
The following paper was originally published in the
Proceedings of the Eleventh Systems Administration Conference (LISA ’97)

San Diego, California, October 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

The Cyclic News Filesystem: Getting
INN To Do More With Less
Scott Lystig Fritchie – Minnesota Regional Network

ABSTRACT

When Usenet News servers were first implemented, the design principle of storing each
Usenet article in a separate file appeared to be sound. However, the number of Usenet News
articles posted per day has grown phenomenally in the past decade and shows no sign of
abating. To stay ahead of the growth curve, Usenet administrators have been forced to buy faster
machines, more RAM, and many more disk drives. Many of the performance limitations are
caused by interactions with the underlying OS’s filesystem, which is usually a Berkeley Fast
Filesystem (FFS) derivative.

The Cyclic News Filesystem (CNFS) was designed to avoid most of FFS’s major problems
when used with INN: synchronous file linking/unlinking and sequential scanning of directory
files. Articles are stored within a relative handful of large files, either as regular files on top of a
standard filesystem or as block disk devices. Articles are stored sequentially within each file,
resuming at the beginning of the file when the end is reached. Disk activity is reduced by an
order of magnitude.

Introduction

Though Usenet server software packages have
changed greatly over the years, almost all have one
implementation detail in common: the method used to
store articles on disk. The newsgroup hierarchy maps
directly onto a filesystem directory hierarchy, and stor-
ing articles in individual files fits the paradigm nicely.

But Usenet article volumes have grown exponen-
tially for at least ten years. Confirmation can be found
by reading [Collyer], [Salz], [Swartz93] (whose expo-
nential forecast in 1993 underestimates current 1997
volumes by a factor of four), and by asking any sea-
soned Usenet system administrator. If that same
administrator were asked, ‘‘Does your Usenet server
have sufficient capacity for current article volume?’’
the answer would probably be ‘‘No’’ or ‘‘Barely.’’
Nothing appears to be on the immediate horizon to
slow down article growth rates, which means most
Usenet servers will have severe performance problems
soon, if not already.

The ‘‘one file per article’’ storage method contin-
ues to be used by INN, the most commonly-used
Usenet server software in the world today. Most of the
operating systems running underneath INN also use a
variation of the Berkeley Fast Filesystem (FFS). The
FFS, while a significant improvement over its prede-
cessors [McKusick], interacts quite poorly with INN.
At today’s volumes, an INN server may store thou-
sands to tens of thousands of article files within a sin-
gle directory. FFS performance degrades quickly when
managing large directories, due to sequential directory
data scans and synchronous directory updates.

One avenue for addressing this pressing problem
is to alter or abandon the current method of storing

articles. This paper discusses both. The first stores
articles in individual files that are named by an MD5
checksum of their Message-IDs. The other stores
thousands of articles within a single file, utilizing the
file as a huge cyclic buffer. These buffers can be large
files on top of a standard filesystem (even FFS-based)
or a block disk device, bypassing standard filesystems
entirely. A side benefit of this method is that there is
no explicit article expiration process: articles are auto-
matically overwritten as new articles arrive. The
resulting performance, as measured by article through-
put, increases by a factor of three to four; disk I/O is
reduced a factor of 10. There are many nontechnical
reasons why the cyclic buffer storage method is
preferable to the current method. Most of them are
expressed in [StSauver]:

My throughput is up, my news spool disk I/O
bottlenecks have disappeared, I no longer am off-
line for longer expiration-related periods, I don’t
need to screw around with software disk striping
utilities, and I don’t run out of space in
/var/spool/news. It’s great, and it’s free.

The rest of this paper is organized as follows: the next
section follows an article through INN’s processing
and describes how an FFS-based filesystem adds a
significant hidden cost to that processing. Then, the
INN Improvements section describes previous steps
taken to lower that cost. The next two sections
describe two of the author’s methods to change INN’s
article storage method to lower or avoid FFS over-
head. The Performance section compares the perfor-
mance of a standard INN server to one utilizing the
cyclic storage method. The final sections provide
some directions for future INN-related research and
some concluding observations.

1997 LISA XI – October 26-31, 1997 – San Diego, CA 99

The Cyclic News Filesystem: Getting INN To Do More With Less Fritchie

Life As an Article Processed by INN

INN has separate software components that pro-
cess an article during its four phases of existence in an
INN server. Each phase has problematic interactions
between INN and FFS. They are as follows:

Path: news.mr.net!mr.net!visi.com!news-out.visi.com!ix.netcom.com!news
From: John Doe <jdoe@no.where>
Date: 2 Sep 1997 18:16:52 GMT
Newsgroups: misc.jobs.offered,mn.jobs
Message-ID: <foo87692.bar85-97@no.where>
Subject: French Fry Slicer (Level II) wanted for part-time work
Lines: 22

Figure 1: Sample headers from a sample Usenet article.

Level Directory Name Size Number of Entries

1 / 512B 31
2 /var 512B 20
3 /var/spool 512B 12
4 /var/spool/news 15KB 994
5 /var/spool/news/misc 3KB 127
6 /var/spool/news/misc/jobs 174KB 10,836
7 /var/spool/news/misc/jobs/offered 637KB 32,499

5 /var/spool/news/alt 25KB 1367
6 /var/spool/news/alt/atari 512B 1
6 /var/spool/news/alt/fan 15KB 771

10 /var/spool/news/alt/swedish/chef/bork/bork/bork 512B 3

Figure 2: Sample directory sizes for an INN server spool filesystem

1. Receive the article and store it in a file in the
spool directory.

2. Read the article file from the spool directory to
forward it to peer servers.

3. Read the article file from the spool directory to
forward it to NNTP reader clients.

4. Remove the article file from the spool direc-
tory.

An Article Is Received
INND is the central daemon process that accepts

or refuses articles offered via the NNTP protocol
[Kantor], stores the article, keeps a database of articles
it has already processed (in history and related
DBZ index files history.pag and his-
tory.dir), and decides which peer(s) the article
should be forwarded to.

See Figure 1 for an example article that INND
has just accepted. INND consults the active file to
assign this article the next available number for
"misc.jobs.offered", which could be 9124816, and
stores the article in a file with the path
misc/jobs/offered/9124816 (relative to the
SPOOLDIR directory, e.g., /var/spool/news).
When storing the sample article, the open() system
call will trigger a behind-the-scenes scan of several
directories first. (See Figure 2.)

The directory name cache may eliminate the
need to fully scan directories 1-6, and the file buffer
cache may avoid the need for some or all of the disk
I/O. Articles tend to arrive with a fairly random news-
group distribution, which makes the OS caches less
effective without large amounts of RAM to assist
them. In the worst case, directories 1-6 must be
scanned sequentially to find the inode for directory 7,
reading 194KB of directory data; each scan would
trigger at least one disk I/O.

Once the inode for directory 7 is found, it must
be read sequentially to look for an unused space to
insert file 9124816’s directory entry. If there is no
unused space, then the entry is appended to the end of
the directory file. A quick analysis by the author sug-
gests that an average of 56% of the final directory
must be scanned before insertion is possible.1 On aver-
age, 357KB of directory data is read before finding a
suitable insertion point. (Both [Sweeney] and [Rak-
itzis] illustrate the wastefulness of linear scanning of
large directories.) Furthermore, the insertion operation
is synchronous: the change must be committed to disk
before the open system call can return.

As a result of sequential directory scanning and
synchronous file linking, the amount of time necessary
for INN to write a single article file, regardless of the
its size, can vary tremendously. Almost every piece of

1An unattributable Net rumor estimated 70%. The author’s
test sampled the misc/jobs/offered subdirectory ev-
ery five minutes for a 24 hour period.

100 1997 LISA XI – October 26-31, 1997 – San Diego, CA

Fritchie The Cyclic News Filesystem: Getting INN To Do More With Less

hardware in the server affects this measurement,
though the number of disk drives spanned by the
filesystem, the spanning type (e.g., none, RAID 0), the
filesystem type, and the overall disk I/O workload of
the drives are the largest factors influencing this mea-
surement. It is not unusual to witness write times
below 10 ms to over 200ms. INND, which is a single-
threaded process, is blocked until open() is finished.

It should be noted that the sample article was
cross-posted to another newsgroup, mn.jobs. INN will
use a hard or symbolic link for mn/jobs/8149 to
link to the original article file, misc/
jobs/offered/9124816. The linking process
is identical to the file creation process with respect to
directory file modification. Again, INND blocks dur-
ing the link system call.

Another task INND performs is the processing of
control messages. Article cancellation messages are by
far the most frequently encountered control messages.
To process a cancel message, INND performs a his-
tory database lookup to check if the message to be
cancelled has arrived yet. If it has, the article is
removed by INND. The amount of time this operation
takes can vary from 8 ms to over 250 ms. Unlink() is
also performed synchronously under FFS, which yet
again halts INND’s activity until the directory data is
committed to disk.

Some Usenet servers are already seeing article
volumes at or above 750K articles per day. A server
must accept, on average, 8.68 articles/second, or 115
milliseconds/article, just to stay even with traffic flow.
The 115 milliseconds includes network latency, server
overhead (history database queries are the biggest
INND factor here), and storage subsystem overhead.
The measurements in Figure 8 and Figure 9 suggest
that filesystem overhead and disk latency account for,
at a bare minimum, an average of 50ms of overhead
per article. The true value is probably closer to 75ms,
and that’s on a well-configured and otherwise idle
server! Continued exponential article growth rates will
only make this problem worse, particularly with a sin-
gle-threaded server application.

An Article Is Forwarded
INND’s newsfeeds file contains the rules for

determining whether an article should be forwarded to
one or more peer servers. Programs such as
INNXMIT, INNFEED, and NNTPLINK are used to
perform the actual article transmission.

INNXMIT reads a batch file containing the Mes-
sage-IDs and filenames of articles to be forwarded to a
particular Usenet peer server; there is at least one
INNXMIT process per feed.2 INNXMIT processes are

2An INN administrator may configure multiple feeds to a
single peer, e.g., one feed of articles under 100KB in size
and one for articles over 100KB.

run periodically by a shell script called "nntpsend",
which is usually run via "cron".

Once INNXMIT has made an offer to send an
article to a peer and the peer has accepted,
INNXMIT’s open() of the article triggers another
flurry of OS activity. If lucky, the OS need not trigger
any disk I/O because all of the required data is stored
in-memory in the directory name and filesystem buffer
caches, though the kernel CPU time spent searching
the latter may be non-trivial. In the worst case, the
example will require a linear scan of 830KB of direc-
tory data, triggering several disk I/O’s to different
filesystems. INNXMIT’s batch file is written in the
same order in which INND received the articles,
adding a significant amount of randomness that ren-
ders the OS caches less effective.

The roles of NNTPLINK and INNFEED will be
addressed in a later section.

An Article Is Read By Reader Clients
When INN was originally written, as with C

News and its predecessors, Usenet client software
accessed articles by reading the article files directly
out of the spool directory. For a client such as "read-
news" or "rn" to see what articles were available in
"misc.jobs.offered", it simply had to generate a list of
files in the misc/jobs/offered subdirectory.
Usenet users had accounts on the Usenet server; client
software ran on the server.

Today most Usenet reader clients use the NNTP
protocol to access Usenet articles. INN includes a sep-
arate program, NNRPD, to handle communication
with NNTP reader clients. Like many other UNIX-
based servers, INND will fork() and exec() a child
NNRPD process for each simultaneous reader session.

NNRPD has the same filesystem-related prob-
lems that INNXMIT does, though to a lesser degree.
Filesystem buffer and directory name cache hit rates
are better because NNRPD is much more likely to
access a large number of article files in the same direc-
tory, avoiding cache churning. Also, FFS’s tendency
to group files in the same cylinder group also means
that disk heads do not usually travel far to read files in
the same subdirectory. Unfortunately, the heads are
quickly relocated by other server activity, since most
NNTP reader clients are run by humans who ordinar-
ily take more than a few milliseconds to read a typical
Usenet article. ‘‘Sucking’’ clients and automatic
binary decoding utilities are growing in popularity,
generating larger bursts of intensive disk operations
than purely human-controlled software.

Another significant problem is that each article
file access triggers an update of that inode’s ‘‘last
access time’’ value, which requires a disk write opera-
tion after each file is read. (The update also occurs
when INNXMIT, NNTPLINK, or INNFEED reads a
file to be forwarded to a peer.)

1997 LISA XI – October 26-31, 1997 – San Diego, CA 101

The Cyclic News Filesystem: Getting INN To Do More With Less Fritchie

An Article Is Removed
An article can be removed in several ways:

1. removed by a cancel control message.
2. removed by INN’s "expire" process, usually via

the "news.daily" script.
3. removed by a third party, e.g., an administrator

using "rm -rf /var/spool/news/alt/binaries".

"Expire"’s list of files to remove is usually
sorted, so close locality of reference helps achieve
good cache hit rates. However, the final directory
search is a sequential one (barring assistance from the
directory name cache), requiring significant kernel
CPU time to process. Each unlink() operation is syn-
chronous, slowing the operation down much further:
unlink() can take anywhere from 8ms to over 300ms
to complete. If the article is cross-posted, all corre-
sponding hard or symbolic links must also be removed
(each at identical cost).

"Expire" is usually run early in the morning,
when CPU utilization is lower, fewer articles are being
transferred in/out (feeds across timezones can reduce
this advantage), and fewer NNRPD processes upset
the spool filesystem with additional disk activity.
While "expire" is running, however, the disks(s) in the
spool filesystem are effectively saturated with I/O
requests: additional operation, such as sending/receiv-
ing articles, only slows down both the article expira-
tion and the sending/receiving processes even further.

Improvements in INN Performance, a.k.a. Previous
Work

A number of changes have been made to INN
over the years to improve its performance. The follow-
ing is a partial list of the more important ones:

1. Sort the list of article files to be removed and
use "fastrm" to remove them.
Sorting tremendously improves locality of ref-
erence in OS caches by removing all designated
files in, for example, misc/jobs/offered
at once rather than removing them in the order
in which they arrived. Arrival order is typically
quite random, which causes poor file buffer and
directory name cache hit ratios when removing
article files in arrival order. "Fastrm" first
changes the working directory to the one con-
taining the specified files; it calls chdir() using
a relative path if shorter than a full path, and it
gives simple filenames only to unlink(), which
lowers namei() overhead.

2. Use the ‘‘-L’’ INND flag and "crosspost".
The program "crosspost" performs the linking
operations for cross-posted articles that INND
would otherwise do. It doesn’t accelerate the
underlying filesystem operations, but it keeps
INND from excessive blocking while waiting
for the links to be made.

3. Mount multiple filesystems under spool direc-
tory.
Originally done to provide the spool directory
with more storage capacity than any single disk
drive, it also provides a method of distributing
disk I/O over multiple disk drives and disk con-
trollers.

4. Make the spool directory a single virtual
filesystem spanning multiple disk drives.
Anyone who has tried to run an INN server
receiving a full feed onto a single spool disk
drive will discover that there aren’t enough
hours in a day to perform all the disk activity an
FFS filesystem requires. Virtual filesystems can
be implemented in software, e.g., Sun’s Solstice
DiskSuite or *BSD’s and Linux’s concatenated
disk drivers (ccd and md, respectively), or in
hardware, e.g., hardware RAID controller. This
method has an additional benefit of creating a
single pool of disk space, making it less likely
that a burst of articles will fill the filesystem
than improvement #3, as well as eliminating the
need to use symbolic links across filesystems.

5. Sort INNXMIT batch files by filename instead
of arrival order.
Sorting INNXMIT batch files (in the
"nntpsend" script) allows OS caches to be more
effective for the same reasons sorting "expire"’s
batches improves file removal rates. The author
has experienced up to three-fold improvement
in small article transfer rates by INNXMIT
when using sorted batches, particularly if the
batch is large and contains relatively few
unique newsgroups. Experimental data can be
found in [Delany].

6. Use NNTPLINK instead of INNXMIT.
NNTPLINK runs concurrently with INND, one
NNTPLINK process per peer feed. If the peer
can accept articles quickly enough, NNT-
PLINK will read an article file within a second
of being written. In this case, the odds are quite
high that the OS still has all necessary informa-
tion in its caches, avoiding the need for disk
I/O. It also improves directory name cache per-
formance, which in turn lowers directory scan-
ning requirements.

7. Use INNFEED instead of INNXMIT.
INNFEED operates similarly to NNTPLINK,
but a single INNFEED process can feed multi-
ple peers. Articles are read in their entirety into
memory, then reference counts are used to
avoid re-reading articles to be sent to multiple
peers. A single process also helps reduce VM
and context-switching workloads.

8. Avoid inode last access time updates.
Linux users can use the ‘‘no_atime’’ mount
option, and Network Appliance users can use

102 1997 LISA XI – October 26-31, 1997 – San Diego, CA

Fritchie The Cyclic News Filesystem: Getting INN To Do More With Less

‘‘option no_atime_update’’ [Swartz96] to avoid
updating an inode’s last access time attribute
each time the file is read. Does a Usenet admin-
istrator really care about the last time an article
file was read?

Message-ID <foo87692.bar85-97@no.where>
MD5(Message-ID) a0c277ebdad179a67c0203de8295269b
File path 20/02/77ebdad1

Figure 3: MD5 hash storage example

9. Use the ‘‘async’’ mount option.
BSD users can mount their spool directory with
the ‘‘async’’ option, which causes synchronous
file operations to be performed asynchronously.
Performance can improve dramatically but the
risk of filesystem corruption in the event of a
system crash is orders-of-magnitude higher.
Linux’s ext2fs uses asynchronous metadata
updates by default; its careful ordering of disk
writes greatly reduces the risk of filesystem
damage. Legato’s Prestoserve card negates this
risk by making metadata updates into NVRAM,
giving asynchronous-like behavior, then com-
mitting the changes to disk at a later time.

10. Use a dedicated, high-performance fileserver
for spool storage.
Use of high-performance fileservers such as
Network Appliance can greatly reduce I/O
delays [Swartz96] as well as serve the spool
filesystem to multiple machines [Christenson].
Negative aspects include NFS and TCP/IP pro-
tocol overhead as well as potential network
congestion and latency.

11. Use non-FFS-based filesystems.
The XFS [Sweeney] and WAFL [Hitz] filesys-
tems offer a number of enhancements that help
minimize directory scanning requirements.
Both, if the entire Network Appliance toaster is
also considered, also minimize metadata update
latency via write-ahead logging to disk or to
NVRAM, respectively.

12. Multi-threaded NNRPD.
Like INNFEED, a multi-threaded NNRPD
reduces VM and context-switching require-
ments. An implementation in Java is already
available [Poskanzer].

13. Avoiding use of INN altogether.
Several Usenet software packages boast large
performance increases compared to INN run-
ning on identical hardware. These include Dia-
blo [Dillon], NNTPRelay [Sedore], KNews
[Krten], and Cyclone [Highwind]. All of these
packages avoid the standard ‘‘one article per
file’’ storage method.

One innovation, the ‘‘streaming’’ extensions to
the NNTP protocol, has not been formally defined,
though it is widely used. It’s primary benefit is reduc-
ing network-related latency in the non-streaming
‘‘IHAVE’’ lock-step dialog. If a server’s disk subsys-
tem is already at or near saturation, reducing network
latency will only push drive utilization even higher.

INN Solution #1: File Naming by MD5 Hash

Perhaps first proposed in [Aguirre], this method
was suggested to reduce file creation, access, and
removal delays by making the INN spool directory
‘‘bushier,’’ i.e., putting a limit on subdirectory depth
and limiting the number of files in any particular
directory. (With a standard INN server, it’s common to
run into directory depth extremes like those in Figure
2.) Instead of storing an article in a path based on a
newsgroup + article number tuple, the Message-ID is
hashed using the MD5 cryptographic hash algorithm
[Rivest]. The result is converted to an ASCII hexadec-
imal representation and then modified using this algo-
rithm. (See also Figure 3.)

1. Use 6 bits in the first byte as the first subdirec-
tory name.

2. Use 6 bits in the second byte as the second sub-
directory name.

3. Use the next 4 bytes for the filename.
4. In the event of a collision, append a ‘‘+’’ to the

filename and test again for collision.

This method guarantees that any file’s path
would contain exactly two subdirectories and that each
directory has exactly 64 subdirectories.

In April 1996, when this method was imple-
mented, Usenet article volume was typically 180,000
articles/day. Subdirectories on a feeder machine stor-
ing articles for three days would contain approxi-
mately 125-135 files. Each filename was 8 bytes long,
making each subdirectory consume about 2KB.

The MD5 hashing experiment taught the author a
number of valuable lessons:

1. Article numbers are not required for feeder-
only INN servers.

2. The standard news/group/854 pathnames
can be transformed into opaque ‘‘where is the
article stored?’’ strings without affecting too
many of INN’s components.

3. Due to existing "history" and "expire" imple-
mentations and a desire not to meddle with
those implementations, only a single expiration
policy is feasible, instead of multiple per-hier-
archy and per-group policies.

1997 LISA XI – October 26-31, 1997 – San Diego, CA 103

The Cyclic News Filesystem: Getting INN To Do More With Less Fritchie

4. Disk I/O utilization, compared to a standard
INN server on the same hardware, is cut
roughly in half.

The MD5 hash version of INN was used in pro-
duction on the Minnesota Regional Network’s
(MRNet’s) three feeder-only machines for a period of
about two months in mid-1996. Though the source
code wasn’t widely-distributed, it was used by at least
one server in the Usenet Top 10 [Top1000] until
approximately May of 1997.

INN solution #2: Article Storage in Cyclic Buffers

Filesystem research is an extremely active field
of study. All UNIX filesystem improvements, from
small changes in existing implementations to entirely
new ones, must include functional characteristics such
as the ability to create, modify, and remove files and
their associated metadata, manage directory hierar-
chies, access control, concurrency restrictions, access
auditing, and so on.

As pointed out in [Templeton96b], most of those
characteristics do not apply to Usenet articles. Specifi-
cally, articles sizes are known in advance and do not
grow during creation. Article text is never modified
once committed to disk, simplifying space manage-
ment policies. In addition, Usenet articles are stored
for relatively brief periods of time, usually under two
weeks, and large batches of articles, which arrived at
similar times, are removed at the same time. If a
Usenet administrator must store articles for longer, the
number of articles is low enough that the large directo-
ries aren’t a large problem or the articles are stored
using an entirely different method, e.g., [DejaNews].

Cyclic Article Storage Method
The cyclic buffer article storage method was pro-

posed in [Templeton96a]. When an article is accepted,
the server decides which cyclic buffer will store the
article. The server may choose between one or more
buffers. The decision algorithm might consider the
article’s size, posted newsgroup(s), the ‘‘From’’
address, and/or other criteria. The article is written to
the cyclic buffer at the location indicated by the
‘‘free’’ pointer. If the article doesn’t fit within space
pointed to by ‘‘free,’’ the ‘‘free’’ pointer is reset to the
beginning of the buffer before writing the article.
After the article was written, the ‘‘free’’ pointer
advances to a position beyond the end of the newly-
written article.

In Figure 4, articles A-L were written inside the
cyclic buffer. When the server decided to store article
M within the buffer, it moved the ‘‘free’’ pointer back
to the buffer ’s beginning before continuing. The
‘‘free’’ pointer points to the end of article P, the last
written into the buffer. Article I is the oldest article
still available in the buffer: articles M-O have over-
written A-G, and article P has partially overwritten
article H.

M N O P I J K L

Reserved Free pointer Unused

Fragment
H

Figure 4: An example cyclic buffer

An INN Cyclic Buffer Implementation
The implementation described below is still con-

sidered experimental, though it has been in use at
MRNet for over a year as well as on a couple dozen
servers world-wide. The main design principles were
simplicity and minimization of coding time. INN was
chosen as a base to work upon, and few additional
bells and whistles have been added. Support for NNTP
reader clients was originally omitted from the design,
though it has since been added.

The current source code is full of references to
‘‘raw disk partitions.’’ When the author first began
development, he naively assumed that ‘‘raw’’/charac-
ter disk devices would be the ideal storage medium,
but their synchronous write semantics result in terrible
performance. A ‘‘cooked’’/block disk device (if the
OS supports mmap()’ing block devices) or a large file,
e.g., 2GB on top of a standard filesystem, works much
better by allowing the OS to delay and consolidate
writes. The word ‘‘raw,’’ however, will remain until
the code is rewritten.

Cyclic INN Article Processing

Once INND has accepted an article, it consults
the article storage rules table. Its external, human-
readable version is found in a new configuration file
called ‘‘config.rawpart’’ (parsed at startup time); see
Figure 5, section 3. The first rule matched is used. For
the example article in Figure 1, the article will be
stored in a ‘‘metarawpart’’ called SMALLARTS.

A ‘‘metarawpart’’ is a collection of one or more
‘‘rawpart,’’ or cyclic buffer, components. If a
metarawpart has more than one component, the server
will choose one of them in round-robin fashion. See
Figure 5, section 2 for configuration syntax.

Figure 5, section 1 lists three ‘‘rawpart’’ buffers.
In this example, SD0 resides on an old Seagate Hawk
2GB drive. SD1 and SD2 reside on newer Seagate
Barracuda 2GB drives. All three are partitioned identi-
cally, with one 2GB partition on slice zero. The
assignment of large and heavily-cross-posted articles
to a 2GB space and smaller articles into a 4GB space
reflects the administrator’s desired article retention
policies. Articles written inside BIGARTS will recycle
a couple of times per day, whereas articles written
inside SMALLARTS will not be overwritten for many
days.

104 1997 LISA XI – October 26-31, 1997 – San Diego, CA

Fritchie The Cyclic News Filesystem: Getting INN To Do More With Less

Cyclic Buffer State Information

INND maintains an array of RAWPART struc-
tures that stores the state of each cyclic buffer (see
Figure 6). While running, INND periodically converts
the rawpart state data to ASCII and writes a RAW-
PARTEXTERN structure to the beginning of each
buffer file to preserve buffer state information in the
event of a process or system crash. No special efforts
are made to synchronize the in-memory state data with
the data on disk. It is therefore possible to lose a small
number of articles in a crash: some may be overwrit-
ten when INND restarts. Similarly, only one copy of
the data is written; there is nothing analogous to a
‘‘backup superblock.’’ This lack of redundancy has yet
to cause a loss of state data in over a year of use.

Section 1
Format: "metarawpart" (literally) : name : "I" (literally) :
comma-separated list of "rawpart" buffers
metarawpart:BIGARTS:I:SD0
metarawpart:SMALLARTS:I:SD1,SD2

Section 2
Format: "rawpart" (literally) : name : path : size (in hex!)
rawpart:SD0:/var/spool/dsks/c0t0d0s0:7A000000
rawpart:SD1:/var/spool/dsks/c0t0d0s1:7A000000
rawpart:SD2:/var/spool/dsks/c0t0d0s2:7A000000

Section 3
Format: "groups" (literally): rule or wildcard pattern: metarawpart name
Store in BIGARTS if 1st group matches *warez* or *binaries*
groups:*warez*:BIGARTS
groups:*binaries*:BIGARTS
Store in BIGARTS if article size is greater than 100KB
groups:˜>100000:BIGARTS
Store in BIGARTS if article is cross-posted to 10 or more groups
groups:˜G10:BIGARTS
Store all others in SMALLARTS
groups:*:SMALLARTS

Figure 5: The storage rules section of "config.rawpart"

The state data is written to disk in ASCII in a
gesture toward platform-independence. This facilitates
serving cyclic buffers via NFS to heterogeneous
servers and copying buffers between servers.

Near the beginning of the buffer, between the
RAWPARTEXTERN structure and the start of the
actual article storage area, is a bitmap that records
which 512-byte blocks within the buffer contain valid
RAWARTHEADER structures. The bitmap is
mmap()’ed to provide easy pointer access to its con-
tents. The amount of space the bitmap uses, e.g.,
512KB for a 2GB file, is small. In return, the bitmap
makes it possible to determine if an article has been
cancelled without attempting to read and validate its
RAWARTHEADER structure.

The absence of the bitmap does not adversely
affect a feeder-only INN server. Earlier

implementations demonstrated that the additional I/O
used to attempt to read cancelled article files is not
significant. The article’s RAWARTHEADER structure
is overwritten with the string ‘‘CANCELLED,’’ which
foils further attempts to read the article. The bitmap’s
role in the NNTP reader client support, as discussed
later, solves an important performance problem.

INND gives an article, once it is accepted, a file-
name for use within other parts of INN. Unlike a stan-
dard filename such as misc/jobs/
offered/9124816, the cyclic name looks like
"SD1:24da800:1e". Colons separate the ‘‘rawpart’’
buffer name, offset within the buffer, and buffer ’s cur-
rent cycle number. Together with the information in
rawpart.config, this name contains all of the
information required to locate the article’s text. If the
rawpart’s current ‘‘free’’ offset and cycle number are
known, it is trivial to determine if the article has been
overwritten by a later article. In this example, the
RAWARTHEADER structure would be written at off-
set 0x24da800, followed immediately by the full text
of the article.

A compile-time option determines if the article
text is stored with the UNIX-style newline convention
or stored in ‘‘wire format,’’ with CR-LF newlines and
periods at the beginning of a line escaped with an
additional ‘‘.’’ [Kantor]. Storage in wire format elimi-
nates the need to convert newline styles each time the
article is transmitted via NNTP, reducing user CPU
time utilization in busy servers.

1997 LISA XI – October 26-31, 1997 – San Diego, CA 105

The Cyclic News Filesystem: Getting INN To Do More With Less Fritchie

NNTP Reader Support

The original cyclic buffer INN implementation
did not support NNTP reader clients: the reader client
reliance on article numbers greatly complicates an oth-
erwise straightforward design. However, MRNet’s
main NNTP reader server, news.mr.net, started to
show its article handling capacity limits in early 1997
– and the NNTP reader support was born.

/* Main internal data structure */
typedef struct {
char magic[RAWMASIZ];/* Magic string RAW_MAGIC */
char name[RAWNASIZ]; /* Symbolic name: 15 bytes */
char path[RAWPASIZ]; /* Path to file: 63 bytes */
RAWPART_OFF_T len; /* Length of writable area, in bytes */
RAWPART_OFF_T free; /* Free offset (relative to byte 0!) */
struct metarawpart *mymeta; /* Pointer to my "parent" metarawpart */
time_t updated; /* Time of last update to header */
int fdrdwr; /* O_RDWR file descriptor, "innd" use only! */
int fdrd; /* O_RDONLY file descriptor for this rawpart */
CYCLENUM_T cyclenum; /* Number of current cycle, 0 = invalid */
int magicver; /* Magic version number */
int articlepending; /* Debug flag: article is pending for write */
caddr_t bitmap; /* Bitmap for article in use */
RAWPART_OFF_T minartoffset; /* The minimum offset for article storage */

} RAWPART;
extern RAWPART rawparttab[MAX_RAWPARTS];

/* Main data structures written to disk */
typedef struct {

char magic[RAWMASIZ];
char name[RAWNASIZ];
char path[RAWPASIZ];
char lena[RAWLASIZ]; /* ASCII version of len */
char freea[RAWLASIZ]; /* ASCII version of free */
char updateda[RAWLASIZ]; /* ASCII version of updated */
char cyclenuma[RAWLASIZ]; /* ASCII version of cyclenum */

} RAWPARTEXTERN;

typedef struct {
long zottf; /* This should always be 0x01234 */
long size; /* Article size, converted by htonl() */
char m_id[64]; /* 63 bytes of Message-ID should be enough */

} RAWARTHEADER;

Figure 6: Important on-disk and in-memory data structures

INND is a busy process, so putting article num-
ber support back into INND was the last thing the
author wished to do. Unfortunately, INND maintains
low- and high-article values for each group inside the
active file. Many NNTP reader clients rely on
those values to be correct; incorrect values mislead
many clients into believing that new articles have not
arrived in a newsgroup when, in fact, new ones may
be available.

A compromise was finally implemented. Most
NNTP reader server administrators use "overchan", a
program which creates Overview article summaries to
eliminate the need for NNTP readers to retrieve the
headers of all articles within a group (e.g., for discus-
sion threading). "Overchan" was given the task of
assigning article numbers. It also updates the mecha-
nism that maps newsgroup + article number tuples =>
article storage locations and informs INND of news-
group high-article value changes so INND can update
the active file accordingly.

Several databases for the newsgroup + article
number tuple => article storage location mechanism,
such as GDBM and Berkeley DB, were considered.
All were rejected in favor of a simpler mechanism: flat
ASCII files with fixed-length lines.

Each newsgroup has an Overview file with a
name like misc/jobs/offered/.overview
(relative to the OVERVIEWDIR directory). A

106 1997 LISA XI – October 26-31, 1997 – San Diego, CA

Fritchie The Cyclic News Filesystem: Getting INN To Do More With Less

newsgroup + article number => storage location map-
ping file called name.map is created in that same
directory. The example in Figure 7 shows that the first
map entry begins at byte 102, the low article number
is 817053, the file was last updated on 2 September
1997, and that the group has at most three articles
(which may have been cancelled or overwritten).

BodyStart 102
LowArt 817053
LastRewrite 873194497
SD1:10a2a000:2a
SD2:1b9b2800:18
SD1:11527400:2a

Figure 7: A sample "name.map" file for
misc.jobs.offered

The name.map file format makes additions or
changes easy. Each line in the name.map file is
exactly 34 bytes long (including newline), making off-
set calculations for an individual map entry simple.
NNRPD, when it receives a ‘‘GROUP’’ command,
mmap()’s the newsgroup’s name.map file for
pointer-based access to the file. The file is then read,
and the appropriate bitmaps are checked to determine
which articles still exist; this replaces the readdir()
loop a standard NNRPD process uses to create the
"ARTnumbers" array of existing articles.

Ordinarily it is sufficient to know only the low-
and high-article values for a newsgroup. However, it is
necessary in one situation to know exactly which arti-
cles have been cancelled: when sending Overview
information to the client. If all Overview data between
article numbers ‘‘low’’ and ‘‘high’’ are sent to the
client, the client believes that all articles in between
are accessible. The user is shown on-screen that a can-
celled article is accessible, but an attempt to retrieve
the article text will fail. MRNet’s users considered this
to be a bug, not a feature.

Early implementations required reading each
RAWARTHEADER structure to determine if an article
had been cancelled, which generated an enormous
disk I/O burden and caused huge delays in NNRPD’s
Overview responses. The bitmap was added to each
‘‘rawpart’’ buffer to solve this problem.

Like the Overview’s .overview files, the
name.map files require periodic pruning to remove
references to articles that have been expired (standard
INN), cancelled, or overwritten (cyclic INN). A Perl
script called "expire.mapprune" performs this task;
like "expireover", it is typically run once per day. To
update the file without rewriting it, the ‘‘BodyStart’’
line is simply overwritten with a larger value.

Performance Observations and Evaluation

Until now, most of the evidence of a cyclic INN
server ’s superior performance has been anecdotal.
Examples include:

• Use of "sar" and "iostat" to watch disk activity.
MRNet’s central feeder machine, when using a
standard INN server, was engaged in about a
dozen bi-directional feeds that kept its disk
drives anywhere from 20-50% busy on a sus-
tained basis; during article expiration periods,
drive activity was sustained at 70-90% busy. A
cyclic INN server and 70 one-way feeds can
rarely sustain a 25% busy workload.

• A Pentium 120MHz PC with 128MB RAM,
one SCSI controller, three 5400 RPM disks
(two for article storage), and a 100Mb/s Ether-
net interface is configured with 45 one-way
feeds to MRNet members. Several times a
member ’s Usenet server has been down for sev-
eral hours, and when the server is back online,
MRNet receives telephone calls from the mem-
bers trying to trace a denial-of-service attack.
The FreeBSD PC, resuming the Usenet feed,
has been the source of the ‘‘attack.’’

• A Sun SPARCstation 5 with an 85MHz CPU,
192MB RAM, one SCSI controller, three 5400
RPM disks (two for article storage), and a stan-
dard 10Mb/s Ethernet interface was able to
climb as high as 20th place in the Usenet Top
1000 rankings [Top1000].

• The performance improvement in cyclic INN
has allowed MRNet to avoid buying faster
equipment for Usenet servers for over a year
while providing superior Usenet feeds to its
members and customers ... with the periodic
exceptions of using code that wasn’t quite as
stable as it should have been.

Most of the observations and measurements in
this section are limited to INND’s operation because
its function is the easiest to measure and to control
tightly. The measurements aren’t intended to be a rig-
orous investigation into a cyclic INN’s performance;
rather, they are a first attempt to quantify how much
this implementation lowers disk I/O activity.

Experimental Platforms and Methodology
In an attempt to systematically measure system

performance while INND accepted articles, four sepa-
rate batches of articles were sent to two INN servers.
The servers were idle, with the exception of INND’s
activity: all INNXMIT, INNFEED, NNRPD, and other
non-INN-related processes were killed. The his-
tory file was truncated to zero bytes, followed by a
"makehistory -i -r -s 500000"; a large history DBZ
index file can introduce a significant amount of
latency which would skew the test results. The refer-
ence INND process was run with the ‘‘-L’’ flag, and
"crosspost" was not used to perform the additional
linking work. Each server was monitored for CPU uti-
lization, file buffer and inode cache hit rates, and disk
utilization using a custom script based on an example
from the SE Performance Toolkit [Cockcroft]. The
results of all four batches were averaged and shown in
Figure 8 and Figure 9.

1997 LISA XI – October 26-31, 1997 – San Diego, CA 107

The Cyclic News Filesystem: Getting INN To Do More With Less Fritchie

The reference INN server is a Sun SPARCstation
10 with two 100MHz hyperSPARC CPUs, Solaris
2.5.1, 272MB RAM, a 100Mb/s Ethernet interface,
and eight 7200 RPM disks spread across three SCSI
controllers. The five disk drives storing the spool
filesystem are 4GB Seagate 15150W (‘‘Barracuda 4’’
Fast & Wide SCSI) all connected to the third SCSI
controller, a Sun Fast/Wide SCSI SBus controller. The
cyclic INN server is a Sun SPARCstation 5 clone with
a single 85MHz microSPARC II CPU, Solaris 2.5,
128MB RAM, built-in 10Mb/s Ethernet interface, and
two 5400 RPM disks on the built-in SCSI controller.
A single 2GB Seagate ST32430N (‘‘Hawk 2LP’’ Nar-
row SCSI) stored the server’s single cyclic buffer,
which is accessed via a block disk device (rather than
a file on top of a UFS filesystem).

Batch number 1 2 3 4 Total

Articles in batch 5,301 5,318 5,826 5,407 21,852
Unique newsgroups in batch 2,961 2,962 2,895 2,616 -
Size of batch (KBytes) 13,537 12,193 15,485 15,571 56,786

Elapsed time by standard INN (seconds) 480 486 551 530 2,047
Articles/second accepted by standard INN 10.1 10.1 9.9 9.4 -
Elapsed time by cyclic INN (seconds) 153 168 135 141 597
Articles/second accepted by standard INN 31.7 29.3 40.3 35.2 -

Article throughput increase factor 3.13 2.89 4.08 3.76 -

Figure 8: Batch article transmission results.

Statistic Standard INN Cyclic INN ∆ Relative to Standard

Average CPU idle time 26.41 38.43 46 %
Average CPU user time 13.39 40.09 199 %
Average CPU system time 12.63 12.71 1 %
Average CPU wait time 47.57 8.77 -82 %

Read() + readv() calls 192,280 28,622 -85 %
Write() + writev() calls 367,806 136,368 -63 %
Pathname lookups 35,325 3,606 -90 %
Ufs_iget() calls 26,592 65 -99 %

Spool disk data read (KB) 153,575 50,116 -67 %
Spool disk data written (KB) 519,802 75,688 -85 %
Spool disk reads issued 25,258 1,245 -95 %
Spool disk writes issued 88,600 8,059 -91 %
Spool disk average service time (ms) 48 13 -73 %

Buffer cache hit rate 92.63 98.37 6 %
DNLC hit rate 65.74 93.01 41 %
Inode cache hit rate 11.77 16.20 38 %

Figure 9: Kernel statistics taken during article transmission.

The server sending the articles is an Intel PC
with a single 200MHz Pentium Pro CPU, FreeBSD
2.1.7.1-RELEASE, 256MB RAM, a 100Mb/s Ethernet
interface, and three 4GB 7200 RPM disks on two
SCSI controllers. Two of the drives, Seagate 15150Ns,
store three cyclic buffers consisting of 2GB files

stored on top of two FFS filesystems. The batches of
articles it sent were from 5,300 to 5,800 articles each,
posted to approximately 3,000 different newsgroups.
Each article was less than 32KB in size in order to
emphasize article throughput; the average article size
was about 2.6KB. The sending machine was under a
relatively heavy load: INN was accepting articles from
95 to 100 NNTP sessions, and three INNFEED pro-
cesses were feeding articles back to 38 peer servers.
INNXMIT was used to transmit each batch in a single
streaming NNTP session.

The article throughput results in Figure 8 are dra-
matic. The cyclic INN server accepted articles three to
four times faster than a standard INN server, despite
the fact that the standard INN server had more CPU,
RAM, disk, and network resources available.

The data in Figure 9 are even more dramatic.
Spool disk activity across the board is reduced by
approximately an order of magnitude. When the facts
that there is no explicit time- and resource-consuming
article expiration process and that disk I/O for article

108 1997 LISA XI – October 26-31, 1997 – San Diego, CA

Fritchie The Cyclic News Filesystem: Getting INN To Do More With Less

cross-post links was not measured are taken into
account, the decrease is more than a factor of 10.

The file buffer and directory name cache hit rates
for the standard INN server are quite good, which is
consistent with it having a large amount of RAM
available and with the system performing no other
substantive tasks while the measurements were taken.
The amount of data the cyclic INN server read from
the spool disk is conspicuously high; though article
cancellations and reads of the mmap()’ed buffer
bitmap play a role, further study is required to find a
satisfactory explanation.

In a less-tightly controlled test, a transfer of a
batch of 20,000 articles, all 4KB in size or less,
between two Sun SPARCstation 5s which both use
cyclic INN, exhibits sustained transfers of 100-150
articles/second (when the history file is first trun-
cated) and occasionally peaks to 200 articles/second.
Though this test was not performed on the reference
INN server, the author would not anticipate that the
server would exceed 25 articles/second.

The code supporting NNTP reader clients is still
under development. The addition of an article to a
name.map file involves opening the file, reading its
first few lines, then appending a single line to the end
of the file. The disk I/O for these operations should
compare quite favorably to an expensive file linking
process. Updates for multiple articles which arrive
shortly after the first in the same newsgroup may be
consolidated into a single operation. Reading an arti-
cle by number involves opening the name.map file,
reading the first few lines, seeking directly to the cor-
responding entry, reading a line’s worth of data, seek-
ing to an offset within a cyclic buffer, and one (or
more) data reads. Access to subsequent articles in the
same group does not require re-reading the head of the
map file. Article expiration on a cyclic INN server
involves rewriting the name.map file, removing
unwanted lines in the process.

Future Work

Because the cyclic buffer code is still experimen-
tal, a number of changes and additions remain to be
done. A partial list, in no particular order, includes the
following:

1. Incorporate the cyclic buffer code into the offi-
cial INN source distribution, rewrite outstand-
ingly-ugly hacks and ‘‘temporary’’ code as
needed, and debug all components thoroughly.

2. Write a cyclic buffer library conforming to the
INN soon-to-be-released ‘‘storage manager
API.’’ This programming interface will make
multiple article storage methods (e.g., tradi-
tional spool, cyclic buffer, commercial
database) much easier to write and maintain.

3. Pursue further improvements in the ‘‘history’’
database mechanism. The current DBZ imple-
mentation does an excellent job of putting a

low upper-bound on the disk I/O required to
query the database, but its average amount of
disk I/O per query is too high. Servers that
receive more than a few million article offers
per day perform too much disk I/O in the cur-
rent implementation.

4. Pursue further research into the NNTP reader
newsgroup + article number => storage location
mapping mechanism. In particular, replacing
"overchan"’s current communication channel
with INND would be a major improvement.

5. Add an option to make append-only buffers and
allow INND to create such buffers as necessary.
Some administrators wish to store articles for a
guaranteed period of time. When articles stored
within an append-only buffer are due to expire,
the buffer file is removed in a single unlink()
operation [Krten].

Concluding Observations

Before writing this paper, the author had never
systematically measured the operating differences
between a standard INN server and a cyclic one. The
results surprised even him. Though the measurements
and analysis presented is not comprehensive, it makes
a compelling case for changing INN’s article storage
model. The implementation should be optimized fur-
ther, and the NNTP reader client support requires
debugging and much more real-world stress testing
before this implementation can be considered for gen-
eral use.

As the Internet continues to grow in popularity,
the Usenet will certainly grow along with it, and that
growth is not likely to drop far below current rates.
Any reduction in ‘‘excessively-posted messages’’ will
be offset by additional people using Usenet. The
underlying store-and-forward mechanism does not
scale well, ignoring problems with specific implemen-
tations: the current model of ‘‘broadcasting’’ articles
to all Usenet servers is inefficient. Caching NNTP
servers, such as [Assange], and automated article can-
cellation programs, such as [CM], are partial solutions
at best. However, techniques such as IP multicast
[Lidl], or World Wide Web-like centralized article
storage are years away from acceptance. The Usenet
will continue to require software optimizations and
faster hardware until a better distribution mechanism
is widely-implemented.

Availability

Cyclic buffer INN was first used at MRNet in
July 1996 and development has proceeded, with fits
and starts, since then. By the time this paper is pub-
lished, the cyclic buffer code may already be merged
into the official INN source distribution, albeit in a
development branch of the source tree. Until then, the
code is available via anonymous FTP under INN’s
original licensing restrictions (which are quite liberal)
at ftp://ftp.mr.net/pub/fritchie/cnfs/. Also available in

1997 LISA XI – October 26-31, 1997 – San Diego, CA 109

The Cyclic News Filesystem: Getting INN To Do More With Less Fritchie

that directory is the SE script used to monitor the
servers’ utilization stats and the raw data it generated.
A mailing list for CNFS discussion is available by
sending ‘‘subscribe cnfs’’ to <majordomo@ mr.net>.

The official INN source distribution is available
at ftp://ftp.isc.org/isc/inn/.

Acknowledgments

This paper and the work it describes would not
have been possible without the support and encourage-
ment of MRNet Engineering Department staff, not to
mention the typing, which saved a lot of wear and tear
on sore hands. This paper would still be only partially-
fired synapses if Lee Damon hadn’t mentioned that the
LISA ’97 abstract submission deadline had been
extended. Many people have assisted with the cyclic
ideas and prototype implementations, from stress-test-
ing to bug-fixing: Jerry Aguirre, Michael Beckmann,
Barry Bouwsma, James Brister, Matt Bush, Evan
Champion, Mark Delany, Avi Freedman, Darrell Fuh-
riman, Jeff Garzik, Joe Greco, Dave Hayes, Chris
Halverson, John Ladwig, Clayton O’Neill, Alexis
Rosen, Rich Salz, Robert ‘‘RS’’ Seastrom, Sang-yong
Suh, Brad Templeton, Jeff Weisberg, Sven-Ove West-
berg, and many others unintentionally omitted. Mike
Horwath provided the reference INN server, since
MRNet no longer has a standard INN machine. Spe-
cial thanks to Dave Diehl, Olaf Hall-Holt, Andy
Mickel, Joe St. Sauver, Peter Seebach, and John Sell-
ens for their manuscript reviews. A case of
Leinenkugel’s goes to Nick Christenson for his
extraordinary critiques. Finally, to the Norge ’96
crowd, Louise Lystig Fritchie in particular, thank you
for your support in this continuing madness called
Life.

Author Information

Scott Lystig Fritchie graduated with a degree in
mathematics and a concentration in computer sciecne
from St. Olaf College, home of Minnesota’s first
UNIX machine and of ‘‘stolaf,’’ the state’s one-time
gateway to the rest of the Usenet. Scott’s other claim
to (obscure) fame is implementing one of the world’s
first World Wide Web interfaces for a library cata-
loging system; it has since mutated into WebPALS,
used by the PALS Across Georgia project and the
Minnesota State Colleges and Universities (MnSCU).
He currently works as senior systems administrator at
the Minnesota Regional Network (MRNet) and can be
contacted via email at <fritchie@mr.net>.

Bibliography

[Aguirre] J. Aguirre. Posting to news.software.nntp:
‘‘File by message ID instead of group/number.’’
Message-ID <4gl99l$blm@olivea.ATC.Olivetti.
Com>, Feb 23, 1996.

[Assange] J. Assange and L. Bowker. NNTPcache.
ftp://suburbia.net/pub/nntpcache/.

[Christenson] N. Christenson, D. Beckemeyer, and T.
Baker. ‘‘A Scalable News Architecture on a Sin-
gle Spool.’’ In ;login:, Vol. 22, No. 3, June,
1997.

[CM] Cancelmoose. NoCeM. http://www.cm.org/.
[Cockcroft] A. Cockcroft. The SE Performance

To o l K i t . http://www.sun.com/960301/columns/adrian/ .
[Collyer] G. Collyer and H. Spencer. ‘‘News Need Not

Be Slow.’’ In Proceedings of the Winter 1987
USENIX Technical Conference, Washington, DC,
January, 1987.

[DejaNews] DejaNews. http://www.dejanews.com/.
[Delany] M. Delany. Posting to news.software.nntp:

‘‘cyclic news file system – more performance
results.’’ Message-ID <4lqh5o$kd6@bushwire.
mira.net.au>, April 26, 1996.

[Dillon] Diablo: a backbone news transit system.
http://www.backplane.com/diablo/.

[Graham] J. Graham. Solaris 2.X: Internals & Archi-
tecture. McGraw-Hill, 1995.

[Highwind] Cyclone NewsRouter. http://www.highwind.
com/.

[Hitz] D. Hitz, J. Lau, and M. Malcolm. ‘‘File System
Design For an NFS File Server Appliance.’’ In
Proceedings of the USENIX Winter 1994 Techni-
cal Conference, San Francisco, CA, 1994.

[Kantor] B. Kantor and P. Lapsley. ‘‘Network News
Transfer Protocol.’’ RFC 977, U. C. San Diego
and U. C. Berkeley, February, 1986.

[Krten] R. Krten. ‘‘Improving Usenet News Perfor-
mance.’’ Dr. Dobb’s Journal, May, 1996. See
also: http://www.parse.com/ .

[Leffler] S. Leffler, M. McKusick, M. Karels, and J.
Quarterman. The Design and Implementation of
the 4.3BSD UNIX Operating System. Addison-
Wesley, 1989.

[Lidl] K. Lidl, J. Osborne, and J. Malcolm. ‘‘Drinking
from the Firehose: Multicast USENET News.’’
In Proceedings of the USENIX Winter 1994
Technical Conference, San Francisco, CA, 1994.

[McKusick] M. McKusick, W. Joy, S. Leffler, and R.
Fabry. ‘‘A Fast File System for UNIX.’’ ACM
Transactions on Computer Systems, Vol. 2, No.
3, August, 1984.

[Poskanzer] J. Poskanzer. Multi-threading nnrpd and
caching proxy. http://www.acme.com/java/software/
Package-Acme.Nnrpd.html.

[Rakitzis] B. Rakitzis and A. Watson. ‘‘Accelerated
Performance for Large Directories.’’ Technical
Report 3006, Network Appliance, Inc.

[Rivest] R. Rivest, ‘‘MD5 Digest Algorithm.’’ RFC
1321, MIT and RSA Data Security, Inc., April
1992.

[StSauver] J. St. Sauver. ‘‘The 1996/97 Oregon Christ-
mas USENIX Newsadmin Newsletter.’’ http://
darkwing.uoregon.edu/˜joe/pdf/.

110 1997 LISA XI – October 26-31, 1997 – San Diego, CA

Fritchie The Cyclic News Filesystem: Getting INN To Do More With Less

[Salz] R. Salz. ‘‘InterNetNews: Usenet Transport for
Internet Sites.’’ In Proceedings of the USENIX
Summer 1992 Technical Conference, San Anto-
nio, TX, June, 1992.

[Sedore] C. Sedore and E. Sedore. NNTPRelay Usenet
News propagator. ftp://ftp.maxwell.syr.edu/nntprelay/ .

[Swartz93] K. Swartz. ‘‘Forecasting Disk Resource
Requirements for a Usenet Server.’’ Proceedings
to the Seventh USENIX Systems Administration
(LISA VII) Conference, Monterey, CA, Novem-
ber, 1993.

[Swartz96] K. Swartz. ‘‘The Brave Little Toaster
Meets Usenet.’’ Proceedings to the Tenth
USENIX Systems Administration (LISA X) Con-
ference, Chicago, IL, September, 1996.

[Sweeney] A. Sweeney, D. Doucette, W. Hu, C.
Anderson, M. Nishimoto, and G. Peck. ‘‘Scala-
bility in the XFS File System.’’ In Proceedings
of the USENIX 1996 Annual Technical Confer-
ence, San Diego, CA, January, 1996.

[Tanenbaum] A. Tanenbaum. Operating Systems:
Design and Implementation. Prentice-Hall,
1987.

[Templeton96a] B. Templeton. Posting to news.soft-
ware.nntp: ‘‘How to do a better USENET file
system.’’ Message-ID <DnCo3D.Cz3@clarinet.com>,
Feb 25, 1996.

[Templeton96b] B. Templeton. Posting to news.soft-
ware.nntp: ‘‘Re: How to do a better USENET file
system.’’ Message-ID <DnFDJM.CMw@clarinet.
com>, Feb 27, 1996.

[Top1000] Top 1000 Usenet sites survey. http://
www.freenix.fr/top1000/.

1997 LISA XI – October 26-31, 1997 – San Diego, CA 111

112 1997 LISA XI – October 26-31, 1997 – San Diego, CA

