
The following paper was originally published in the
Proceedings of the Eleventh Systems Administration Conference (LISA ’97)

San Diego, California, October 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Bal – A Tool to Synchronize Document
Collections Between Computers

Jürgen Christoffel – GMD

ABSTRACT

The enormous growth of computer networks and declining hardware prices allow people to
have more than one computer, e.g., to use a primary computer at work, a laptop or notebook as a
secondary computer for ’on the road’ and maybe a third computer at home.

One non-trivial problem that users face when using more than one computer alternately is
the difficulty of keeping multiple, distributed copies of their files up to date and in sync, if they
can’t permanently share resources between their machines, e.g., when using a notebook
computer off-line for some time.

System administrators of Unix sites who need to automatically distribute files between
machines have known such problems for years and have come up with various tools to solve
their specific needs. But tools which help Unix administrators are not always adequate for their
users too.

This paper describes Bal, a tool which enables Unix users to more easily keep distributed
copies of their files in sync. Bal is written in Perl and keeps two directory trees in sync.

Introduction

Document collections are sets of documents
which are in some way related. For the purpose of this
paper a document collection is a set of files or directo-
ries or both which are handled by Bal as a whole.

Users who alternately use multiple computers to
do their work will sooner or later face the problem of
keeping their documents in sync. As long as they use
computers which are connected to the same local-area
network it is easy to use a client-server approach to
keep files on one machine and share them via some
means like NFS. But as soon as one of the computers
is not always connected to the network the problems
will arise because users keep distributed copies of
their documents and have to synchronize those docu-
ment collections between machines.

Maintaining distributed copies of such collec-
tions can be a nightmare if users can’t always guaran-
tee that they will only change one of their document
collections at once before merging changes between
their computers.

The Macintosh and PC user communities have
for some years had the benefit of programs like Pow-
erMerge [LEADER] or Laplink [LAPLINK] or the
‘‘Briefcases’’ built into Windows 95 and NT [BRIEF-
CASE] which keep two document collections in sync.
Unix users until now have had to use whatever tools
that were available to at least automate some of the
work to be done to keep their directories in sync.

Bal – named for the balancing effect it has on
distributed document collections – helps users and
system administrators keep track of changes made to
files or directories and telling them when files have

changed, have been deleted, or new files have been
created on either side. It can automatically copy, cre-
ate, or delete files to synchronize two document col-
lections. It warns users if files have been changed in
both collections since its last run and offers help in
resolving the conflicts.

Comparisons

Modern distributed file systems [TANEN] like
the Andrew File System [AFS] address some of the
problems but are not always easily available.

While version control software like rcs(1) [RCS]
or cvs(1) [CVS] could be used in theory, these tools
are inadequate for keeping home directories in sync in
practice because of the overhead and restrictions
imposed by them. Bal is intended to manage typical
user files like mailboxes or calendar files and version
control systems where not designed to handle these.
Version control tools regularly keep a third copy of
each document on disk and they have special com-
mands for checking documents in or out which need to
be remembered.

Tools like rdist(1) [RDIST] or track(1)
[TRACK] which are adequate for specific jobs in the
system administrator area don’t help users (and system
administrators) much because such tools have been
designed for an asymmetric problem, namely to dis-
tribute master copies of files between servers and
clients, which allows overwriting of files on the client.

Automatic file distribution tools like rdist or
track copy files between computers using either a push
model where a master server updates some clients
periodically or a pull model where each client periodi-

1997 LISA XI – October 26-31, 1997 – San Diego, CA 85

Bal – A Tool to Synchronize Document Collections Between Computers Christoffel

cally queries a master server to retrieve the freshest
files.

Both models are very helpful for automated soft-
ware distribution where, e.g., system administrators
need to periodically update system files on a cluster of
machines. Tools like rdist and track are thus in
widespread use on Unix machines.

The scheme used by such tools is asymmetric
since it allows one master copy of a set of files on a
server which is distributed to possibly multiple clients
which are not expected to make changes to their
copies. This scheme is not appropriate for users who
want to keep distributed document collections in sync.

Users face a symmetric problem instead, because
both document collections resemble different versions
without a master copy or central repository. These
document collections need to be merged or synchro-
nized, i.e., documents may have to move both ways
and checks have to be made to ensure that changes
made in either document collection aren’t lost.

Because Bal is intended to be used interactively
– it needs user interaction to decide how to resolve
potential conflicts – it doesn’t face the security prob-
lems of the rdist family of tools.

Implementation Issues

Bal is a program to maintain identical copies of
document collections on different hosts. It preserves
the owner, group, mode, and modification time of files
if possible.

Bal is written in Perl [PERL] and uses the high-
level constructs like associative arrays provided by
Perl to manage its internal data. It uses Perl’s inter-
faces to the various DBM implementations for Unix
[HASH] to persistently store information about the
state of each document collection between sessions.
Which DBM implementation is used is configurable.

Like rdist and similar tools, Bal uses a configura-
tion file which specifies the files of the document col-
lections to keep track of and what actions to take when
synchronizing the document collections. The configu-
ration file specifies the left and right document collec-
tions respectively in the notation used by rsh/rcp. It
also allows to specify via Perl’s regular expressions
which files to exclude from synchronization.

To properly synchronize two document collec-
tions Bal needs to keep track of the state of each docu-
ment in either collection in order to decide what to do
to synchronize them. When first run it compares the
two document collections and creates a reference
database which contains state information for each file
in both collections.

When Bal compares files for the first time, it
compares the attributes of each pair of files. Attributes
of interest are the file name, device number, inode
number, permissions, number of hard links, uid, gid,
size and the modification time of each file. For each

pair of files it uses the modification dates to see which
one is oldest. All checked attributes will be stored in
the database for reference when Bal is run again.

On subsequent runs Bal checks the document
collections against the reference database to see what
has changed. After synchronizing the two document
collections it stores the new state in its database. Dur-
ing synchronization it may encounter one of the fol-
lowing situations:

• a file hasn’t changed in either of the document
collections

• a file has changed (i.e., deleted, edited or
renamed) in one document collection and needs
to be updated in the other collection

• a file has been changed (i.e., edited or renamed)
in both document collections

The last situation is obviously the most problem-
atic one and Bal doesn’t solve them automatically.
Instead it copies conflicting files into special subdirec-
tories and suggests various checks to help the user
resolve the conflict, among them using diff(1) or
cmp(1) to see if files have only been touch(1)ed.

When Bal is run it gathers the relevant file
attributes from both the left and the right document
collection and compares the attributes to those stored
in the reference database. The reference database
allows Bal to detect changes to the same file on both
sides by comparing the file’s attributes on disk with
the attributes stored in the reference database.

To actually change files Bal depends on rsh/ssh
and rcp/scp to transfer documents between machines
and it generates the appropriate commands which it
then executes.

Bal can be configured to run in batch mode
where it will send a report of the synchronization pro-
cess via email.

Example Session with Bal

During initialization files are normally consid-
ered different if their modification time and size dis-
agree. But when the document collections are not in
sync during initialization of the reference database,
Bal can be told to use a checksum algorithm like md5
to compare pairs of files and check whether files with
different timestamps but same size are actually the
same. Using a checksum like md5 additionally allows
to find duplicates which have different names.

Changed Files

Once the reference database exists, later runs
only need to compare the attributes of each file with
those stored in the database. When Bal encounters a
file which has changed on one side, it generates the
appropriate shell commands to bring both sides in
sync again.

The following example shows a Bal run where
priv.bal is the reference database where the attributes
seen on the last run have been stored. The document

86 1997 LISA XI – October 26-31, 1997 – San Diego, CA

Christoffel Bal – A Tool to Synchronize Document Collections Between Computers

collections reside on hosts aeppel and vortex and Bal
is running on vortex. The -v flag tells Bal to output the
commands it executes; see Figure 1.

vortex[788]: bal -v -f priv.bal
rcp -p lesetips aeppel:priv/lesetips
rcp -p aeppel:priv/lisa-11/register-info lisa-11/register-info
rcp -p aeppel:priv/prep.consult prep.consult
rcp -p aeppel:priv/quotes quotes
rcp -p quotes.news aeppel:priv/quotes.news
rcp -p aeppel:priv/quotes˜ quotes˜
rcp -p aeppel:priv/signatures signatures
rcp -p aeppel:priv/xyzzy-9707.tar.gz xyzzy-9707.tar.gz
rcp -p aeppel:priv/spooky spooky
rcp -p aeppel:priv/todo todo

Figure 1: Example of Bal output

vortex[798]: bal -v -f home.bal
rcp -p .zshenv aeppel:.zshenv
rcp -p aeppel:.emacs .emacs
rcp -p Notes/8-97 and aeppel:Notes/8-97
conflict: mtime mismatch for .netscape/bookmarks.html
Sun Aug 3 14:20:04 1997 .netscape/bookmarks.html
Wed Jul 2 19:36:58 1997 aeppel:.netscape/bookmarks.html
mkdir .netscape/.bc
rcp -p aeppel:.netscape/bookmarks.html .netscape/.bc/bookmarks.html
rcp -p .netscape/bookmarks.html aeppel:.netscape/bookmarks.html
action: diff .netscape/bookmarks.html .netscape/.bc/bookmarks.html

Figure 2: Call for manual conflict resolution.

Bal copies the newer version to the other side
and updates the attributes stored in the reference
database for both files.

Conflicting Files

When Bal encounters a pair of files that have
both changed on the left and right since its last run, it
cannot solve that case automatically. Instead it
explains the conflict and outputs suggestions for
resolving the conflict; see Figure 2.

Bal puts the older version of the conflicting files
into a special conflicts subdirectory – .bc in this exam-
ple – and suggests an action the user might take to
resolve the conflict manually. In the example above
the suggestion is to run diff(1) to compare the two ver-
sions.

The conflicts subdirectory is always in the same
subdirectory as the original document, so it is easy to
see where the document came from.

The user should manually resolve the conflict,
e.g., by merging the conflicting versions into one file
and then can remove the conflicts subdirectory.

Renamed Files

Bal tries to detect when a file has been renamed
on either side. To detect when a file has been renamed

it stores the inode number of each file in its reference
database. When a file is missing from either side it
uses the inode number to find the new name of the file
and if the other attributes in the reference database
match that file it can rename the corresponding file on
the other side to the new name.

If a file has been renamed differently on both
sides the current implementation of Bal handles this
by simply copying both files as if it where new ver-
sions of different files. One might argue that it should
signal a conflict instead.

Performance

The current implementation of Bal needs about
3% of the size of the document collections to store
attributes in its reference database. On a Linux
machine with a Pentium Pro 200 processor it takes
about 15 seconds real time to compare two directories
containing about 12 Megabytes in 3,267 files. Those
numbers do not take the time into account for the
actual file transfers needed to bring the directories in
sync again.

Future Work

Bal is designed for interactive use and thus is a
good candidate for a window-based user interface. We
plan to provide an Emacs major mode to interface
with Bal and a graphical user interface based on
Perl/Tk in the future.

1997 LISA XI – October 26-31, 1997 – San Diego, CA 87

Bal – A Tool to Synchronize Document Collections Between Computers Christoffel

To improve the utilization of low-bandwidth con-
nections Bal could be augmented to transfer only the
modified parts of changed files. The rsync algorithm
[RSYNC] could be applied to update files over low-
bandwidth high-latency bi-directional communications
links but that would force Bal to use it’s own transport
protocol instead of simply relying on rsh/ssh to do the
work.

Additionally Bal could be augmented to recog-
nize when files have been compressed and instead of
transferring the compressed file, compress the file on
the other side too.

A future version of Bal will be capable of syn-
chronizing document collections even if one of them
is contained inside a tar file. This will make it possible
to use Bal to synchronize document collections via
tapes without unpacking whole tar files.

Conclusion

Bal is especially suited to the needs of users who
use computers as peers and not as clients and server.
Because Bal allows transparent compression during
transfers it is well suited for users who use one Unix
system at work and another one at home and connect
via low bandwidth dial-in connections and want better
utilization of the low bandwidth connection. The
author uses it regularly to synchronize his Linux
workstations at home and at his office over a dial-in
64k ISDN connection.

Availability

Bal has been in beta test at the authors site since
May ’97. It will be made available for anonymous ftp
over the Internet from ftp.gmd.de and on the Compre-
hensive Perl Archive Network (CPAN) once it has left
the beta test phase.

Author Information

Jürgen Christoffel studied computer science at
the University of Bonn, Germany. He has been work-
ing with Unix systems since 1984 and joined GMD as
a system administrator in 1988. He has been a Perl
user since 1989 and Perl has saved him from C since
then. In his spare time he teaches courses in Perl and
Emacs. His email address is christoffel@gmd.de .

References

[AFS] Andrew File System (AFS) Homepage at
Tr a n s a r c , http://www.transarc.com/afs/transarc.com/
public/www/Public/ProdServ/Product/AFS/ .

[BRIEFCASE] Windows 95 Resource Kit, Microsoft
Press, 1995.

[CPAN] The Comprehensive Perl Archive Network is
available online at http://www.perl.org/CPAN/ .

[CVS] Brian Berliner, ‘‘CVS II: Parallelizing Software
Development,’’ Proc. USENIX Winter 1990
Conf., January 22-26, 1990, Washington, D.C.,
pp 341-352.

[HASH] Margo Seltzer and Ozan Yigit, ‘‘A New
Hashing Unix’’, Proc. Usenix 1991 Winter Conf.,
January 21-25, 1991, Dallas, TX, pp 173-184.

[LAPLINK] http://www.travelingsoftware.com/products .
[LEADER] Leader Technologies, PowerMerge User

Guide, 1992-1994, Leader Technologies, New-
port Beach, CA.

[PERL] Larry Wall, Tom Christiansen und Randal
Schwartz, Programming Perl, 2nd edition,
O’Reilly and Associates, 1996.

[RCS] Don Bolinger and Tan Bronson, Applying RCS
and SCCS: From Source Control to Project Con-
trol, O’Reilly, 1995.

[RDIST] Michael A. Cooper, ‘‘Overhauling Rdist for
the ’90s,’’ Proc. Usenix LISA VI, October 19-23,
1992, Long Beach, CA, pp 175-188.

[RSYNC] Andrew Tridgell and Paul Mackerras, ‘‘The
rsync algorithm,’’ Australian National Univer-
sity, TR-CS-96-05.

[TANEN] Andrew S. Tanenbaum, Chapter 5 ‘‘Dis-
tributed File Systems,’’ Distributed Operating
Systems, Prentice-Hall, 1995.

[TRACK] Bjorn Satdeva and Paul M. Moriarty,
‘‘Fdist: A Domain Based File Distribution Sys-
tem for a Heterogeneous Environment,’’ Proc.
Usenix LISA V, September 30 - October 3, 1991,
San Diego, CA, pp 109-126.

88 1997 LISA XI – October 26-31, 1997 – San Diego, CA

