installation, the same kernel and the
initial ram disk are loaded from a floppy disk.

1997 LISA XI – October 26-31, 1997 – San Diego, CA 79



Managing PC Operating Systems with a Revision Control System Rudorfer

The normal usage is to load the kernel and the
ram disk from the Linux file system of the already
installed PC by entering the boot option ‘‘c’’ (update
both Linux and Windows 95) or ‘‘d’’ (update Win-
dows 95 only) or ‘‘e’’ (update Linux only) at the LILO
[Alm96] prompt.

When the initial ram disk is mounted the script
/linuxrc is executed. The script configures the net-
work interface with a bootp request. On success the
NFS exported directories of the server are mounted
read-only and other libraries and programs are made
available.

Clients

Server

/ (Linux) and /dosc (Windows 95)

fsrcs -ci -s /usr/local/pc7/pc7inst/ -b /usr/loacal/pc7/revisions

fsrcs -co -o / -s /usr/local/pc7/pc7inst/ -b /usr/loacal/pc7/revisions

pc7admpc7inst

telnet server

Boot "c"
or "d"
or "e"

current master copy

/usr/local/pc7/pc7inst/

/ (Linux) and /dosc (Windows 95)

repository

/usr/local/pc7/revisions/

/v0.1 /v0.2 ...

Boot "l" Boot "w"

Figure 1: Relationship between clients, server and the repository.

Finally, the installing perl script is executed. This
script does the following:

1. Get the system time from the server and write it
to the CMOS clock.

2. Check the partition table and if it does not cor-
respond to the sample table recreate the parti-
tion(s).

3. Repair the file systems if they are inconsistent.
4. Mount the file systems and enable swap.
5. Ask the server to update the client.
6. Detach the mounted file systems.
7. Write a new master boot record.
8. Do local customizations (i.e., add the hostname

to the registry of Microsoft Windows 95)
There is no reboot necessary during installation.

On the Server Side

The regular login shell of the download user
pc7inst is replaced by the program toclient which first
changes the effective root directory (chroot ) to home
of the master copy. The Set-user-ID permissions bit of

the program is set to run the program as user root. All
root users of the clients have access to this account via
the .rhosts file. The name of the client and the mode of
update (all operating systems or just Linux or Win-
dows 95) are passed as command line arguments to
the program toclient. Finally the program rdist
[Coo92] is executed.

Implementation of the Upload Programs
The implementation of the upload programs tries

to preserve the security on the server with an upload
user pc7adm. This user has root privileges on the
Linux operating system for the installation on the
clients (is added to the .rhosts file). The core of the
upload program is rdist, too. The regular login shell of
the upload user pc7adm is replaced by the program
ask:

1. If the system administrator logs in successfully
at the server as pc7adm the program is called
without arguments and asks the user which
client to upload. When the client is found in the
database, access of the root user from the client
is granted. Finally the program starts a remote
shell on the client with a slightly modified rdist.

2. The client program rdist connects via rsh to the
upload user pc7adm and executes the Set-user-
ID root program toserver -S. This program first
changes the effective root directory to the root
of the client master installation. Then the rdist
server rdistd -S (which is statically linked) is
executed. The files are installed with the rdist
options -onumchkgroup -onumchkowner to use
the numeric group and user ID for checking

80 1997 LISA XI – October 26-31, 1997 – San Diego, CA



Rudorfer Managing PC Operating Systems with a Revision Control System

group and user ownership because the group
and user name might not exist on the server.

3. Finally, the access of the client is removed from
the .rhosts file.

Implementation of the Revision Control System
The first version of our management software

had no revision control system. After some testing we
found that one version of the master installation has
the disadvantage of no ability to downgrade after an
update with errors.

inodesinodes namesnames

symlinkssymlinkshardlinkshardlinksfilesfiles

v0.1v0.1 v0.2v0.2 v0.3v0.3

fsrcs
repository

...

...

inodesino

inodesdevice

symlinkssymlinkshardlinkshardlinksfilesfiles

inodesetc

...

...

passwd

inodesbin

login

...

... ...

inodesetc

passwd

inodesbin

...

login

...

... ...

symlinkssymlinkshardlinkshardlinksfilesfiles

... ... ...

...

inodesetc

passwd

inodesbin

login

... ...

v0.1/

...

Figure 2: Internal representation of file system objects. At check-in time of version v0.2 the file /bin/login has
not been modified and the file /etc/passwd has been changed compared to the first version. The check-in
function made a reference to the previous version of /bin/login. All files of version v0.3 have not been
changed at check-in time compared to the previous version v0.2. The check-in function made a reference at the
highest possible level to the prior version with link optimization.

We decided to store the master copy in the repos-
itory of our file system revision control system fsrcs. It
can handle at least text and binary files, symbolic and
hard links, character and block device files and direc-
tories with proper access permissions and ownership.

The current implementation stores the master
copy on the server. A new version of the master copy
is manually created when a major change in the soft-
ware configuration of the clients occurred.

Multiple revisions can be managed by our sys-
tem. The repository is implemented as a file-tree.
Underneath the root there are directories with the
name of each revision. New or changed files (and
directories and links) are stored inside each version-

directory. However, a symbolic link to the original file
in the repository is created when there was no change.
Symbolic and hard links are stored in separate directo-
ries for each version. The initial repository is created
by copying the whole tree into the directory of the first
version.

The program is implemented in the programming
language perl [WCSP96].

Check-In

This section describes the updating process, done
on the check-in of the new version. We distinguish a
different behavior for files (plain files, character and
block special files), symbolic links, hard links and
directories. The procedure for directories is fairly
obvious. If a directory is found, the check-in function
is called with its name (recursion). Directories are cre-
ated with the access rights and ownership of the origi-
nal. If a directory does no longer exist in the new ver-
sion, no reference to the previous version is made.
Files are compared with the current version of the file
in the repository if it exists. If the size, permissions,
ownership and group are the same, this file is first
marked as unchanged. The check-in function performs
link optimization.

1997 LISA XI – October 26-31, 1997 – San Diego, CA 81



Managing PC Operating Systems with a Revision Control System Rudorfer

If a whole subtree is unchanged, a symbolic link
is created at the highest possible level in the reposi-
tory. If a reference to a prior version of an object
within the repository is necessary, another link opti-
mization is done. The check-in function does not sim-
ply create a symbolic link to the prior version, instead
it creates a reference to the original object in the
repository. These two levels of link optimization guar-
antee a minimum number of symbolic links in the
repository. Compared with RCS and SCCS [BB95], the
smallest piece is an entry of a directory. Your software
does not bother about the differences between text or
binary files.

REGEDIT4

[HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\VxD\VNETSUP]
"ComputerName"="hostname"
"Workgroup"="PC7"

[HKEY_LOCAL_MACHINE\System\CurrentControlSet\control\ComputerName\ComputerName]
"ComputerName"="hostname"

Table 1: The contents of a configuration file for the registry of Windows 95. First, the string hostname is replaced
by the actual hostname of the PC. Finally regedit is called with the modified file to patch the registry.

Check-Out

On check-out, the program compares the entries
of the given check-out directory with the entries in the
repository. Missing entries are created and entries in
the checkout-directory that are not in the repository
are recursively removed (directories) or unlinked.

Limitations

The current version of fsrcs has no support for
access control lists (ACL). Some UNIX operating sys-
tems support ACL which allows the file owner to per-
mit or deny access to a list of users. However, this fea-
ture is neither used nor supported by Linux and Win-
dows 95 installations. Another restriction exists for
symbolic links. Many UNIX operating systems do not
set the permissions for symbolic links correctly. On
repeated checkouts symbolic links will probably be
recreated even if they have not been changed.

Availability

Our file system revision control system is avail-
able from ftp://ftpai.wu-wien.ac.at/
pub/fsrcs/fsrcs.tar.gz .

Administration tasks

The time to administer a set of PCs is reduced to
the installation or update of new software on a single
PC. Our tools guarantee the correct installation of the
software on all other PCs. If some files or partitions
have been changed, our tool repairs the installation
automatically and quickly without user interaction.

Installing New Software on a PC
Administration sessions require the following

steps to install or upgrade software:

1. Make a full update (boot with option ‘‘c’’).
2. Uninstall the prior version of the software, if

required.
3. Install the new version of the software.
4. Upload the new installation to the server.

The new software is transferred to other clients when
they make a full update (boot with option ‘‘c’’).

Finding the Correct Configuration
The most complicated task is searching for

mandatory customizations between different PCs.
First, we tried to eliminate individual configuration
parameters, if possible.

Linux

Linux software distributions often configure their
network parameters statically. A networked Linux PC
needs a unique IP address and hostname. First we
installed the Linux distribution Redhat 4.0 (Colgate)
and then replaced the file /etc/rc.d/init.d/network with
the file /etc/rc.d/init.d/rc.bootp of the package bootpc
[Haw96]. This package demands the network parame-
ters with a bootp request from the server, configures
the network interface and creates the files /etc/hosts
and /etc/resolv.conf. After this change in the configu-
ration of Linux, there are no individual configuration
parameters left.

Windows 95

We configured IP networking to obtain the net-
work parameters with a DHCP request from the
server. Windows 95 uses the binary files system.dat
and user.dat to store its configuration. These files are
modified by the program regedit (see Table 1) of Win-
dows 95 which is called from dosemu [LS97] after the
file checking phase. Plug and play (PNP) cards need
entries in the registry, too. Otherwise Windows 95 will
wrongly detect new hardware and try to install new
software. First we exported the registry as text files of
two different PCs using regedit. Then we looked at the
differences between the files with the program diff. We
found that the necessary entries for our PNP sound
cards are in HKEY_LOCAL_MACHINE\Enum\
ISAPNP\. We generated a similar text file in which
we replaced a generic string with the PNP-ID of the
sound card.

82 1997 LISA XI – October 26-31, 1997 – San Diego, CA



Rudorfer Managing PC Operating Systems with a Revision Control System

Periodical Checks

The cron daemon of each PC is configured to run
our management software each day early in the morn-
ing.

Performance

For software distribution a UNIX server with
Pentium processor, approx. 128 MByte main memory
and a PCI based network interface will be enough to
serve approx. 30 client PCs.

Our hardware consists of one Digital Alpha
Server 4000 5/300 (2 × 300 MHz CPUs, 1 GByte
main memory, 20 GByte hard disk, 2 × 100 Mbps full
duplex ethernet cards), one Cisco Catalyst switching
hub, 27 PCs (Pentium Pro 200 MHz CPU, 64 MByte
main memory, 2 GByte hard disk, 10/100 Mbps ether-
net card currently used in 10 Mbps mode).

The size of Windows 95 and applications is cur-
rently 202 MBytes (3413 files in 194 directories). The
size of Linux is currently 707 MByte (38372 files,
2797 symbolic links, 735 character special files, 304
block special files, 706 hard links in 2171 directories)

Installation from scratch is done with the prior
described kernel and root file system on a boot floppy
which requires approx. 42 minutes for partitioning,
formatting, checking and copying of both operating
systems. After automatic reboot of the installation
system, the two operating systems are available.

Checking of the whole installation (Linux and
Microsoft Windows 95) with minor modifications
requires approx. eight min. Checking our installation
of Microsoft Windows 95 requires approx. two min.

Each of the 27 clients needs about 20 minutes
when all of them check their whole installation at the
same time against the server. In this case the server is
the limiting resource. Currently, the server is not tuned
for optimal performance.

Conclusion

By using open operating systems for systems
management, it was easy to develop a powerful tool
for UNIX and Windows 95 operating systems. The
users are greatly satisfied with the ability to repair the
local installation by themselves if something goes
wrong with the software. The time spent on trou-
bleshooting has decreased by 90%.

Future Work

This implementation proves, that Linux is a suit-
able operating system for automated installation and
update of software.

This version of software requires PCs with an
equal hardware configuration. We plan to extend the
shown concept to handle different hardware installa-
tions by extending the revision control system to find
the differences between two software installations.
The program rdist seems to be the limiting factor on

the server side. There is one independent rdist process
for each client which scans the state of each file. This
causes a heavy system load on the server when many
clients perform an update at the same time. This prob-
lem could be solved by extending rdist using a state
database. Another area of improvement is in adding
revision control capabilities to rdist directly.

Author Information

Gottfried Rudorfer works at the Department of
Applied Computer Science at the University of Eco-
nomics and Business Administration where he
received his MBA. His research interests are centered
on issues of distributed database systems, administra-
tion of heterogeneous computing environments, opera-
tions research and artificial intelligence. He has been a
system administrator since 1993. Reach him via mail
at University of Economics, Augasse 2-6, A-1090
Vienna, Austria; or electronically at Gottfried.Rudor-
fer@wu-wien.ac.at.

Bibliography

[Al96] Werner Almesberger and Hans Lermen,
‘‘Using the initial RAM disk (initrd),’’ ftp:
//ftp.funet.fi/pub/Linux/PEOPLE
/Linus/v2.0/linux-2.0.30.tar.gz,
almesber@lrc.epfl.ch, lermen@elserv.ffm.fgan.
de, 1996.

[Alm96] Werner Almesberger ‘‘Generic boot loader
for Linux,’’ ftp://lrcftp.epfl.ch/
pub/linux/local/lilo/lilo.19.
tar.gz, almesber@lrc.epfl.ch, 1996.

[Arc93] Barrie Archer, ‘‘Towards a POSIX Standard
for Software Administration,’’ LISA, pp. 67-79,
November 1-5, 1993.

[BB95] Don Bolinger and Tan Bronson, Applying RCS
and SCCS, O’Reilly & Associates, Inc., 103
Morris Street, Suite A, Sebastopol, CA 95472,
1995.

[Coo92] Michael A. Cooper, ‘‘Overhauling Rdist for
the ’90s,’’ LISA VI, pp. 175-182, October 19-23,
1992.

[CW92] Wallace Colyer and Walter Wong, ‘‘Depot: A
Tool for Managing Software Environments,’’
LISA VI, pp. 153-162, October 19-23, 1992.

[Fut95] Atusushi Futakata, ‘‘Patch Control Mecha-
nism for Large Scale Software,’’ LISA IX, pp.
213-219, September 17-22, 1995.

[Har94] Magnus Harlander, ‘‘Central System Admin-
istration in a Heterogeneous Unix Environment:
GeNUAdmin,’’ LISA, pp. 1-8, September 19-23,
1994.

[Haw96] Charles Hawkins, ‘‘Linux Bootp Client,’’
http://www.damtp.cam.ac.uk/linux/
bootpc/, ceh@eng.cam.ac.uk, 1996.

[Jam94] Kevin Jameson, ‘‘Multi-Platform Code Man-
agement,’’ O’Reilly Associates, Inc., 103 Morris
Street, Suite A, Sebastopol, CA 95472, 1994.

1997 LISA XI – October 26-31, 1997 – San Diego, CA 83



Managing PC Operating Systems with a Revision Control System Rudorfer

[LS97] Matthias Lautner and Robert Sanders,
‘‘DOSEMU PC Emulator,’’ ftp://tsx-11.
mit.edu/pub/linux/ALPHA/dosemu/,
linux-msdos@vger.rutgers.edu, 1997.

[PS94] Dieter Pukatzki and Johann Schuhmann,
‘‘AUTOLOAD: The Network Management Sys-
tem,’’ LISA, pp. 9-17, September 19-23, 1994,

[Rid94] Paul Riddle, ‘‘Automated Upgrades in a Lab
Environment,’’ LISA, pp. 33-36, September
19-23, 1994.

[Tro96] Jim Trocki, ‘‘PC Administration Tools: Using
Linux to Manage Personal Computers,’’ LISA X,
September 29-October 4, 1996.

[VCV92] Ram R. Vangala, Michael J. Cripps, Raj G.
Varadarajan, ‘‘Software Distribution and Man-
agement in a Networked Environment,’’ LISA VI,
pp. 163-170, October 19-23, 1992,

[WCSP96] Larry Wall, Tom Christiansen, Randal L.
Schwartz, and Stephan Potter, Programming
Perl, Second Edition, O’Reilly Associates, Inc.,
103 Morris Street, Suite A, Sebastopol, CA
95472, 1996.

84 1997 LISA XI – October 26-31, 1997 – San Diego, CA


