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Pinpointing System Performance Issues
Douglas L. Urner – Berkeley Software Design, Inc.

ABSTRACT

The explosive growth of the Internet in recent years has created a heretofore unprecedented
demand for system performance. In many cases, system administrators have been left
scrambling, trying to understand the performance issues raised by the loads and new
technologies they are facing.

This paper suggests methods for analyzing system performance potential, prioritizing the
search for bottlenecks and identifying problem areas. While many of the specific tuning
suggestions are particular to BSD/OS and other 4.4BSD derivatives, the principles on which
they are based should generalize well to any system being used to provide Internet services.

Introduction

This paper discusses methods for tracking perfor-
mance problems, specific parameters that can be
tuned, and data analysis tools available on almost all
Unix systems and some other systems, as well.

Starting with a study of the overall architecture,
this paper covers configuration, kernel tuning, disk
subsystem analysis, networks, memory usage, applica-
tion performance, and network protocol behavior.

The Big Picture

Methodology
A bit of method goes a long way: it saves time; it

gets to the source of the problem quickly; and it helps
avoid missing the problem. When trying to improve
performance, start where the biggest gains can be had.
It makes no sense to speed a system by a factor of 1.01
when a speedup of 5x can be gained. In fact, given
today’s rules of hardware speeds ever-increasing (at a
constant cost) over time, it makes little sense to spend
time on 1% speedups. On the other hand, mistuned
systems might run at only 10% of their potential
speed. Concentrating on the factors that can gain back
the 90% is obviously far more productive than con-
centrating on 1% gains. Of course, figuring out which
part of a system gets back the other 90% is the prob-
lem.

Overall Architecture
When a system’s overall design is wrong, perfor-

mance can really suffer. The overall design must be
right if a system is to achieve its potential. Be sure
that your assumptions about the system’s use and
potential are clear.

Consider the model used by many Unix systems
for network demons. The server forks a process to
handle each network request it receives. This works
reasonably well when the connections are infrequent
or relatively long-lived (at least a handful of interac-
tions). But, when connections are short-lived (a single
interaction or two), the cost of the fork() can dominate

the cost of handling the connection. This is too often
the case for HTTP (the WWW protocol). Over the last
few years, the connection rate for a ‘busy’ web server
has gone from dozens of connections per hour to
dozens of connections per second. A strategy of ‘‘pre-
forking’’ HTTP servers or using a single process and
multiplexing requests with select() can result in a
10x-100x improvement in performance [1].

Configuration Errors
In the big picture, most of the easy performance

gains arise from system configuration improvements.
Most systems come out of the box with a configura-
tion that aims to be a ‘‘jack of all trades’’ and, as it
turns out, master of none. This means that you can
greatly improve performance by examining and
improving items like:

• basic kernel tuning,
• disk layout,
• system memory sizing and allocation,
• hardware selection and configuration,
• configuration of system services (e.g., a local

DNS cache), and
• computer center scheduling.

Best case improvements can approach the 100x range.

Application Tuning
Usually, it is difficult to increase application per-

formance by 10x or more. Out of the box, an applica-
tion is likely to perform acceptably, though it might
not be a stellar performer under heavy load. The first
rule for applications is to choose your applications
carefully and with an eye toward performance.

In most cases, vendor’s code is not modifiable or
tunable to a great extent. Be sure to take the time to
understand how an application uses system resources
and to investigate the tuning options that are available.
For example:

• Should the application’s files be split amoung
several disk drives?

• Can unused features be switched off?
• Is the application logging too much data?
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Kernel Tuning
Kernel algorithms must be well-matched to the

task at hand. Basic kernel tuning is a fundamental tool
in performance improvement. Regrettably, beyond
basic tuning, few gains can be had without technologi-
cal innovation (usually at great cost unless amortized
across a very large number of systems).

Developing Expectations For System Performance
It is hard to tune a system without a basic collec-

tion of performance reference points to help you ana-
lyze the data provided by your monitoring tools. For
example: File transfers typically run at between 650
and 750 KB/second on a active Ethernet at your site.
Is this good? Could it be better? Or, a mail server you
manage is handling 100,000 messages a day and
seems to be saturated. Should you expect more?
Where do you start looking for problems?

Having an ‘‘intuitive’’ feel for the answers to
questions like these makes the process of performance
analysis considerably more productive and more fun.
Run your performance monitoring tools and get a feel
for the numbers you see under various kinds of loads.
In many cases, you can generate useful synthetic loads
with a few lines of C or a bit of perl code. This is the
information that gives you a feel for what to expect
from your machines. It will save you from having to
individually calculate and analyze each problem you
take on.

Take the time to think through some of your sys-
tem’s basic limits. For example, what kind of perfor-
mance can you expect from TCP/IP running on a 10
Mbit Ethernet?

Starting from the raw speed of 10,000,000 bits
per second (note that 10,000,000 is 10 x 1000 x 1000,
not 10 x 1024 x 1024), you have to calculate the band-
width that will actually be available for carrying data
(payload). First, calculate the link layer and protocol
overheads:

8 bytes Ethernet preamble and start of
frame delimiter

14 bytes Ethernet header
20 bytes IP header
20 bytes TCP header (assuming no options)
4 bytes Ethernet CRC

12 bytes Ethernet interframe gap
76 bytes Total per packet overhead

Then measure (or estimate) the average packet
size on the network you are interested in. You can use
netstat(8) to get a count of the number of packets and
bytes sent and received by an interface.

Next, make an estimate of the acknowledgement
(ACK) overhead. If the traffic is predominantly in one
direction, there will be ACK traffic that will reduce
throughput. In the worst case, you would see one
ACK for every two packets. Each ACK will consume
76 bytes unless it can be ‘piggybacked’ with data.

Pulling this information together into a table pro-
vides a picture of the performance to expect from
TCP/IP on Ethernet.

Average
Packet Uni-directional Bi-directional
Size Traffic Traffic

(bytes) (KB/sec) (KB/sec)

64 439 558
128 646 766
256 845 941
512 998 1063

1024 1098 1136
1500 1134 1162

Similar tables could be produced for UDP or any other
protocol of interest.

The above numbers are an upper bound. A sys-
tem might get close to these numbers during bulk
transfers with little competing traffic. In an environ-
ment with several busy machines on the same wire,
throughput will be somewhat lower, perhaps 70-90%
of these numbers.

With these calculations in hand, you can try
some experiments to see what happens in your envi-
ronment. Most systems have rcp available, which
offers an easy way to do a quick experiment. Contrary
to what many folks think, ftp is usually not the best
test of raw network capacity. Many ftp implementa-
tions use small buffers and are actually poor perform-
ers. Copy a big file (at least a megabyte) from one idle
machine to another and keep track of the real-time
spent. Do this two or three times to get an idea of your
network’s consistency. This experiment should reveal
approximately the maximum throughput for your sys-
tem as configured.

Try the experiment again on a loaded network.
Note how badly (or not) the performance degrades in
your environment.

It is worth doing this sort of analysis and experi-
mentation for any subsystem you are interested in
really understanding. Aaron Brown and Margo Seltzer
presented a very interesting paper reporting their find-
ings on the performance of Intel hardware at the 1997
USENIX conference [2].

Protocol Performance
Analysis and experimentation assist in under-

standing performance. Hard facts and knowledge
about underlying algorithms can also contribute. Here
are some interesting facts that contribute to overall
performance of various network protocols:

• TCP/IP packets tend to be small, the average
(according to one router vendor) is around 300
bytes.

• When a user’s packets are being dropped (due
to network load), network performance will be
noticeably bad for that user (i.e., 20 second or
more response time or 300 b/s FTP
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throughput). This is because TCP backs off
exponentially when retransmitting lost packets.
This is good for the network as a whole, but
bad for the affected connection. Good perfor-
mance requires very low packet loss rates.

• HTTP and SMTP connections tend toward a
small number of interactions that move a small
or medium amount of data. For example, con-
sider a WWW page that sets up and tears down
14 connections to load 14 small pictures (e.g., a
bullet). This interaction pattern means that the
TCP ‘slow start algorithm’ (which initially
responds to requests a bit slower than possible
to ensure that the network is not overwhelmed)
will probably keep performance lower than is
theoretically possible.

• New features often break things. While the
design of TCP/IP supports adding new features
without breaking existing implementations, it
doesn’t always work that way. It is worth keep-
ing track of what’s new on your network (and
beyond), although the new code is not always
where the bug lies. A common example of this
phenomenon occurred a few years ago when
TCP connections would fail when RFC1323
options were used. The problem was that some
versions of Linux failed to handle the options
correctly and corrupted packets. Fortunately,
the folks implementing the support for
RFC1323 had the forethought to implement an
additional mechanism for turning them off on
the fly. Another example concerned some
Microsoft PPP implementations that would
negotiate larger packet sizes than they could
handle.

Understanding the Application
To improve overall performance, including appli-

cations, you’re going to need to dig into the applica-
tion and understand how it works and what it needs
from the system.

Sadly, the application’s documentation is usually
not where to start. Tools like ktrace(1), ps(1), top(1),
netstat(8), tcpdump(1) (or etherfind(1) in the Sun
world) let you see how the application is interacting
with your system and will yield real clues to the appli-
cation’s behavior.

INN (the news server) is an excellent example of
an application that benefits greatly from study and
understanding. Steve Hinkle’s paper on INN tuning
[3] is an excellent example of how to understand an
application and then tune it for maximum perfor-
mance.

Reference Points

As you build up a base of experience, you also
build a set of reference points for what to expect from
a system in real environments. These expectations can
be really useful when trying to make initial ‘‘off the

cuff’’ evaluations of system performance. For exam-
ple, a good operating system can enable these levels of
performance:

• A 90 MHz Pentium with 80 MB of RAM buffer
cache can feed more than 3 million news arti-
cles (over 9GB) per day.

• A 150 MHz Pentium Pro can deliver over 1
million mail messages per day.

• A 133 MHz Pentium can serve static HTML
from a cache at T3 speeds.

• A 150 MHz Pentium Pro can handle more than
3 million direct web hits per day, transferring
27 GB of content.

• A 133 MHz Pentium can only handle about 60
HTTP requests per second with a forking
proxy.

• A 150 MHz Pentium running screend (user
space packet filter) won’t be able to handle a
T1.

• A 266 MHz Pentium-II can’t quite route a 100
Mbit Ethernet running at full load (full routing
table, 256 byte packets). It can handle a T3.

These reference points aren’t complete; they assume
that you have the OS, hardware configuration, RAM,
and other support (these reflect observations using
BSD/OS 2.1 or 3.0, DEC or Intel Fast Ethernet
Adapters, adequate memory and SCSI disks). Collect
a set of reference points that are meaningful to you
based on the systems that you are working with.

Collecting Data

Here are some hints for collecting performance
data.

• Get baseline data. Without it you are lost, you
won’t be able to tell how much good (or bad)
you have done.

• Make sure you have enough. For example, if
you’re trying to track down UDP packets
‘‘dropped due to no socket,’’ make sure that
your tcpdump has run for long enough that you
expect to have collected several of these pack-
ets (uptime(1) and ‘netstat -s’ will help you
pick an interval).

• Make sure the data are representative. Con-
tinuing with the above example, you also need
to consider the possibility that the traffic you
are interested in is not evenly distributed, and
make sure that the data you collected represents
an interval during which you could reasonably
expect interesting traffic. To do this, you could
start using cron(8) and netstat -s to sample
every hour to determine when the traffic you
are interested in occurs.

• Make sure you sample frequently enough.
When you’re looking for things like loading
trends, you need to sample often enough to
actually catch the event you’re interested in. As
a rule of thumb, you want to sample at at least
twice the frequency of the event you are trying
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to catch. If you don’t know the frequency of the
event, initially you may need to use a signifi-
cantly higher sampling rate.

• Automate your initial data reduction. Tools
like tcpdump(1) can generate huge amounts of
data. Start by using tools like perl (and in the
case of tcpdump, tcpdump’s built-in filtering
facility) to eliminate extraneous data. When
you find no interesting data, don’t forget to
check your automated tools.

• Check the log files. Don’t forget to check your
system’s log files and any logs files kept by the
applications for clues.

Tuning the Subsystems

It is easier to look at the individual subsystems in
relative isolation from each other.

The Disk Subsystem
Disk subsystem performance is often the single

biggest performance problem on Unix systems. If your
disks are busy at all (web, mail and news servers all
qualify), this is the place to start.

Since the virtual memory system uses the disk
when it is out of RAM, start by checking with
vmstat(8) to ensure your system is not paging (the
pages out ‘po’ column should be zero most of the
time; it’s OK to page in programs occasionally). If
your system is paging, then skip the disk tuning for
now and start by looking at RAM availability.

If your application has significant disk I/O
requirements, the disk is almost certain to be your bot-
tleneck. On a busy news or web server, correct disk
configuration can easily improve performance by an
order of magnitude or more.

Disk subsystem optimization has two main
goals:

• minimize seek time, and
• match disk throughput to your system’s

demands.

When thinking about disk throughput, keep your
system’s load mix in mind. For some applications
(e.g., streaming video), your system should maximize
the rate at which data flows from the disk to the appli-
cation. Rotational speed (the limiting factor on trans-
fer rate) will likely dominate all other considerations.
Other applications (e.g., mail and news servers) will
see file creation and deletion operations dominate per-
formance. File creation and deletion, which use syn-
chronous operations to ensure data integrity, cause
seek time to be the dominant factor in disk perfor-
mance.

While modern SCSI disks are capable of transfer
rates that approach or even exceed the speed of the
SCSI bus (e.g., 10 MB/sec for Fast SCSI), the limiting
factor for Unix systems is typically the number of file
system operations that can be performed in a unit of
time. For example, on a machine functioning as a mail

relay, the limiting factor is going to be the speed of
file creation and deletion. See Table 1 for a listing of
SCSI speeds.

SCSI Version MB/s

SCSI-I (async) 3.5
SCSI-I (sync) 5.0
Fast SCSI 10.0
Fast Wide SCSI 20.0
Ultra SCSI 20.0
Ultra Wide SCSI 40.0

Table 1: SCSI Bus Bandwidth.

In both cases, the only ways to increase perfor-
mance (once you’ve hit the limit of the disk’s physical
characteristics) are:

• add disk spindles to increase parallelism,
• add hardware like PrestoServe to decrease

seeks,
• identify and purchase a new file system tech-

nology that reduces seeks (test it carefully!)
In some cases it will be necessary to make changes to
the application to make it aware of multiple directories
or to use hardware that will transparently distribute the
load across multiple spindles (e.g., RAID).

Disk Performance Factors

SCSI vs. IDE: For machines with heavy disk
and/or CPU loads, SCSI is superior to IDE. A single
system generally supports far larger numbers of SCSI
disks than IDE; this can also be a consideration. With
good host adapters, SCSI driver overhead is lower and
‘disconnect’ (the ability to issue a command to a drive
and then ‘disconnect’ to issue a command to a differ-
ent drive) is a big win. For machines that need only
one or two disks and that have CPU cycles to spare,
the lower cost of IDE is attractive.

Drive RPM: Rotational speed determines how
fast the data moves under the heads, which places the
upper bound on transfer speed. Today’s really fast
drives spin at 10,033 RPM (Seagate Cheetahs) and
deliver about 15 MB/sec on the outside tracks. Last
year ’s fast drives spun at 7200 RPM; inexpensive
drives in use today spin in the 3600 to 5400 RPM
range.

Average seek time: The average interval for the
heads to move from one cylinder to another. Typically,
this is quoted as about half of the maximum (inside
track to outside track) seek time. Lower average seek
times are very desirable. Currently, a 7-8 ms average
seek time is really good, 8-10 ms is typical and much
more than 10 ms starts to impact loaded system per-
formance. Unix-like systems perform many seeks
between the inode blocks and actual file data. To
ensure file system integrity, writes of significant inode
data are not cached, so these seeks are a significant
part of the expense of operating a disk. In general, if a
tradeoff must be made, a lower average seek time is
better than a higher rotational speed.
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The price of fast seek times and high RPMs is
increased heat generation; take care to keep them cool
or you will sacrifice performance for reliability. Use
plenty of fans and make sure that there is good air
flow through the box, or put the disks in their own
enclosure(s).

On drive caches allow the drive to buffer data
and therefore handle bursts of data in excess of media
speed. Most modern drives have both read and write
caches that can be enabled separately. The read cache
speeds read operations by remembering the data pass-
ing under the heads before it is requested. A write
cache, on the other hand, can cause problems if the
drive claims that the data is on the disk before it is
actually committed to the physical media (although
some drives claim to be able to get the data to physical
media even if power is lost while the data is still in the
cache). Understand your hardware fully before
enabling such a feature.

SCSI Tagged Command Queueing enables
multiple commands to be issued serially to a single
drive. Tagged command queueing increases disk drive
performance in two ways: it enables the drive to opti-
mize some mixes of commands overlap command
decoding with command processing.

Avoiding Seeks
Some of best ways to improve performance

involve reducing the number of operations to be per-
formed. Since seek operations are performance eaters
and relatively common, avoiding seeks can improve
performance. Here are some methods to reduce the
impact of disk seeks.

Use Multiple Spindles

Systems that concurrently access multiple files
can improve their performance by putting those files
on separate disk drives. This avoids the expense of
seeks between files. Any busy server that maintains
logs would do well to separate the log files from the
server ’s data.

If you must store several Unix-style partitions on
a large disk, try to put the most frequently used parti-
tion (swap or /usr) at the middle of the disk and the
less frequently used ones (like home directories) at the
outside edges.

Turn Off Access Time Updating

If maintaining a file’s most recent access time
(i.e., the time someone read it – not the time someone
wrote it) is not critical to your site and, additionally,
your data is predominantly read-only, save many seeks
by disabling access time updating on the file system
holding the data. This particularly benefits news
servers. To turn off access time updates on BSD/OS,
set the ‘‘noaccesstime’’ flag in the /etc/fstab file for
the file system in question:

/dev/sp0a /var/news/spool
ufs rw,noaccesstime 0

The same functionality exists in other Unix variants,
but the names have been changed to confuse the inno-
cent.

Use RAM Disk For /tmp

Many programs use the /tmp directory for tem-
porary files and can benefit greatly from a faster /tmp
implementation. On systems with adequate RAM,
using ‘RAM disk’ or other in-memory file system can
dramatically increase throughput. BSD/OS and other
4.4BSD derivatives support MFS, a memory file sys-
tem that uses the swap device as backing store for data
stored in memory. The following command creates a
16 MB MFS file system for /tmp:

mount -t mfs -o rw -s=32768 \
/dev/sd0b /tmp

Or you could put this line in /etc/fstab:

/dev/sd0b /tmp mfs rw,-s=32768 0 0

The data stored on a MFS /tmp is lost if /tmp is
unmounted or if the system crashes. Since /tmp is
often cleared at reboot even when the file system is on
disk, this does not seem to represent a significant
problem.

Increasing Disk and SCSI Channel Throughput
Size The Buffer Cache Correctly

The best solution for disk bottleneck is to avoid
disk operations altogether. The in-memory buffer
cache tries to do this. On most 4.4BSD-derived sys-
tems, the buffer cache is allocated as a portion of the
available RAM. By default, BSD/OS uses 10% of
RAM. For some sites, this is not enough and should be
increased. However, increasing the size of the buffer
cache decreases the amount of memory available for
user processes. If you increase the size of the buffer
cache enough to force paging, all will be for naught.

Few systems support tools to report buffer cache
utilization.

Use Multiple Disk Controllers

Adding extra disk controllers can increase
throughput by allowing transfers to occur in parallel.
Multiple disks on a single controller can cause bus
contention, and thus lower performance, when both
disks are ready to transfer data.

Striping (RAID 0)

RAID 0 distributes the contents of a file system
among multiple drives. The result (when properly con-
figured) is an increase in the bandwidth to the file sys-
tem. The downside is that increasing the number of
drives and controllers used to support a file system
reduces the MTBF; RAID 0 does nothing to defend
against hardware failures.
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Higher Levels of RAID

RAID 1 (mirroring) provides the same write per-
formance as RAID 0 at the expense of redundant disk
drives (and, hence, higher cost per storage unit).
Where performance is a major constraint and file sys-
tem activity consists of many small writes (e-mail,
news), RAID 1 may be the way to go. Of course, the
redundancy can dramatically increase mean time to
data loss.

Where read access dominates a file system’s
activity, RAID levels 3 (dedicated parity disk) and 5
(rotating parity disk) offer reliability and performance
that is not significantly worse than RAID 0. RAID 3
and 5 offer reasonable write performance on large (rel-
ative to the stripe) files.

At the very high end, RAID hardware is imple-
mented with a high degree of parallelism and sus-
tained throughput can approach, or exceed, that of the
system bus. Note, however, that write performance
(particularly for smaller blocks) can be poor.

Monitoring and Tuning Disk Performance
The iostat(8) command can provide some help

with optimizing disk performance. For each drive, it
reports three statistics: sps (sectors transferred per sec-
ond), tps (transfers per second), and msps (millisec-
onds per ‘‘seek,’’ including rotational latency in addi-
tion to the time to position the heads). The accuracy of
these numbers, especially msps, varies considerably
among implementations.

The tunefs(8) command is used to modify the
dynamic parameters of a file system. Disks whose
contents are primarily read and that exploit read
caching will often benefit from setting the rotational
delay parameter to zero:

# tunefs -d 0 file system

When adjusting file system parameters with
tunefs(8), remember that only new contents are
affected by the change. Since the existing contents of
the file system may constrain the allocation algo-
rithms, it is best to use a scratch file system while
experimenting with tunefs(8) options.

RAM
Two major performance factors related to RAM

are:
• Avoiding paging (make sure that there is

enough memory in the system to handle your
load)

• Ensuring that enough memory has been allo-
cated to the kernel.

Sizing Main Memory

If your system is short on main memory, it will
end up swapping and the speed of your memory sub-
system will degrade to the speed of your disk (usually
about three orders of magnitude difference). The most
useful tools for diagnosing paging problems are
vmstat(8) and pstat(8). The ‘po’ column of vmstat(8)

shows you ‘page out’ activity. Any value other than 0
on anything more than an occasional basis means that
performance is suffering.

As you increase the amount of main memory,
you are also increasing the likelihood of memory
errors. The current crop of 64 MB SIMMs are espe-
cially prone to errors. You should plan on running
Error Correcting Code (ECC) memory if your hard-
ware supports it (and you should only be buying hard-
ware that does!). Current ECC implementations on PC
hardware cost about 5% in memory bandwidth when
accessing main memory (and the CPU tends to go to
main memory less frequently than one might expect).

When sizing a system’s RAM, it is often useful
to know the memory usage of a typical user or a par-
ticular process. On BSD derivatives, you can get some
of this information with ‘ps -avx.’

The RSS (‘resident set size’) column reports the
number of kilobytes in RAM for a process. Since the
shared libraries and the text are common to all of the
instances of a program (and in the case of the shared
libraries to all of the users of the library), you can’t
use this information to determine the amount of mem-
ory that would consumed by an additional instance of
the program. It does give an upper bound for making
estimates.

The TSZ (‘text size’) column reports the size of
the program’s text, but it does not tell you how much
of the text is resident (i.e., how many pages are not in
the swap area).

After observing these parameters for a while,
you can get a pretty good idea of how much memory a
particular process typically uses. It may also be worth
watching the numbers while you subject a process to
both typical and extraordinary loads. Using this infor-
mation, you can then estimate how much memory you
would need to support a particular mix of applications.
Perl and cron can help to automate this task.

Cache Size
Currently, tools don’t exist to directly monitor

real life cache performance. Within reason, more
cache is better. Run real-life benchmarks to see if dif-
ferent hardware can improve your site’s performance.

Kernel Memory Tuning
Most modern kernels can be tuned for increased

loads using only a ‘‘knob’’ or two, but for some appli-
cations you will need to do additional tuning to get
peak performance.

On BSD/OS, the size of kernel memory has a
default upper bound of 248 MB. Major components
of kernel memory are the buffer cache (BUFMEM)
and the mbufclusters (NMBCLUSTERS). Both are in
addition to the memory allocated by KMEMSIZE. On
most systems, these memory allocations are com-
pletely adequate, but if the size of the buffer cache is
increased beyond 128 MB it may get tight.
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The limit on kernel memory can be increased by
modifying the include file machine/vmlayout.h (with
suitable knowledge of the processor architecture in
question) and then recompiling the entire kernel. In
addition to the kernel, you’ll also need to recompile
libkvm (both the shared and static versions), gdb, ps
and probably a few other programs.

maxusers

On BSD systems of recent vintage, the place to
start kernel memory tuning is with the ‘maxusers’
configuration parameter. The maxusers parameter is
the ‘‘knob’’ by which the kernel resources are scaled
to differing loads. Don’t think of this in terms of
actual numbers of humans, but just as a knob that can
request ‘‘more’’ or ‘‘less.’’

As a rough rule of thumb, you can start by set-
ting maxusers to the size of main memory (e.g., for a
system with 64 MB of main memory start by setting
maxusers to 64).

maxbufmem

The kernel variable maxbufmem is used to size
the buffer cache in systems without a unified user
space/buffer cache. A zero value means ‘‘use the
default amount (10% of RAM).’’ Otherwise, it is set to
the number of bytes of memory to allocate to the
cache. You can set this at compile time:

options "BUFMEM=\(32*1024*1024\)"

Or you can patch the kernel image (with bpatch(1) or
a similar tool):

# bpatch -l maxbufmem 33554432

and reboot. It is not safe to change the size of the
buffer cache in a running system.

A system running a very busy news or web
server is an obvious candidate for increasing the size
of the buffer cache.

When increasing the size of the buffer cache, the
memory available for user processes is decreased. Ide-
ally, a tool would report buffer cache utilization.
Unfortunately, such a tool doesn’t seem to exist, so
tuning is sort of hit-or-miss – increase the size of the
buffer cache until you start paging, then back off.

mbufs and NMBCLUSTERS

In the BSD networking implementation, network
memory is allocated in mbufs and mbuf clusters. An
mbuf is small (128 bytes). When an object requires
more than a couple of mbufs, it is stored in an mbuf
cluster referred to by the mbuf. The size of an mbuf
cluster (MCLBYTES) can vary by processor architec-
ture; on Intel processors, it is 2048 bytes.

The number of mbufs in the system is controlled
by their type allocation limit (reported by vmstat -m).
The configuration option NMBCLUSTERS is used to
set the number of mbuf clusters allocated for the net-
work. The default value for NMBCLUSTERS in the
kernel is 256. If you have GATEWAY enabled,

NMBCLUSTERS is increased to 512. Systems that
are network I/O intensive, such as web servers, might
want to increase this to 2048.

On recent BSD systems this parameter can be
dynamically tuned with sysctl(8):

# sysctl -w net.socket.nmbclusters=512

The upper bound on the number of mbuf clusters is set
by MAXMBCLUSTERS. Usually MAXMBCLUS-
TERS is set to 0 and the limit is calculated dynami-
cally at boot time.

If a BSD kernel runs out of mbuf clusters, the
kernel will log a message (‘‘mb_map full, NMB-
CLUSTERS (%d) too small?’’) and resort to using
mbufs. This can also be seen by an increase in the
number of mbufs reported by vmstat -m.

KMEMSIZE
The size of kernel memory (aside from the buffer

cache and mbuf clusters) is set by KMEMSIZE. Nor-
mally, it is scaled from "maxusers" and the amount of
memory on the system, but it can also be set directly.

The default KMEMSIZE is 2 MB. At a maxusers
value of 64 (or if there is more than 64 MB of memory
on the system), KMEMSIZE will increase to 4MB. At
a maxusers of 128, KMEMSIZE will increase to 8MB.
Beyond that, use the KMEMSIZE option (in the ker-
nel configuration file) to increase the kernel size.

Routing Tables
To run a full Internet routing table in the Spring

of 1997, it is necessary to increase the amount of ker-
nel memory to at least 16 MB. The BSD/OS config
file for the GENERIC has notes on this:

# support for large routing tables,
# e.g., gated with full Internet
# routing:
# options "KMEMSIZE=\(16*1024*1024\)"
# options "DFLDSIZ=\(32*1024*1024\)"
# options "DFLSSIZ=\(4*1024*1024\)"

Since the gated process is also likely to get quite large,
it also makes sense to increase the default process data
and stack sizes.

The vmstat(8) can give an overwhelming amount
of information about kernel memory resources. Some
points worth noting: In the ‘‘Memory statistics by
type’’ section, the ‘‘Type Limit’’ and ‘‘Kern Limit’’
columns report the number of times the kernel has hit
a limit on memory consumption. Entries that are non-
zero bear some investigation. These statistics are col-
lected since system boot, so you’ll probably want to
look at the difference between two runs that bracket an
interesting load. Many of these limits scale with
maxusers, so a quick experiment can be done by
recompiling the kernel with a higher maxusers value.
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Network Performance

For network performance analysis, netstat(8) is
the command you want. The raw output of a single
netstat(8) run is not terribly useful, since its counters
are initialized at boot time. Save the output in a file
and use diff or some fancy perl script to show you the
changes over an interval.

For understanding why your network perfor-
mance sucks, tcpdump(1) or some other sniffer/proto-
col analyzer is the tool of choice. Data collected with
tcpdump(1) can be massaged with perl (or sed and
awk) to make it easier to see what is going on.

Too Much Traffic
Take time to check that you’ve only got the traf-

fic you expect on the network. Look for things like
DNS traffic (if you have much, configure a local
cache), miscellaneous daemons you don’t need (not
only are they costing you network traffic, they are
probably costing you context switches), etc. If you’re
really trying to squeeze the last little bit out of the
wire, consider using multi-cast for things like time
synchronization. Use tcpdump(1) to see what kind of
traffic there is. Watch for unexpected activity, or unex-
pected amounts of activity, on your hubs. Compare
interface statistics with similar machines.

# sysctl -w net.inet.tcp.sendspace = 24576
# sysctl -w net.inet.tcp.recvspace = 24576

Listing 1: Changing network buffer sizes.

Too Little Bandwidth
With Ethernet, as the amount of traffic on the

network increases, the instantaneous availability of the
network decreases as the hardware experiences colli-
sions. Use ‘netstat -I’ to monitor the number of colli-
sions as a percentage of the traffic on the wire. Ether-
net switches can reduce the number of hardware colli-
sions and increase apparent number of segments. Full
duplex support (e.g., 10baseT) can also help.

Errors
Significant error rates (anything more than a

fraction of a percent) are often an indication of hard-
ware problems (a bad cable, a failing interface, a miss-
ing terminator, etc.).

Use ‘netstat -I’ to monitor the error rate.

Timeouts and Retransmissions
Don’t forget to watch the activity lights on your

interfaces, hubs, and switches. Look for unexpected
traffic, pauses, etc. and then get busy with tcpdump(1)
to see what is going on. This paper will cover some
very basic concepts; for more detail, see Richard
Steven’s excellent book, TCP/IP Illustrated, Volume 1
[4].

Buffer Sizes
Network buffer sizes can have a significant

impact on performance. With FDDI, for example, it is
often necessary to increase the TCP send and receive
space in order to get acceptable performance.

On BSD/OS and other 4.4 BSD derivatives this
can be done with sysctl(8); see Listing 1. To a first
approximation, think of net.inet.tcp.recvspace as con-
trolling the size of the window advertised by TCP. The
net.inet.tcp.sendspace variable controls the amount of
data that the kernel will buffer for a user process.

As a general rule of thumb, start sizing the kernel
buffers to provide room for five or six packets ‘‘in
flight’’ (one packet for the sender to be working on,
one packet on the wire, one packet being processed at
the receiver – then multiply by two to account for the
returning acknowledgements). Since Ethernet packets
are 1500 bytes (or less), 8 KB of buffer space is about
right. For FDDI, with 4 KB packets, 20 to 24 KB is
likely to be necessary to get FDDI performance to live
up to its potential.

Another way to think about this is in terms of a
‘‘bandwidth delay product:’’ multiply bandwidth times
the round trip time (RTT) for a packet and specify
buffering for that much data. If you want to be able to
maintain performance in the face of occasional lost
packets, figure the bandwidth delay product as:

buffer bytes = bandwidth bytes/second *
(1 + N packets) * RTT seconds

Where N is the number of lost packets you want to be
able to sustain without losing performance. This is a
bit harder to calculate as you have to be able to mea-
sure RTT.

Increasing the size of the kernel send buffers can
improve the performance of applications that write to
the network, but it can also deplete kernel resources
when the data is delivered slowly (since it is being
buffered by the kernel instead of the application).

The size of application buffers should also be
considered. If the buffers are too small, considerable
additional system call overhead can be incurred.

Using netstat(8)
netstat -I

Using ‘netstat -I’ yields a basic report on the
amount of traffic and the number of errors and colli-
sions seen by a network interface. Here are some of
the statistics reported:

• Input Errors tells you that a bad packet was
received – something is wrong somewhere
between you and the sender.

• Output Errors means something is wrong with
the local hardware (interface card, cables, etc.).
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If your hardware supports full duplex opera-
tion, another possibility is that one end is con-
figured for full duplex while the other is not.

• Collisions tells you how busy the network seg-
ment you’re attached to is. Lots of collisions
(say more than 10%) on a regular basis tell you
it’s time to think about reworking your network
architecture.

Another use of ‘netstat -I’ is tracking down lost pack-
ets. Say you are trying to ping a remote machine and
are not receiving any replies. You can track down the
location of the problem by observing the input and
output packet counts of the machines along the way.
Each machine that processes the packet will increment
the appropriate counters. On the machine where the
packet was ‘‘lost’’ you would expect to see an increas-
ing error count, either on input or output.

netstat -s -I

Specifying ‘netstat -s -I’ yields more detail on
the traffic seen by the interface, including the number
of dropped packets, the number of octets (bytes) sent
and received (which, along with the packet count,
enables you to compute average packet size) and data
on multicast traffic.

netstat -s

With ‘netstat -s,’ you get voluminous statistics
on the whole networking subsystem. These statistics
are maintained over the life of the system, so to see
current trends, look at a pair of reports and compare
the numbers. A quick and dirty way to do this is to
save the output into a pair of files and use diff. Of par-
ticular interest are the counts of:

• Dropped packets indicates that the local
machine is receiving network traffic but does
not have the resources to handle that traffic.
The two most common causes are: running out
of mbufs or running out of CPU power.
Another possibility is that you’ve run out of
mbuf clusters and the kernel is substituting
mbufs, but the system is marginal on CPU
power and the extra processing involved has
pushed it over the edge.

• Fast Retransmits. The TCP spec requires that
an immediate ACK be sent when a packet is
received out of order. This ACK will duplicate
an ACK that has already been sent for the last
in-order data that the receiver received. When
the sender has seen three duplicate ACKs, it
assumes that the next packet has been lost and
it will retransmit the packet without waiting for
a retransmit timeout. This is a ‘‘fast retransmit’’
and, if the receiver’s window is big enough, it
will prevent TCP from waiting for a timeout
when a packet is lost.

• Duplicates. Duplicate packets are packets that
arrived twice. Usually this means that an
acknowledgement was delayed and the sender
retransmitted.

• Retransmit Timeouts. The retransmit timer
expired while we were waiting for an ACK.

• IP Bad Header Checksums and TCP Dis-
carded For Bad Checksums. Packets that
were ‘‘damaged in transit’’ should be thrown
out by the link layer checksum and not seen by
any of the higher layers. This is a possible sign
that an intermediate gateway is corrupting
packets. If you are seeing significant numbers
of these, it might be worth the trouble to try to
track down the source. To do this, you will need
to probe methodically, starting with the nearest
gateways (routers) and working outward.

• UDP with no checksum. These are interesting
because running UDP without checksums is
asking for trouble. If you are seeing many of
these, it would be worth tracking down the
source.

• UDP with no socket means that you’re getting
UDP traffic, but nobody is listening for it. At
the very least, this is a waste of resources, and
it may be indicative of a configuration error or
perhaps even something malicious. Track the
source using tcpdump(8) if many packets show
up here.

When the network is performing well, all of the
above statistics should represent a small fraction of the
traffic that the system sees (well under a fraction of a
percent).

netstat -a
With ‘netstat -a,’ you get information on all of

the active network connections on the system. Things
of interest include:

• The number of connections. This gives you a
feel for the amount of network traffic the sys-
tem is seeing.

• Connections with with data in the Send-Q or
Recv-Q. You will see this occasionally, but sig-
nificant numbers of connections with queued
data would indicate that something is amiss.

• Large numbers of connections in states other
than ESTABLISHED. On a busy web server,
many connections will be in the TIME_WAIT
state. But, observing significant numbers of
connections in SYN_SENT (indicative of a
SYN-flood attack) or FIN_WAIT_2 (waiting
for a FIN from the other side after we’ve sent
our FIN, sometimes this indicates a kernel bug)
bear investigation.

netstat -m
With ‘netstat -m,’ you get a report on the mem-

ory usage of the networking subsystem. When investi-
gating performance problems, the counts of ‘‘requests
for memory denied/delayed’’ and of ‘‘calls to the pro-
tocol drain routines’’ are of particular interest. They
are indications that the network is running low (or out)
of memory.
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Using tcpdump(1)
The tcpdump(1) program is a powerful tool for

analyzing network behavior and is available on most
Unix-like systems. With tcpdump(1), you can watch
the network traffic between two machines. The packet
contents are printed out in a semi-readable form
(which is easy to massage with perl to help you see the
info you’re interested in). Each packet is printed,
along with a time stamp, on a separate line.

One of the most useful features of tcpdump is the
ability to filter traffic. For example, if you’re curious
about stray traffic on the network with your web
servers, you could run something like this:

# tcpdump -i de0 not port http

If you had connected to the machine by telnet you
might use:

# tcpdump -i de0 not port http \
and not port telnet

The output from tcpdump would only show non-http
and non-telnet traffic, thus enabling you to focus on
the traffic that you’re interested in.

You can save the data for later analysis by having
tcpdump write it to a file:

# tcpdump -i de0 -w tcpdump.out

When you examine the data later, you’d use:

# tcpdump -r tcpdump.out not \
port http and not port telnet

Aside from making analysis of the data more flexible,
this approach also consumes fewer machine resources,
so you’re less likely to drop packets or otherwise
impact the system under test. By default, tcpdump
only grabs the first 76 bytes of the packet (which is
enough to get the headers, but you won’t get much of
the packet content). You can add ‘-s 1600’ to save the
whole packet.

One of the most common things that you’ll be
looking for is an explanation for why the network is
pausing every so often.

Here is a recipe for examining tcpdump output:
1. Collect the data, and post-process it if you want

to (for example, you may want to convert the
time stamps into relative intervals).

2. Browse through the tcpdump output with your
favorite editor, looking for places where the
timestamp jumps by more than the ‘‘usual’’
amount.

3. You’re probably in the vicinity of a dropped
packet, and the timestamp is due to the timeout
before the packet was retransmitted.

4. Take a quick look around and then start looking
for the next timestamp jump. What you’re look-
ing for is a pattern. If the network behavior was
bad enough to get you looking at packet traces
there is almost certain to be one.

5. After some looking, a pattern will emerge. If
you don’t know what the problem is by now,
you’ll need to find somebody who knows more
about the protocol in question. But, armed with
a description of the problem, the tcpdump out-
put, and the patterns you found, it should be
easier to get some help.

6. As you’re looking at the jumps in the tcpdump
output, an important part of the story is the size
of the jumps. Are they the same? Are they
increasing? There are people who know this
stuff well enough to make a good guess as to
the source of the problem just by the size of the
delay.

In some cases, you will need to arrange for the
machine running tcpdump(1) to be in the middle of the
wire between the machines that are having problems.
With some switches this is not possible, and you will
either need to substitute a hub (you can also just add a
hub at one of the switch ports and connect your moni-
tor and one of the machines under test to the hub) or
run tcpdump on the machines at both ends of the link
and analyze both sets of data. The hub trick doesn’t
work if you’re trying to look at a link that is running
full duplex.

CPU
In performance analysis, you’re usually up

against one of two things: either CPU utilization is too
high or else it’s too low. Too high means that you’ve
got to figure out a way to free up more cycles in order
to get more work done. Too low means that you’ve got
to figure out what you’re waiting on, usually some I/O
device.

Start CPU analysis with a tool that will tell you
how your CPU is being utilized: top(1), vmstat(8),)
and iostat(8) will all tell you how much of your CPU
is being used and whether the cycles are being spent in
user or kernel (system) code. If most of the CPU’s
time is being spent executing user code, top(1) and
ps(1) will help you identify the processes of interest. If
your CPU is close to 100% utilized, you need to figure
out what it’s doing. Start by identifying the process or
processes that is using most of the user time.

Even if the CPU is spending most of its time
executing in the kernel (high percentage of system
time), these processes are likely to be the cause. Once
the processes in question have been identified,
ktrace(1) can be a very useful tool for figuring out
what is going on. So are the ‘in’ (interrupts), ‘sy’ (sys-
tem calls) and ‘cs’ (context switches) columns in the
output of vmstat(8). You should be developing a
rough idea of the performance bounds of the systems
you support. This is the information you will need to
read the output of commands like vmstat(8).

Very simple benchmarks (say 10 lines of code)
can help you calibrate your expectations of the
machine’s performance. For example: A 200 MHz P6
can perform about 500 fork/exit/wait (i.e., null fork
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with two context switches) operations per second. It
can also perform about 400,000 getpid() operations
per second (getpid() is arguably the most trivial sys-
tem call). From these benchmarks, you can make an
educated guess that a process that is fork()ing 10s of
times per second should not be putting too much of a
load on the system due to the forks, but a process that
is doing 100s of fork()s per second may well benefit
from a redesign.

The ktrace(1) program can give insight into the
behavior of the processes at the system call level.
Since system calls are relatively expensive, this can be
very useful. Often the information revealed by ktrace
will be a surprise, revealing details of the program’s
operation that were neither documented nor intuitive.

For example, some (maybe all) versions of
Apache search from the root for a .htaccess file. If
you’re not using these files, turning off the check can
get you a 5 to 10% increase in performance. If you are
using them, you can decide if it would be worth the
trouble to use a ‘‘shallower ’’ directory hierarchy. This
is also a great way to figure out error messages (like
‘‘file not found’’ with no file name or without a full
path).

Other things to look for are frequent read() and
write() calls or such calls with small byte counts, fre-
quent system calls of any type (perhaps the application
can cache the data), etc.

If all else fails, you may have to resort to profil-
ing your application or your kernel. Typically this
means that you have to either have source code or
vendor cooperation. Enabling profiling usually means
you need to recompile. You can get clues to the appli-
cation architecture, and determine if the problem lies
in the application or in the system libraries.

If the problem appears to be in the kernel, profil-
ing can be a very useful tool. Even if you don’t do ker-
nel work, useful information can be gained. For
example, if you discover that a significant amount of
time is being spent in a device driver, you might want
to try a different device. If you have a cooperative OS
vendor, being able to tell them the location of your
kernel’s hot spots might be just the incentive they need
to work on that particular code.

The time(1) command can help you distinguish
between CPU under-utilization due to outside delays
(disk or network) and having an excess of CPU capac-
ity. When time reports a wall clock (real) time that is
significantly longer than the combined user and sys-
tem times, you should suspect that you’re seeing an
I/O (or memory) problem. Small variances are to be
expected due to other processes being given time to
run.

Some types of loads will result in misleading
numbers from vmstat(8) and its friends. For example,
on a gateway, the load of handling the network inter-
faces will not be reported by top(1) or vmstat(8). In

such cases a ‘‘cycle soaker’’ can be a useful thing. It
will tell you how much CPU is actually available for
computation.

Profiling User Code
If most of your CPU time is being spent in user

mode and ktrace(1) doesn’t give you enough informa-
tion to improve the situation (or to place the blame
and move on), then profiling the program in question
might be the way to go. To profile the application you
(or the vendor) will have to recompile the code. If this
is not possible, you will need to choose another strat-
egy.

The procedure for profiling user code is slightly
different than that for profiling the kernel:

• Arrange to run the C compiler with the -pg flag.
Probably the easiest way to do this is by adding
it to the CFLAGS in the Makefile for the pro-
gram. You may also need to arrange to link
statically.

• Run the program. When it terminates, the file
gmon.out will be produced in the directory
where program was run. You won’t get
gmon.out until the program terminates.

• Display the profiling data with gprof(1). The
profiling data will not include kernel time spent
on the process’s behalf. It may be necessary to
do a bit of piecing together evidence from ker-
nel and user profiling in order to get a full pic-
ture of where your cycles are going.

One of the challenges of profiling servers is to
get the server to run in a mode where you can collect
useful data. Servers that fork to handle requests will
have one instance of the server process that will typi-
cally run for the life of the system, forking a new
instance each time a request comes in. In this case,
two different threads of execution will need to be pro-
filed. The easy one to profile is the ‘‘master ’’ instance
that accepts the incoming requests and then forks to
handle them. The processes created to handle the
requests are harder to profile, and due to their short
life may not produce statistically valid data. To get
around this you may have to figure out a way to get
the server to handle requests directly without forking.

Profiling the kernel
Typically, this is only interesting when you’re

out of CPU and want to figure out where the cycles
went and you’re really sure that the kernel is at fault.
To do this, you’ll need to build a profiling kernel and
then reboot with that kernel. Profiling can be turned
on and off, allowing you to collect data representative
of the load you are interested in. Running a profiling
kernel does add a bit of overhead to the system.

Here are the steps for doing this on BSD/OS:
• Configure and compile a profiling kernel:

# cd /usr/src/sys/i386/conf
# config -p MY_KERNEL
# cd ../../compile/MY_KERNEL.PROF
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# make depend all

• Install the new kernel and reboot.

called/total parents
index %time self descendants called+self name index
called/total children

<spontaneous> [1] 53.0
0.19 85.75 doreti [1]

0.19 80.64 97968/97968 _isa_intrswitch [2]
0.76 4.02 22237/43750 _ipintr [11]
0.00 0.14 2264/3158 _softclock [41]
0.00 0.00 60/971 _trap [53]
0.00 0.00 1/1 _arpintr [403]

-----------------------------------------------
0.19 80.64 97968/97968 doreti [1]

[2] 49.9 0.19 80.64 97968 _isa_intrswitch [2]
25.63 54.99 97893/97893 _efintr [3]
0.00 0.01 75/75 _wdcintr [91]

-----------------------------------------------
25.63 54.99 97893/97893 _isa_intrswitch [2]

[3] 49.8 25.63 54.99 97893 _efintr [3]
53.68 0.00 12626901/12626907 _insw [5]
0.74 0.00 97893/97893 _ef_newm [24]
0.56 0.01 97893/97893 _ether_input [27]

Figure 1: Kernel profiling output.

• When you are ready to collect profiling data,
enable profiling with:

# kgmon -rb

• Run your load.
• When you’re done collecting data, disable pro-

filing with:

# kgmon -h

• Then dump the collected data with:

kgmon -p

The data is left in a file called gmon.out in the
current directory.

• The profiling data is display by gprof(1). gprof
has almost as many options as ls, but the fol-
lowing should work pretty well for starters:

# gprof /bsd gmon.out

You may want to redirect output to a file so that
you can use perl to help you make sense of the
data.

For more details, take a look at the config(8),
kgmon(8) and gprof(1) man pages.

Typically, what you’re looking for in the profil-
ing data is a rough idea of where the kernel is spend-
ing its time. Is it a device driver (which one)? The file
system? The network, etc.? Often the answer is sur-
prising. What you do next depends on where the data
leads you and the amount of kernel hacking you want
(or are allowed) to do.

For example, if the data points to the Ethernet
driver (as in the first example below), you will either
want to experiment with a different card or dig deeper
into the profiling data to see if you can find some
room for improvement in the driver (or suggest that
your OS or Ethernet vendor do the same). On the other
hand, if the data points you to fork(), the place to look
is at your load.

Kernel Profiling Example
See Figure 1 for sample kernel profiling output.

The data is from a profiling run on my laptop with a
heavy load of network traffic. The Ethernet interface
is a 3com 3c589B which uses the ef driver.

Looking at the data, one of the first things to
notice is that the efintr() routine is right up near the
top, so we can pretty reasonably focus our interest on
the Ethernet interface. One of the next things to notice
is that most of the time in efintr() is attributed to
insw(). insw() is part of the machine dependent assem-
bler code in locore.s, doing signed 16 bit reads from
the Ethernet interface. This is not surprising; since the
3c589B uses Programmed I/O (PIO), it is also a rea-
sonable bet that insw() was written with considerable
concern for efficiency. In this case, it looks like the
right thing to do is to try a different Ethernet card,
looking for one that does DMA. NH Code Availabil-
ity

A collection of useful benchmarks (and pointers
to more) can be found at ftp://ftp.bsdi.com/bsdi/bench-
marks. Source code for tcpdump can be found at
ftp.ee.lbl.gov.
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