
The following paper was originally published in the
Proceedings of the Eleventh Systems Administration Conference (LISA ’97)

San Diego, California, October 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Increased Server Availability and
Flexibility through Failover Capability

Michael R. Barber – Michigan Technological University

ABSTRACT

As computing systems become increasingly mission-critical, a high level of service
availability is essential. In order to maintain service availability, it is desirable to have the ability
to migrate services from one server to another while having this change remain transparent to
the client machines. Although commercial solutions exist which provide automatic failover
capability, they are often costly and restrictive.

Manual failover capability is useful for providing service availability in situations where
there is a hardware failure, or where a server must be taken down for extended maintenance.
The discussion in this document will explore what primitives can be used to construct a failover-
capable system, the issues involved in any service migration, and some of the specific details
about doing migration of services such as NFS, sendmail, and World Wide Web.

Although implementation-specific examples provided assume a Sun Solaris 2.x operating
environment, the use of a logical volume manager, and ethernet connectivity, other flavors of
UNIX may also contain the necessary building blocks needed to build a failover-capable system.

Motivation

The systems group, of which I am a member,
within the Information Technology – Distributed
Computing Systems department at Michigan Techno-
logical University determined it was time to upgrade
our primary campus servers. One item on the list of
desired functionality for the new servers was the abil-
ity to do on-the-fly service migration. After examining
a few commercial solutions, we decided none of them
were appropriate for us.

Due to the nature of a few of our services, it was
not an option to increase availability by simply repli-
cating services in more than one place, and using
using round-robin DNS, lbnamed [1], or commercial
solutions such as Uniq Software Services UPFS [2].

After some experimentation, I found we could
get most of what we wanted with a homegrown
increased availability solution. To my surprise, the
problem of doing manual failover was not as complex
as it seemed: a two way failover-capable system can
be built using two computers, one or more multi-
ported disks, and three or more network interfaces on
each host.

Foundation

An important concept to understand is that, in
this model, a group of services is tied to a hostname.
This hostname is considered ‘‘public’’ meaning it is
what clients use to acquire a given service. The
unusual detail is this public hostname is not perma-
nently tied to a particular host, and may be thought of
as a pointer to the server which is currently providing
the given service set.

The two main pieces of the puzzle needed to
build a failover-capable system are the ability to easily
swap file system ownership between two hosts, and a
network configuration which allows both hosts to
impersonate each other. The ability to easily move file
system ownership between two hosts is best accom-
plished by hardware such as multi-ported disk arrays
(e.g., Sun’s Sparc Storage Array) which allow more
than one host to be connected to the array simultane-
ously. Although it is possible for two hosts to share a
single SCSI chain, using a multi-ported disk array is a
much cleaner solution.

The two logical volume managers Sun offers
(Solstice Disk Suite and Veritas Volume Manager)
provide support for multi-host disk arrays. The imple-
mentation-specific examples in this paper use the
multi-host features of Veritas Volume Manager,
although Solstice Disk Suite has a feature called
‘‘disksets’’ which can be used in a similar manner.
While logical volume management software is not
absolutely required in order to implement a failover
configuration, it greatly simplifies the problem, and
also provides features which can be used to provide a
higher level of data availability, such as disk mirroring
or RAID-5.

When configuring the two machines it is impor-
tant they mirror each other as closely as possible. Each
file system on the multi-ported disk array which may
need to move from host to host must look the same to
both hosts. If both hosts are not configured almost
identically, problems may arise at a later date when a
service migration becomes necessary.

1997 LISA XI – October 26-31, 1997 – San Diego, CA 89

Increased Server Availability and Flexibility through Failover Capability Barber

Network Connectivity

Three network interfaces are required on each
host to do two-way failover in which both machines
are servers and either machine is capable of filling in
for the other machine. The concepts in this paper can
be scaled to N nodes, given a N-ported disk array and
M+1 network interfaces on each node; where N ≥ 2
and M is the number of service sets any one server
will ever need to run concurrently. Situations where
M > N require extra complexity. This paper will focus
on bipolar two-way failover (M=N=2).

So as not to confuse switches and other hosts on
the network which maintain an arp cache that maps
ethernet address to IP address, each host in a failover
configuration must be able to impersonate the other
host on both a ethernet and IP level. Furthermore, it is
important to have a network topology that will allow
this.

HOST A

hme0 hme1 hme2

hostname: campus0 server0 server1
ethernet address: 8:0:20:81:df:f4 2:0:8d:db:46:1 2:0:8d:db:46:b
metric: 1 0 0
normal state: up up down

HOST B
hme0 hme1 hme2

hostname: campus1 server0 server1
ethernet address: 8:0:20:85:84:45 2:0:8d:db:46:1 2:0:8d:db:46:b
metric: 1 0 0
normal state: up down up

Table 1: Sample interface configurations.

If your pair of machines are behind a smart
switch that maintains a bridge table, the switch must
allow for the possibility of an ethernet/IP pair to move
from one port to another and update its bridge table
accordingly. From the switch’s perspective, a service
migration should look as though the server was
unplugged from one port and plugged it into another.

With the smart hub in use at our site, having the
hub update its tables was as simple as running a pro-
gram on the machine to which services were migrated,
which generates traffic on its NIC (Network Interface
Card, in this case the ethernet interface) so the switch
would notice the change. To accomplish this, I used a
simple program which does a UDP broadcast which
sends the message ‘‘WAKE UP’’ out each interface to
the ‘‘discard’’ port of all other machines in the same
broadcast domain.

Each host in a two-way failover configuration
will have one private and two public interfaces. Since
each of the public interfaces on one node will have a

counterpart on the other node, there will be only two
unique ethernet addresses among the four public inter-
faces on two machines. Each private interface will
have its own unique ethernet address, bringing the
total on both machines to 6 network interfaces with 4
unique ethernet addresses, and at least 4 unique IP
addresses.

Virtual network interfaces can often be substi-
tuted for physical interfaces; unfortunately this cannot
be done for the three network interfaces required for
two-way failover. Although this may change in a
future version of Solaris, as of Solaris 2.6, a virtual
interface must assume the same MAC address as the
physical interface which it is associated to. However,
virtual network interfaces may still be associated with
public interfaces and used for virtual mail domains
and virtual web servers.

Sun workstations obtain a default MAC address
from NVRAM, instead of from the ethernet hardware
[3]. Because of this, any add-on ethernet interfaces
will by default assume the same ethernet address as
the on-board ethernet interface. This behavior can be
overridden by setting the option ‘‘local-mac-address?’’
to ‘‘true’’ from the prom monitor, which will cause
each NIC to have a unique MAC address. In a failover
system with three ethernet addresses, you will need to
explicitly redefine two of the addresses, therefore set-
ting this option in the prom is not mandatory.

You will need to create two MAC addresses,
each of which will be assigned to one NIC on each
machine. Although Solaris will let you assign nearly
any ethernet address to the interfaces, you should pick
an address which is IEEE 802.3 [4] conformant.

A standard 48 bit ethernet address is comprised
of six colon-separated octets (8 bit groups). The first
(left most) octet should have the first (right most) bit
unset and the second bit set. The first bit indicates
individual (0) or group (1) destination address. The
second bit indicates a global (0) or local (1) address.

90 1997 LISA XI – October 26-31, 1997 – San Diego, CA

Barber Increased Server Availability and Flexibility through Failover Capability

Setting the second bit to indicate ‘‘local’’ means the
address was not assigned by IEEE. This guarantees it
will not conflict with the addresses assigned by ven-
dors, but there is no assurance it is not in use else-
where [4,5].

Multi-Ported
Disk Array

public
interface
(up)

public
interface
(down)

private
interface
(up)

public
interface
(down)

private
interface
(up)

public
interface
(up)

hme0 hme1 hme1hme0hme2 hme2

Service Set A Service Set B

Host 2Host 1

Figure 1: Normal bipolar operating mode.

When creating local ethernet addresses, many
sites set the second bit in the first octet as per IEEE
802.3 specifications, and set the last four octets to the
hexadecimal equivalent of their IP address. This
scheme gives the ethernet address the form of
2:0:w:x:y:z (w, x, y, z in hexadecimal) where the
machine’s IP address is w.x.y.z (normally given in
decimal). When used consistently, this scheme ensures
no unwanted duplication of addresses.

You can use the ifconfig command to set the
MAC address on a NIC, for example: ‘‘ifconfig hme1
ether 2:0:20:81:d2:c’’ will set the ethernet address of
hme1 to 2:0:20:81:d2:c.

Table 1 is an example of how one might config-
ure the three interfaces on each host.

The interface hme1 has the same hostname and
same ethernet address associated with it on both
machines. However, both interfaces will never be up
at the same time. The interface hme2 is configured in
a similar manner. In the above case, the clients will
use the names server0 and server1 to obtain services.

From a network perspective, whichever machine
has interface hme1 up is server0 and whichever
machine has interface hme2 up is server1. See Figure
1 for a diagram of the system layout during non-com-
bined operation.

As shown in Figure 2, after a service migration is
completed, one host providing both service sets will
have both public interfaces hme1 and hme2 up, while
the other host will have both public interfaces down.

A third ‘‘private’’ interface is needed so the
machine which has both public interfaces down may
still have network connectivity. In the above case,
hme0 with names campus0 and campus1 are the pri-
vate interfaces of the two servers.

A ‘‘metric’’ may be associated with a network
interface. This number which is normally zero indi-
cates how may ‘‘hops’’ should be added to an inter-
face when choosing the best route. The private inter-
face must be configured with a higher metric, giving it
a less desirable route so the public interfaces will be
used by default. For example, ‘‘ifconfig hme0 metric
1’’ will to increase the metric of hme0 from its default
zero to one.

If an interface is assigned a metric of one when
the system is booted, and at a later time another inter-
face is brought up with a metric of zero as in the case
of a failover configuration, the private interface must

1997 LISA XI – October 26-31, 1997 – San Diego, CA 91

Increased Server Availability and Flexibility through Failover Capability Barber

be taken down and brought back up. Perhaps this will
change in a future release of Solaris or as the result of
an operating system patch, but Solaris 2.5.1 does not
seem to update its routing tables when a second NIC
comes up which is connected to the same subnet as the
first interface, even if it has a lower metric.

Given a Solaris 2.5.1 or earlier operating envi-
ronment it is nondeterministic which NIC will be used
when multiple interfaces with the same metric are
connected to the same subnet. This is generally not a
problem when running in bipolar mode since there are
only two interfaces up and one was explicitly given
preference by setting the metric on the other interface
to be higher. However, when operating in combined
mode there are two interfaces connected to the same
subnet with the same metric. This may cause minor
problems for a few services.

Multi-Ported
Disk Array

public
interface
(down)

private
interface
(up)

private
interface
(up)

Service Set B

Service Set A

public
interface
(down)

public
interface
(up)

public
interface
(up)

hme0 hme1 hme1hme0hme2 hme2

Host 2Host 1

Figure 2: Combined operating mode.

Unpredictable choice of interface in this situation
should be less of an issue in Solaris 2.6, which pro-
vides ‘‘interface groups.’’ The Solaris 2.6 kernel main-
tains a table of IP addresses on which each client has
contacted the server. This data is used to determine
which IP address to send the reply from [6]. Since
clients use the public interfaces to obtain service, the
correct interface should be chosen for communication
back to the client. The use of interface groups in
Solaris 2.6 can be enabled by setting parameter

‘‘ip_enable_group_ifs’’ in the /dev/ip driver to ‘‘1’’
with ndd.

Service Failover

Generic Method
With most services, such as simple web or direc-

tory service, doing failover is straightforward. When
these services are migrated, it is an easy matter of
stopping the service on one host and starting it on the
other. If care is taken when performing the migration
of services, impact on the clients can be minimized.

The basic algorithm for migrating a service set
from host A to B is as follows:

1. Check to see if Host A is still providing the ser-
vice to to be migrated.

2. If Host A is still providing service set, shell to
Host A and:

a. Stop services which need to be migrated.
b. Unmount disks which need to be

migrated.
c. Release any locks which may prevent

the other host from acquiring the disks to
be migrated.

d. Bring down public NIC associated with
service set.

3. Import and mount disks associated with service
set being migrated. This should include a check

92 1997 LISA XI – October 26-31, 1997 – San Diego, CA

Barber Increased Server Availability and Flexibility through Failover Capability

to see if the file system needs a consistency
check (i.e., fsck).

4. Bring up public NIC associated with service
set.

5. Start services which host A was previously pro-
viding.

In our environment, we were able to configure all of
our production services in such a way that service
migration is possible. However, some services are
more difficult to provide within this framework, and
others simply cannot be provided in this manner. The
following sections describe some of the implementa-
tion-specific details for services which are not as
straightforward to migrate.

NFS
NFS file handles contain all the information a

NFS server needs to distinguish an individual file [7,
8]. In Sun’s NFS implementation, this information
includes the major and minor device numbers of the
file system being nfs exported. Therefore, it is essen-
tial the device major and minor numbers of the file
system to be migrated be identical on both hosts. If the
major/minor device numbers do not match, when NFS
service is migrated, the clients will have stale NFS
handles.

Either of the two logical volume managers men-
tioned above will take care of the device names so
they are the same on both hosts; however the major
device numbers will not necessarily be the same. The
relevant entry in /etc/name_to_major for the Veritas
Volume Manager 2.3 is ‘‘vxio,’’ and for Solstice Disk
Suite it is ‘‘md.’’ The number associated with this
entry should be the same on both hosts.

If the entry for ‘‘vxio’’ or ‘‘md’’ in the
/etc/name_to_major file is the same on both hosts, the
device files will have the same major and minor
device numbers. However, if these numbers are not
the same, you will need to edit the /etc/name_to_major
file and set one of the numbers listed for ‘‘vxio’’ to be
the same as on the other host. Be sure to look through
the file to make sure the number you are setting one of
the ‘‘vxio’’ entries to is not already in use. After
changing this entry in /etc/name_to_major you will
need to do a reconfiguration boot. (i.e., boot -r)

Doing NFS service migration with a writable file
system is somewhat risky, but in most cases is an
acceptable risk given the nature of the situations when
failover is needed. When NFS service is migrated
from one server to another, any kernel locks (fcntl,
flock, etc.) will be lost, while ‘‘dot’’ locks will be pre-
served. From the perspective of the NFS client, it will
look as though the NFS server was rebooted. How-
ever, unlike after reboot, the NFS server will not have
a list of which hosts which held kernel locks and need
to be contacted. It may be possible to preserve kernel
locks by migrating the contents of /var/statmon
thereby making the NFS server request kernel lock
information from the clients as if it had be rebooted.

NFS over UDP handles failover quite well.
Assuming there is not a big time gap between when
server A stops serving and server B starts serving, the
NFS clients do not even notice when service migration
has occurred.

NFS over TCP has a few quirks. If NFS services
are migrated from server A to server B, the clients
‘‘hiccup,’’ complaining ‘‘NFS server . . . not respond-
ing’’ and then immediately ‘‘NFS server . . . ok.’’ This
is caused when NFS clients try to communicate to the
failover server which the client believes to have an
open TCP stream. The NFS server returns a TCP RST
to the NFS client indicating there is no open TCP
stream, which causes the NFS client to ‘‘hiccup.’’
Upon receipt of the TCP RST the NFS client then
sends the appropriate TCP SYN packets to establish a
new TCP connection.

A problem occurs with NFS over TCP if you
then migrate NFS service from server B back to server
A, without either rebooting server A or waiting
approximately thirteen minutes between service
migration. Even after NFS services are migrated away
from a machine and the public NIC is taken down and
unplumbed, nfsd maintains an open TCP stream to the
nonexistent interface. After thirteen minutes of trying
to use the no longer functional interface, nfsd will
destroy that TCP stream. If NFS services are migrated
back before the nfsd has closed this stream, the NFS
clients will hang because of mismatched TCP
sequence numbers. This should not be a problem,
since in most circumstances where service migration
is needed, the duration will be longer than thirteen
minutes, or the machine originally hosting the services
will be rebooted.

After a migration of NFS services has been per-
formed, one consequence is the data stored in
/etc/rmtab is very likely no longer accurate. I have
found no negative side effects other than the show-
mount command giving an incorrect list of hosts.

Another NFS over TCP issue is the case in which
your failover-capable NFS server also acts as a NFS
client in that it NFS mounts file systems from remote
machines. Because the public network interfaces will
have a higher preference (a lower metric) than the pri-
vate interface, the public network interfaces will be
used when NFS mounting a remote file system. In the
case of a service migration, the public interface being
used may be taken down, thereby causing the machine
to hang on the apparently downed NFS server. One
workaround for this problem might be to temporarily
unmount all remote file systems while performing a
service migration.

sendmail
Although DNS MX records can be used to pro-

vide fallback mail service, this will not provide data
availability while the host which spools e-mail is
down. Berkeley sendmail 8.8.x can configured to
allow for service migration.

1997 LISA XI – October 26-31, 1997 – San Diego, CA 93

Increased Server Availability and Flexibility through Failover Capability Barber

In a dual-host configuration it may be desirable
to run a sendmail process on each host, but not neces-
sarily configured to perform similar functions – for
example, one host may spool mail and the other host
may handle off-site delivery. One solution to this
problem might be to have three sendmail configura-
tion files: one for host A, one for host B, and another
to allow a single sendmail process to fulfill the roles
of both machines for operation in a combined post-
migration mode.

There is a cleaner solution which allows send-
mail to operate on a combined machine using the same
configuration files which it uses when running on both
hosts. This solution does require a few changes to
your sendmail configuration file, a few compile time
options, and as of Berkeley sendmail 8.8.7, a small
source code modification.

To provide the basis for sendmail service migra-
tion, the sendmail binary, configuration file, mqueue,
and possibly a mail spool, need to be located on the
multi-ported disk array. This may require various
compile time options to be set in order to specify an
alternate mqueue directory and sendmail configuration
file location.

So that sendmail will read its sendmail.cf config-
uration file and store its sendmail.pid in a nonstandard
location, add the flags provided in Listing 1 to
‘‘ENVDEF’’ found in your sendmail makefile. Of
course, replace the path names with the ones correct
for your system.

ENVDEF=-D_PATH_SENDMAILCF=\"/mailgate/etc/mail/sendmail.cf\" \
-D_PATH_SENDMAILPID=\"/mailgate/etc/mail/sendmail.pid\"

Listing 1: Defining non-standard files.

Within the sendmail configuration file, you will
need to change the default mqueue directory to a path
which resides on the multi-ported disk array. To
change this, add the following to your m4 configura-
tion file:

define(‘QUEUE_DIR’,
‘/mailgate/var/spool/mqueue’)

For those not using m4 macros, modify the QueueDi-
rectory entry in your sendmail configuration file to
reflect the correct path name.

Version 8.7 and beyond of Berkeley sendmail
has a configuration option called ‘‘DaemonPortOp-
tions.’’ Using this option, you can force sendmail to
bind to a specific IP address for daemon mode, which
can be used to make sendmail use a specific public
NIC associated with the given IP address.

This feature is useful in a dual-host configuration
when sendmail services have been combined on one
host; specifically, two sendmail processes can be run
on one host, both in daemon mode, each binding to a
different IP address. This allows sendmail to function

the same whether it is one process on each host, or
two processes on one host.

To force sendmail to bind to a specific IP address
when running in daemon mode, add the following m4
macro configuration file option:

define(‘confDAEMON_OPTIONS’,
‘Addr=mailgate’)

The sendmail configuration file equivalent to this is:

O DaemonPortOptions=Addr=mailgate

Of course, use the public host name of your mail
server instead of ‘‘mailgate.’’

Although sendmail can be easily configured to
bind to a specific IP address for accepting incoming
SMTP connection in daemon mode, as of Berkeley
sendmail 8.8.7 there is no option to force sendmail to
bind a specific IP address when establishing remote
connections. This has the potential to cause the header
‘‘X-Authentication-Warning’’ to be inserted into e-
mail when sendmail connects to a remote host but
reports its hostname to be different than the name
which maps to the IP address it used for the outgoing
connection.

To resolve this outgoing SMTP IP address prob-
lem, I found that a one line addition to the sendmail
source code can be used to force sendmail to use the
same IP address for outgoing connections as listed in
the configuration file used for accepting incoming
SMTP connections. This sort of functionality is a
planned feature for a future release of Berkeley send-
mail [9]. This may not be necessary under Solaris 2.6
due to the feature called ‘‘interface groups’’ mentioned
above.

In the file daemon.c as obtained from the Berke-
ley sendmail 8.8.7 source code distribution, find the
line:

i = connect (s,
(struct sockaddr *) &addr,
addrlen);

Insert the following right before the connect line you
just found:

(void) bind(s,
(struct sockaddr *) &DaemonAddr,
addrlen);

You may want to surround this line by ‘‘#ifdef ’’ pre-
processor statements for conditional compilation,
since this source code modification may not be appro-
priate for multi-homed hosts on multiple physical net-
works.

94 1997 LISA XI – October 26-31, 1997 – San Diego, CA

Barber Increased Server Availability and Flexibility through Failover Capability

When running in a combined mode, there is the
potential for one sendmail process to try to talk to the
other sendmail process. It is desirable for the sendmail
processes to communicate as if they were on separate
hosts. A modification of the configuration file is nec-
essary so sendmail does not erroneously detect it is
talking to itself and disallow it to prevent a mail loop.
This can be solved by hard coding macros ‘‘$w’’ and
‘‘$j’’ in the sendmail configuration file to be the
unqualified host name and fully qualified hostname
(respectively) of the public interface being used. To
force correct values into ‘‘$w’’ and ‘‘$j’’, use the fol-
lowing in your m4 configuration file:

LOCAL_CONFIG
Dwmailgate
Dj$w.$m

If you are not using the m4 macros, just drop the
‘‘LOCAL_CONFIG’’ line and put the ‘‘Dw’’ and
‘‘Dj’’ lines in your sendmail.cf file.

World Wide Web (httpd)
In our environment, doing web service failover

was quite simple. Our web site does mostly ‘‘vanilla’’
web file serving with very few cgi scripts.

Most modern web servers have an option which
allows you to bind a web server to a specific IP
address. For example, the option with the NCSA web
server is ‘‘BindAddress’’ found in ‘‘httpd.conf.’’ Set
this to the IP address or hostname of your public inter-
face through which clients obtain web service.

Because a web server can be bound to a specific
interface or IP address, you may run web servers on
both hosts in your failover configuration and expect
them to operate in a similar manner when running in
combined mode.

inetd
Services which are managed by inetd can also be

easily migrated from one host to the other. To accom-
plish this, as many as three separate inetd configura-
tion files may be needed: a generic inetd configuration
file listing services provided by both machines, and an
individual inetd configuration file for each of the two
machines listing only the inetd managed services
unique to each machine.

Solaris allows more than one inetd process to run
simultaneously, and inetd will accept the name of an
alternate inetd.conf file on the command line. Since
there is the potential for all three inetd configurations
to be running concurrently on one host there may not
be any conflicts between the configurations in which
more than one service is associated with the same
port.

Behind the Scenes

In addition to planning service migration of dae-
mons which provide service to end users, it is impor-
tant to consider those services which work behind the

scenes, such as cron and system backups. The follow-
ing sections describe how to schedule these events so
they happen consistently. If a service migration hap-
pens while one of these jobs is running, it may need to
be manually restarted after the migration occurs.

cron
It is a relatively simple matter to ensure that cron

jobs are executed in the same manner in a combined
failover mode as they do when services are spread
across both machines. This requires identical crontab
entries on both machines where each job is preceded
by a test to determine if determine if the given cron
job should be run.

For example, if one service set needs a cron job
to regenerate a class list daily, a crontab entry might
look like:

30 0 * * * [-x
/opt/class_list/generate]
&& /opt/class_list/generate

The test expression assumes if the program ‘‘gener-
ate’’ exists, the service set which requires its use must
be running on localhost. The test expression must
therefore always test for a file or directory which will
only be present when the given service set is running
on localhost.

One unfortunate aspect of this is if you have an
error in the crontab file, it may escape detection for
some time. Errors in the test expression may silently
cause a job to not run. If a service set’s crontab entry
is not correct on both hosts, an error may not cause
problems until service migration has occurred.

Backups
Since backups must occur even when services

have been migrated, it is important to put thought into
the backup software configuration.

In the situation where a remote host performs the
backups of both servers, the configuration is simple –
just have the software use the public network name of
the service set which contains the file systems to be
backed up. The backup software should then be able
to always find the data to be backed up.

In our environment, both machines have their
own local tape drives and run non-commercial backup
software. To ensure backups happen consistently, the
backup schedules are identical on both machines. This
causes the tape indexes to be the same on both tapes,
however only a small dump record is written to tape
for file systems on the backup schedule which are not
present on the host doing the backups.

This backup strategy works well for full level
zero dumps, but it may cause problems for incremen-
tal dumps. Although both machines will have identical
backup schedules, the time stamps listed in /etc/dump-
dates for both hosts will be close, but not the same.
Therefore, there is the potential to miss data when per-
forming an incremental backup of a file system which

1997 LISA XI – October 26-31, 1997 – San Diego, CA 95

Increased Server Availability and Flexibility through Failover Capability Barber

was resident on the other host at the time of the last
backup. One possible solution to this would be to
write a program to keep /etc/dumpdates files synchro-
nized, and populated with correct time-stamps.

System Reboot
When a host provides a service set, whether it

normally resides there or has been migrated from
another host, it is important services be resumed if
appropriate after a reboot. This issue can be addressed
in a boot-up rc script using the following strategy:

For each service set which I may provide,
1. check to see if another host is providing given

service set; if so skip item 2 on this list.
2. If the given service set was being provided at

the time of system shutdown, start running that
service set.

Performing this check on boot-up will ensure
that if a machine goes down while hosting a given ser-
vice set, it will restart the service set after boot-up pro-
vided there is no other machine currently offering said
service set. If using Veritas Volume Manager, it is sim-
ple to determine if a service set was up on a machine
by checking for the existence of the directory
/dev/vx/dsk/<set_name>.

An Example Implementation

This section contains details about how I chose
to implement the failover system in use at Michigan
Technological University. It is certainly not a defini-
tive guide on how a failover system must be config-
ured. Use it in the context it is intended – as an exam-
ple.

The software I wrote for service migration is
actually just a small collection of Bourne shell scripts
and a short C program. The scripts are written to be
simple, effective, and easily configurable.

• acquire – used to migrate given set of services
to localhost.

• release – helper script for acquire usually run
via rsh instructing the machine providing a ser-
vice set to stop those services and release the
relevant file systems.

• setup_interface – helper script for both acquire
and release which is used to configure, bring
up, and down the ethernet network interfaces
associated with given service set.

• notify_switch – C program required after a ser-
vice migration if both servers are on separate
switched ports on a hub. This simple C pro-
gram does a broadcast which generates traffic
on all its network interfaces and causes the hub
to realize the IP/MAC address pair moved to a
different port.

• unlockdg – forcibly remove a host lock on a
given disk group. This script is useful in the
case of an ungraceful service migration where
the host which held the lock is down or unable
to release the lock.

One way I attempted to keep these scripts simple
was to use the name of the public interface to also
label the Veritas Volume Manager disk group. There-
fore, there is a direct mapping between a set of ser-
vices, the public host name, and the disk group name.
In order to put as little configuration information in
the scripts as possible I created a volume called ‘‘con-
fig’’ on each disk group which contains configuration
information about that particular service set.

The ‘‘config’’ volume contains a small collection
of binaries, configuration files, and rc startup and
shutdown scripts. This file system gets mounted as
/<service_set_name>. The files in ‘‘config’’ are in a
similar arrangement to where the normal files are,
except with ‘‘/’’ relative to /<set_name>. You might
find directories such as /etc, /etc/mail, /etc/dfs,
/var/spool/mqueue, /usr/lib, and /sbin containing con-
figuration information essential for the given service
set, such as vfstab, dfstab, sendmail.cf, and inetd.conf.

The ‘‘acquire’’ script examines the contents of
this configuration file system to determine which file
systems to mount, NFS export, which services to start
via rc scripts, and if any services require an inetd pro-
cess to be run for that service set. The release script
uses the rc scripts on this file system to stop services
which were started via rc scripts.

Since using the rc script to stop services from a
given service set may not always kill every process
using the file system which needs to be unmounted,
the ‘‘release’’ script makes use of the ‘‘fuser ’’ com-
mand to list processes using a given file system. Pro-
cesses are first sent a polite SIGTERM, and if still
running after one second, they are sent a SIGKILL. If
there are any kernel locks on a file system to be
unmounted, the lock manager must be stopped before
the unmount and started after the unmount.

Increased Availability or High Availability?

While the application of the techniques presented
within this paper may give extra flexibility and allow
uptime when there would normally be service inter-
ruption, this is in no way a HA (High Availability)
solution. Operator error, poor fault detection, and fail-
ure of the network fabric are just a few items which
may cause service interruption. Sites which require a
guaranteed percentage of uptime should explore com-
mercial HA solutions which will perform fault detec-
tion and automatic failover.

Why stop with manual failover? On the surface it
may not seem difficult to write a program that would
perform the functions discussed in this paper in an
automatic failover capacity. Unfortunately, the prob-
lem of doing failover gets considerably more compli-
cated when you intend for the system to run on auto-
pilot and migrate services without any human inter-
vention.

The main problem with automatic failover is one
node detecting when the other node is down and

96 1997 LISA XI – October 26-31, 1997 – San Diego, CA

Barber Increased Server Availability and Flexibility through Failover Capability

determining if it is a situation in which it should
attempt to run the downed node’s services. Incorrect
detection of failure may lead to inappropriate
failovers, which have the potential to bring more insta-
bility to your system than homegrown automatic
failover can hope to provide.

Availability

Example source code for performing service
migration may be obtained from http://www.it.
mtu.edu/failover/ .

Conclusion

It is possible to build a framework through which
service availability can be increased by separating the
service from the server. In the event of a server hard-
ware failure or the need for system maintenance, the
system administrator can easily migrate the services to
a different machine. In addition to increasing service
availability, this may also reduce the stress put on a
system administrator who, for example, just had a
CPU fail in one of the primary production servers.

Of the high availability solutions prevalent today,
some provide attractive functionality, but there is still
much to be done in this area. As node clustering and
single system image become a mature high availability
alternative, many of the topics which this paper
explores may become non-issues.

Acknowledgments

Thanks to Thomas Dwyer III of Sun Microsys-
tems for his technical guidance with this project and
allowing me to use him as a sounding board for my
ideas. His insight and suggestions have proven invalu-
able.

Thanks to my coworkers and my supervisor, Ann
West, for supporting this project. Also thanks to the
folks who proofread and critiqued my paper – they
have certainly helped make this paper more readable.

Author Information

Michael R. Barber is currently a Senior Systems
Programmer in Michigan Technological University’s
Information Technology department, and holds a
bachelors degree in Computer Science. You can reach
Michael electronically at barber@mtu.edu.

Bibliography

[1] Schemers, Ronald J., ‘‘lbnamed: A Load Balanc-
ing Name Server in Perl,’’ Proceedings of the
USENIX Systems Administration (LISA IX) Con-
ference, pp. 1-11, Monterey, CA, September,
1995.

[2] Uniq Software Services, ‘‘UPFS – A Highly
Available Filesystem,’’ http://www.uniq.com.au/
products/upfs/UPFS-WhitePaper/UPFS-WhitePaper
-1.html .

[3] ‘‘Frequently Asked Questions about Sun
NVRAM/hostid,’’ http://www.squirrel.com/squirrel/
sun-nvram-hostid.faq.html .

[4] ANSI/IEEE Std 802.3, Carrier sense multiple
access with collision detection (CSMA/CD)
access method and physical layer specifications,
1996 Edition, pp. 12-14.

[5] Andrew S. Tanenbaum, Computer Networks,
Third Edition, 1996, pp 280-281.

[6] USENET post on comp.unix.solaris by Gavin
Maltby of Sun Microsystems, 8/22/1997.

[7] RFC 1094: Sun Microsystems, Inc, NFS: Net-
work File System Protocol specification,
03/01/1989.

[8] RFC 1813: B. Callaghan, B. Pawlowski, P.
Staubach, NFS Version 3 Protocol Specification,
06/21/1995.

[9] Personal electronic correspondence with Gregory
Neil Shapiro of WPI, 9/2/1997.

1997 LISA XI – October 26-31, 1997 – San Diego, CA 97

