
The following paper was originally published in the
Proceedings of the Eleventh Systems Administration Conference (LISA ’97)

San Diego, California, October 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Chaos Out of Order: A Simple, Scalable
File Distribution Facility For

‘Intentionally Heterogeneous’ Networks
Alva L. Couch – Tufts University

ABSTRACT

In large networks, heterogeneity in hardware, operating systems, user needs, and
administrative responsibility often forms boundaries that inhibit sharing of information,
expertise, and responsibility. These boundaries can divide networks into ‘feudal fiefdoms’ of
administrators, each with a disjoint domain of responsibility. DISTR is an easy-to-use file
distribution tool for homogeneous networks that also provides controlled file transfer between
disparate architectures and administrative domains. Using DISTR, administrators of unrelated
networks can collaborate to reduce duplication of effort while retaining control of their own
networks. DISTR’s controls allow collaboration, cooperation, and camaraderie to evolve, not
from grand and imposed designs, but from informal and serendipitous commonalities of mission
and purpose.

Introduction

Computers, like people, have to share a common
language in order to communicate. To share informa-
tion, they have to agree on the meanings of the files
they share. Unfortunately computers, like people, are
often prohibited from communicating by what are
almost ‘ethnic’ boundaries: diverse hardware, diverse
operating systems, or even diverse user and adminis-
trator needs.

While we are all familiar with heterogeneous
networks of machines with diverse hardware or oper-
ating systems, there are also networks with homoge-
neous hardware and operating systems but diverse
configurations or administrative responsibilities. Users
often need many different configurations of the same
hardware and operating system. An often overlooked
form of heterogeneity is that induced by lines of
authority, control, and responsibility. Mimicing the
structure of a large organization, a large network of
relatively identical machines is commonly organized
as several ‘feudal’ subnetworks, or ‘fiefdoms,’ each
with a different primary administrator or administra-
tive group.

Distributing shared information is relatively easy
when one does not have to cross boundaries induced
by disparities in hardware, software, user needs, or
administrative responsibility. There are plenty of solid
approaches to distributing databases, files, and soft-
ware. However, whenever one needs to cross even one
of these boundaries, many problems arise. Different
operating environments require different formats for
the same information, but formatting information cor-
rectly is the least of our problems. It is much more dif-
ficult to deal with user requirements and administra-
tive boundaries. Current tools for file distribution can-
not be configured at the level of detail necessary to

describe and respect these boundaries.

In this paper, I describe a new tool for file distri-
bution, DISTR, specifically designed to deal with het-
erogeneity in hardware, software, user needs, and
administrative boundaries. Written in Perl-5 [21] for
portability, DISTR has a simple syntax that eases sim-
ple file distribution tasks in homogeneous networks.
For advanced users, the functions of DISTR can also
be extended by writing custom Perl scripts. These
scripts can authenticate data transfers, keep records,
distribute files to large networks quickly, and trans-
form data appropriately both before and after each
transfer through a heterogeneity boundary.

Distribution Systems
There are currently many ways to distribute the

contents of files on a network. These include generic
tools that will distribute any kind of file, and domain-
specific tools that distribute only particular kinds of
files or work only within particular kinds of networks.

The simplest kind of file distribution is to use a
command that copies a file from one place to another.
Remote copy commands such as the UNIX remote
copy command rcp and a recent improved version
rsync require the user to have an account on the tar-
get machine and the rights to modify the file to be
copied. To update system configuration files, the user
must have root access to the target machine. Secure
remote command facilities including SSH [23] better
insure the identity of the updater but suffer from the
same need to grant root access. Alas, this simple
approach works for very small networks but is not
scalable to large networks or applicable to non-UNIX
systems.

General-purpose UNIX file distribution schemes
such as RDIST [7] automate the process of using

1997 LISA XI – October 26-31, 1997 – San Diego, CA 169

Chaos Out of Order: A Simple, Scalable File Distribution Facility . . . Couch

remote commands on a server to copy files to remote
clients. RDIST can both update files and execute
remote commands necessary before the new versions
take effect. Reverse file distribution systems like
RevRdist [25] and PC-Rdist [17] perform the same
function but reverse the roles of client and server.
These execute on each client at boot time or some
other convenient time and copy files from a server to
the client, accessing the server’s files using a file shar-
ing mechanism such as AppleShare or the Network
File System(NFS) [20]. Before updating a client file,
all of these tools check that it needs updating by com-
paring its size, creation time, and other attributes with
those of the master copy on the server. The goal of
these tools is to allow one administrator to exclusively
control more machines than is usually possible.

Software package distribution utilities such as
Depot [6, 15], opt_depot [1], Depot-Lite [19], Cicero
[4], and their variants accomplish the same task as
RDIST, but limit their problem domains to the special
problem of distributing usable software. This limita-
tion allows these tools to perform more complex tasks
than generic tools like RDIST while requiring less
effort to configure. Variant file distribution schemes
such as Local Disk Depot [22] add the ability to cus-
tomize each client machine’s software environment, to
avoid installing unused software and conserve disk
space.

Configuration trackers [3] document the contents
of specific UNIX configuration files on clients in a
heterogeneous UNIX environment. A database on a
server describes the similarities and differences
between clients. A configuration tool uses remote
commands to assure that clients’ configurations agree
with the database. This again is what RDIST does,
limited to a very specific problem domain to simplify
usage and avoid distribution errors.

Domain-specific UNIX database services such as
NIS [20] and NIS+ [18] automatically provide data
from tabular databases on a network. NIS client
machines must choose one server to provide database
information. NIS+ adds the ability to query multiple
servers and administrate large databases in distributed,
manageable pieces. As both NIS and NIS+ only work
on databases in which each line of a table has a unique
key, neither is suitable for providing files without a
tabular structure.

Portable domain-specific database services such
as the Lightweight Directory Access Protocol(LDAP)
[24] and Domain Name Service(DNS) [2] overcome
many of the portability limits of NIS and NIS+. These
are designed to provide information to all hosts in a
heterogeneous environment but are too specialized
and optimized for their problem domains (mail
addresses and internet names) to be useful for general-
purpose distribution of any other information.

A pattern develops in examining all these
approaches. All except NIS+ take their information

from one master server, even if slave servers replicate
its contents. Each approach is either good for distribut-
ing a specific kind of information to different kinds of
client machines, or all kinds of information to roughly
the same kinds of client machines. None of these tools
addresses the general problem of distributing the con-
tents of arbitrary files in heterogeneous domains con-
taining a mix of UNIX and other operating systems.
There is a good reason for this; the general file distri-
bution problem is very difficult!

Developing trust
‘‘It would be nice’’ if we could all trust each

other and cooperate on what is obviously a common
goal. Unfortunately, trust is difficult to encourage
among diverse groups. It is especially difficult to
encourage when trusting another group to provide ser-
vices means giving all of them the ability to change
anything at all on any machine in your own network!
But this is precisely what most current file distribution
tools require. Trust is much easier to develop incre-
mentally from small, serendipitous commonalities of
goals and purposes. With proper tools, trust can grow
from ‘grass roots’ upward, from good experiences in
allowing cooperative people the access they need to
make a difference.

For example, many fiefdoms are small enough
that they do not run their own name service. This is
instead handled by a central service group that deter-
mines, e.g., the contents of the name service configu-
ration file resolv.conf for the feudal network.
But when this file changes, the central group may not
have privileges to install it within the fiefdom. Typi-
cally someone from the central group mails each new
version to someone inside each fiefdom and tells the
internal person to install it.

This situation wastes the time of both the central
group and the fiefdom administrator. Central services
should be able to change resolv.conf without
changing anything else. The fiefdom administrators
should be able to trust central services to update this
file, regardless of whatever else they think about cen-
tral services.

Desires
After a several year struggle using existing file

distribution tools and writing front-end tools that
extend their capabilities, I set out to implement a new
file distribution tool DISTR that does not suffer from
their limits.

My priorities were quite simple at the outset. I
wanted a file distribution mechanism that allows client
machines complete control over which files they
accept. I have had many problems with particular
users who need customizations outside the limits of
my configuration management scheme. In a hurry, I
wanted something that will allow me to turn distribu-
tion actions on and off at the client end and modify
them according to personal taste.

170 1997 LISA XI – October 26-31, 1997 – San Diego, CA

Couch Chaos Out of Order: A Simple, Scalable File Distribution Facility . . .

I wanted a file distribution mechanism that is
symmetric in the sense of supporting both master to
slave and slave to master requests. I like the master to
slave administration model, but I have historically had
much trouble keeping all hosts synchronized when
lone hosts suffer hardware failures and miss receiving
files.

I also wanted a mechanism that utilizes portable
file names rather than names particular to one operat-
ing system. I chose the dotted name notation of many
tools as a starting point. Each portable name is a point
of sharing between two hosts; regardless of whatever
else they can agree upon, they can agree upon a name
for the file being exchanged.

Finally, I wanted a tool that is very easy to use at
the outset and hides advanced features from novices. I
did not want to have to think very much about routine
distribution tasks. But I also wanted to be able to per-
form arbitrarily complex tasks using the tool with
more effort.

Beginning from these needs, I crafted DISTR.
What evolved is a much more complex entity than
these needs prescribed.

Using DISTR

DISTR’s basic usage is simple if a bit cumber-
some. In order to use DISTR, one has to install
DISTR’s daemon distrd and DISTR’s user front
end distr on each host to be involved in providing
or receiving files. The daemon runs at all times await-
ing requests. A host that provides a file is called a
server while a host that receives one is called a client.
In DISTR, there is no real distinction; any host can be
a client of some files, a server of others, and a server
and client of still others.

Next, one creates a configuration file
distr.conf on each host describing the files that
this host is allowed to receive or provide. On each
server, distr.conf contains lines like:

aliases.export.source =
’/usr/lib/aliases’;

aliases.export.clients =
[’mine’, ’yours’];

These particular lines give DISTR permission to
export the local file /usr/lib/aliases to two
clients mine and yours.

The configuration file of each client receiving
this file must have a matching set of lines like:

aliases.import.target =
’/etc/mail/aliases’;

aliases.import.servers =
[’theirs’];

These lines give the client permission to accept a file
from the server theirs and put it into the local file
/etc/mail/aliases.

With configuration files in place, the user then
requests distribution actions by executing commands
like

distr aliases.import

on a client to import the alias file from a server or

distr aliases.export

on a server to export the alias file to all clients.

Using DISTR is very different from using
RDIST. Both client and server must have configura-
tion files, and these must agree on what gets exported
from one machine and imported into another. For a
file transfer to be able to occur, server and client have
to agree on a portable name (such as aliases) both
will use to refer to the file, and each must define
enough parameters for the transfer to allow it to occur.
Parameters have names that are prefixed with the
portable name of the file.

At bare minimum, server and client have to spec-
ify two parameters. On a server, export.source
is the name of a file to provide and
export.clients is the familiar RDIST-like list of
all clients to which to provide it. On a client,
export.target is the name of a file to accept and
import.servers is a list of all servers from
which the client can potentially obtain the file. One
denies a host the privilege to install a file by simply
omitting the host from the list of authorized servers for
a file or, even more simply, omitting the file name
from all DISTR declarations for the client.

Once this information is specified, one can initi-
ate a file transfer from either host. Like RDIST, one
can tell the server to transfer a file to clients. Like
RevRDist, one can tell a client to fetch a file from a
server. Unlike RevRDist, DISTR will search for a
valid copy of the file sequentially on all servers on its
list, stopping when it finds and manages to fetch one.

Simplifying Syntax
DISTR provides several syntactic features to

make configuration file syntax less cumbersome.
Complex specifications are easier to type by using a
name scoping notation. The above server configura-
tion can also be written as

aliases.export {
source = ’/usr/lib/aliases’;
clients = [’mine’, ’yours’];
}

Inside the braces, names are prepended with the prefix
given before the braces. Scopes nest to arbitrary depth,
so one could also write the server configuration as

aliases { export {
source = ’/usr/lib/aliases’;
clients = [’mine’, ’yours’];
}}

1997 LISA XI – October 26-31, 1997 – San Diego, CA 171

Chaos Out of Order: A Simple, Scalable File Distribution Facility . . . Couch

Using Inheritance
DISTR’s parameter values may be defined or

inherited. A defined parameter has a specific value
listed in DISTR’s configuration file. An inherited
parameter gets its value from another defined parame-
ter. A name with no defined value inherits the value of
its longest defined suffix. If c.d is defined and
b.c.d and a.b.c.d are not, then a.b.c.d inher-
its the value of c.d. This allows the user to assign
default values to parameters rather than typing explicit
values for all distribution actions.

For example, we can write:

export.clients =
[’mine’, ’yours’];

aliases.export.source =
’/usr/lib/aliases’;

group.export.source =
’/etc/group’;

to implicitly export all source files to both clients.
Attributes aliases.export.clients,
group.export.clients, and every other
attribute whose name ends in export.clients
inherit their values from the ‘global’ definition for
export.clients. Thus these attributes do not
need to be specified explicitly.

In turn, the rest of the configuration file need not
mention export.clients again and can consist
only of mappings between portable names and names
of files to export. In homogeneous environments with
one server and clients that all receive the same files,
DISTR configuration files are thus much shorter in
length than comparable configuration files for RDIST.

This notion of inheritance is almost exactly back-
ward from notions of inheritance in object-oriented
languages such as Java [11] and JavaScript [12] that
use the same kinds of namespaces. Object-oriented
inheritance helps one specify rules that define classes
of objects but does not create any instances of those
classes. Our inheritance functions instead help us
specify instances of classes that never get explicitly
defined as classes! Rather than defining a set of
classes each of which can have an unlimited number
of instances, DISTR’s syntax defines an unlimited
number of instances, leaving the classes implicit in
that definition!

DISTR’s Syntax

DISTR’s configuration file defines values for
selected attributes. Each attribute is represented by a
dotted name and can represent either an action or
parameter. The value of an attribute is the value of a
Perl expression. This value can be any kind of Perl
scalar, including a reference to an array, to an associa-
tive array, or to a function. An attribute whose value is
a reference to a Perl function is called an action, while
an attribute with a non-function value is called a
parameter. Internally the only distinction between

actions and parameters is that when other actions
request their values, actions are implicitly invoked as
functions while parameter values are simply returned
to the requester. The set of all defined attribute names
and their values is called DISTR’s namespace.

DISTR distributes files solely by invoking
actions defined in its namespace. These actions query
the namespace to determine their own operating
parameters. As inheritance works for actions as well
as parameters, an action can be invoked by many dif-
ferent names with differing prefixes. The prefix on the
name by which an action is invoked determines the
parameters it fetches from the namespace.

DISTR provides two default actions export
and import. These are never invoked directly, but
always through inheritance. The names by which they
are invoked determine which files are exported or
imported. For example, invoking export as
aliases.export (through inheritance) causes it
to use the parameters aliases.export.source
and aliases.export.clients. The values of
these may themselves be inherited. If export is
called by any other name its parameter names change
to match.

Customizing DISTR
In configuring DISTR, the user can override the

definitions of any action, including default ones such
as export and import. However, these are very
complex actions. For proper function of DISTR, these
actions have to have roughly the same form regardless
of customizations. For this reason, high-level opera-
tions such as import and export are phrased in
terms of lower-level component operations. These
lower-level operations can be individually overridden
to alter specific parts of DISTR’s behavior. The
import and export routines are actually algorith-
mic skeletons [5] that hide the complexities of
DISTR’s functions while allowing one to customize
anything easily.

For example, the default import action looks
like this:

import = sub {
if (&some(’import.needed’)) {
if (&some(’import.authentic’)) {
if (&some(’import.before’)) {
if (&some(’import.method’)) {
&some(’import.afterSuccess’);

} else {
&some(’import.afterFailure’);

}
} else {
&some(’import.afterBeforeFailure’);

}
} else {
&some(’import.afterDenial’);

}
}

};

172 1997 LISA XI – October 26-31, 1997 – San Diego, CA

Couch Chaos Out of Order: A Simple, Scalable File Distribution Facility . . .

The DISTR library function some looks for a param-
eter value relative to the name under which the current
action was invoked. If some finds a value represent-
ing an action, it executes that action and returns the
result of execution. If some finds a non-action value,
it simply returns that value. The result is that the
above code executes several actions in order:

• import.needed determines whether an
import is needed at this time.

• import.authentic determines whether
importing should be allowed.

• import.before prepares for importing,
including backing up old versions, etc.

• import.method actually imports the file.
• import.afterSuccess does import post-

processing if the import succeeds, such as
updating other related databases.

• import.afterFailure performs cleanup
after import errors, including restoring old ver-
sions of files.

• import.afterBeforeFailure per-
forms cleanup after fatal pre-import errors.

• import.afterDenial takes action con-
cerning security failures, including notifying
administrators, etc.

By default, only import.needed,
import.authentic, and import.method are
defined as actions. The rest have value 1 (to disable
them) and are provided explicitly for the purpose of
customizing the import process.

The typical administrator, concerned with only a
few of these phases, can choose to override actions in
chosen phases and retain defaults for every other
phase of importing. For example, to run
newaliases after importing a mail aliases file, one
would write

sendmail.aliases.import.afterSuccess =
sub {
system(’/usr/ucb/newaliases’);
};

or its equivalent for your own flavor of UNIX. One of
the nicest things about DISTR’s configuration model
is that the administrator of a local machine who does
not control alias file distribution can add local modifi-
cations before compiling the file, e.g., concatenating
the alias file with a local one before making it take
effect.

PGP Authentication
DISTR’s default authentication is host based like

RDIST’s. Clients maintain lists of hostnames and
addresses from which requests will be accepted,
though these lists are private to DISTR and not used
for other purposes. DISTR also allows authentication
of the creator of a distributed file as a person, using
PGP signatures to determine the identity of the creator.

To authenticate every incoming file via PGP
2.6.2, one can write

import.authentic = \PGPauthentic;

to use the builtin PGP authentication function for
every import transaction. One must also define two
PGP parameters: list signers of PGP names of peo-
ple allowed to provide files for distribution and the
name of a keyring file DISTR can use to validate file
signatures. These parameters are inherited and can
change for different imported files.

Files to be authenticated must be PGP signed on
the source machine using detached signatures. A file’s
detached signature, if available, is forwarded as part of
any export request or import response. If PGP authen-
tication is in effect, a file will only be imported if its
signer matches one of a list of PGP users authorized to
import files.

DISTR uses PGP for authentication only. Files
are not encoded or encrypted using PGP, but remain in
plaintext. There are two good reasons for this apparent
oversight. Detached signatures are easy to use and do
not prohibit a host receiving them from ignoring them
and falling back to host-based authentication if the
host does not have PGP. Encrypting each file using
PGP would also require that the receiving daemon
have access to a private key for purposes of decrypt-
ing it. Since there will not be a user available to type a
passphrase, that private key would have to be stored
on the host somewhere and vulnerable to discovery. In
my view this use of PGP encryption provides more of
an illusion of security than actual security. DISTR
transmits all its files in plaintext and is not suitable for
transferring sensitive information, and no use of PGP
will solve this problem satisfactorily.

While this approach solves the problem of
authenticity, there is still a serious security problem in
using this very simple form of PGP authentication.
Any file, once signed, can be successfully included in
any request the signer is permitted to make. This
means that a devious person with possession of a
signed file can use replay attacks to corrupt every file
the signer is permitted to change!

There is only one stateless PGP solution to this
problem that is under development. The signer can
also provide a ‘certificate of intent’ listing where the
file should be installed. If this is also PGP signed, a
host receiving the file and certificate can insure that it
is utilizing the file in the way the creator intended.

Even this is insecure, because a devious person
with access to an older version of a file, its certificate,
and their signatures can use them to initiate a rollback
attack that resets a target file to an old configuration.
This can re-open security holes or deny services based
on improper machine configurations.

There is again only one (almost) stateless PGP
solution to this problem that is under development.
DISTR can ask the initiator of a request to sign a file
describing the request itself. If this file contains a time
stamp and time limit on the request, and if receiving

1997 LISA XI – October 26-31, 1997 – San Diego, CA 173

Chaos Out of Order: A Simple, Scalable File Distribution Facility . . . Couch

hosts check that the request has been sent between
those limits, rollback attacks can be prevented.

There are too many ‘if’s in this discussion. My
conclusion from this is that PGP provides just a bit
better security than the default host-based security,
and in general is not particularly suitable for providing
security in this context. Of course, with DISTR’s mod-
ular structure any new available form of security can
be implemented relatively quickly. One should be!

Remote execution
DISTR also can provide general-purpose remote

execution capabilities. As distrd runs as root,
any actions specified are privileged unless otherwise
noted. This means that I can easily configure DISTR
to import and execute a Perl script in a somewhat
secure manner, by writing:

penguin.import {
target = "/tmp/penguin$$";
needed = 1;
signers =
[’Alva Couch <couch@tufts.edu>’];

authentic = \PGPauthentic;
afterSuccess = sub {
my $name = &some(’import.target’);
system("/usr/bin/perl $name");
unlink $name;

};
afterFailure = sub {
my $name = &some(’import.target’);
unlink $name;

};
}

The result of this simple hack is to force importing of
any file with the portable name penguin, authenti-
cate it as mine, and if authentic, execute it as a Perl
script. This is not as secure as the real PENGUIN [13]
remote execution utility for Perl scripts, which exe-
cutes its scripts in a controlled, limited environment
based upon privilege specifications. DISTR’s scripts
are executed with no limitations.

I do not recommend doing this. As above, this
mechanism is subject to replay attacks. Once a file is
signed, anyone who can gain ownership or capture it
on the network can forward it to the daemon for exe-
cution.

Handling Heterogeneity
Effective communication between servers of

diverse hardware and software architectures requires
careful configuration of DISTR. Any attempt to move
information from one architecture to another requires
that one:

1. Understand the forms that information will take
on either side of the architectural boundary,
including files and their formats.

2. Design a ‘portable format’ for the information
that can be transformed into the forms needed
on either side. This may consist of information

from several different files on each side of the
boundary, appropriately combined.

3. Develop filters that create the portable format
from files on the server side, and that transform
the portable format into desired files on the
client side. These filters form the bulk of
DISTR’s export.before and import.
afterSuccess methods.

If one is lucky, the native form of information on
one side of the boundary can be used as the portable
form on the other. For example, suppose we are send-
ing a UNIX database to an NT workstation. If there
are many NT stations and few UNIX servers, it makes
sense for the database to get translated once on the
UNIX server, then propagated to all the NT stations in
native form.

Scaling DISTR

DISTR’s distribution algorithm can also be
adapted to update large networks in minimal time by a
relatively simple modification. If servers are linked by
DISTR, and each server has both import and and
export specifications for each file being distributed,
one can configure each server to export whatever it
imports by writing

import.afterSuccess = sub {
some(’export.initiate’);

};

The export.initiate method causes the server
to invoke the appropriate import on other servers
previously listed as clients of this one. Then, if config-
urations of servers are arranged so that one server
updates all others, each server will independently
update all its clients.

One must of course take care to insure that this
distribution process does not create an infinite loop,
either by design of the distribution topology or by
insuring that loops otherwise terminate. E.g., one can
prevent loops by insuring that import.needed
aborts the exporting process when trying to update a
file that is already up to date, as in RDIST. As with
any recursive propagation technique, failure to insure
this carefully can result in a network storm and net-
work overload.

A safer scalable approach, though somewhat
strange in semantics, is to write:

export.before = sub {
some(’import.initiate’);

};

This causes servers exporting a file to synchronize
with their servers before exporting it, so that the file
gets propagated from some master server all the way
down to the client. However, this can also cause ver-
sion skews on the network. A request from a client
causes a chained update of a path of servers between it
and the master server, leaving other servers away from
the path alone, even if they require updating. This

174 1997 LISA XI – October 26-31, 1997 – San Diego, CA

Couch Chaos Out of Order: A Simple, Scalable File Distribution Facility . . .

causes unpredictable version skews in server configu-
rations if the servers use the file in their running con-
figurations. The technique is entirely safe, however, if
version skews are acceptable at leaf nodes, and if
servers do not utilize distributed files in their own con-
figurations. This is the case, e.g., in microcomputer
networks where users are responsible for initiating
their own updates.

Scaling Vulnerabilities
The security issues discussed above are even

more important when DISTR is configured to broad-
cast files to a network. RDIST-like host-based authen-
tication is vulnerable to spoofing attacks. DISTR’s
PGP authentication for imported files provides little
help due to its vulnerability to replay attacks. A devi-
ous person can use these techniques to compromise a
network configured for recursive propagation of files.

DISTR does not currently solve this problem.
The two signed certificates of intent and time limits
proposed above would only partially solve it. If a user
makes a mistake in a file, signs it, distributes it, dis-
covers the mistake, and redistributes it before the time
limit on the original certificate, a devious person can
set up a distribution chain for the incorrect file in com-
petition with the corrected version.

What is Scalability?
Scalability typically refers to the way the perfor-

mance of a software tool or algorithm changes as the
number of computers it manages or utilizes increases
without bound. While this definition is well suited to
the needs of people analyzing network hardware or
parallel computing algorithms, it is not so well suited
to analyzing system administration tools. In algorithm
analysis, the emphasis is on performance and size,
while in system administration our emphasis is on
usability and complexity. A usable tool must of course
perform reasonably, and a large network is indeed a
complex one. But system administrators typically have
little interest in fast, unusable tools and may manage
relatively small but relatively complex networks (such
as my own).

For a system administrator, therefore, a scalable
tool is one that handles problems with varying com-
plexities and remains usable and cost effective at all
scales of task complexity, whether or not complexity
is caused by numbers of machines or environmental
heterogeneity. A tool’s scalability thus refers not only
to its asymptotic performance on large networks, but
also to its ease of use in performing small tasks, and
the ease with which one can learn to perform small
tasks with it.

My best example of a scalable configuration lan-
guage is SLINK [8, 9], intended for managing images
of local file repositories. Simple filesystem manipula-
tions require only simple commands, while more com-
plicated actions require more involved commands and
a complete understanding of SLINK’s protection
model. In SLINK’s case, the command syntax is

crafted to discourage undesirable actions by making
them more complex to specify [10]. In DISTR’s case,
instead, syntax is crafted so that homogeneous,
domain-specific actions are easier to specify than het-
erogeneous, domain-bridging ones.

DISTR’s language is designed to be the absolute
minimum one needs for dealing with heterogeneous
environments. Basic functions, including authentica-
tion, pre-processing, post-processing, and transport
can be configured by specifying skeleton functions
with a minimum of effort. Thus DISTR’s configura-
tion language is scalable in the sense of the above def-
inition; easy to use for simple tasks and capable of
performing any task with effort.

While DISTR’s distribution strategy and lan-
guage are scalable, its security mechanisms based on
host address and PGP are not. Solving this problem
will require mechanisms other than PGP.

How DISTR Works

To accomplish distribution actions, a DISTR
daemon distrd runs on all hosts managed by
DISTR. This daemon interprets a local configuration
file distr.conf, reads requests off the network,
and responds appropriately to each. Requests are made
either by other daemons or by DISTR’s front end user
program distr.

Requests to the daemon contain not only the full
name of the action requested (import on the remote
host for exports, export for imports) but also every-
thing known about the action on the requesting host,
including all parameters specified for the action in the
requesting host’s configuration file and the contents of
local files if appropriate. To transmit this data, DISTR
uses a custom Perl library Data::Pipeable that
can transmit any acyclic Perl reference structure
through a pipe and reassemble a duplicate on the other
end of the pipe. This library also allows DISTR to
embed the contents of files of arbitrary length into the
argument list sent to the remote machine.

Data::Pipeable is based upon the idea of
the Comprehensive Perl Archive Network (CPAN)
[16] library Data::Storable, which allows stor-
age and retrieval of Perl data structures to and from
disk files. Due to an improved algorithm, the new
implementation does not utilize any C code to
improve portability. Due to a lack of any sensible way
to reconstruct them, as well as the potential security
problems involved in trying, references to functions
are not transmitted.

Both import and export requests are simple,
stateless transactions consisting of a single request and
a single response. Currently each export request
contains the file’s portable name and the target file’s
size, protection, owner, mode, and modification time.
If these attributes do not match those on the server, the
file is returned along with its own attributes and PGP
signature if available. The returned file is then

1997 LISA XI – October 26-31, 1997 – San Diego, CA 175

Chaos Out of Order: A Simple, Scalable File Distribution Facility . . . Couch

checked locally for authenticity and installed if
authentic. Each import request contains the file to
be installed and all information known about it. This
information includes the file’s size, protection, owner,
mode, modification time, and PGP signature if that is
available. The remote client checks whether the file
should be installed and installs it if installation is
needed and allowed.

I have come to regret this design. I will soon be
changing the import protocol to a two phase proto-
col (like RDIST’s) with an initial probe for validity
and a second phase in which the file is sent. This will
not only save network bandwidth but also make the
daemon more resistant to denial-of-service attacks
where someone sends large unauthenticated requests
to the daemon to keep it from processing valid
requests. Currently invalid requests can fill filesystems
with unauthenticated files.

DISTR’s front-end program distr actually has
a much more complex task than the daemon. Since the
structure of inheritance defines an unlimited number
of actions, the front end’s job is to decide which
actions to invoke. It does this in a very simple way, by
looking at their attributes. An import event is mean-
ingless without designation of a target file, while an
export event is meaningless without a source file.
When asked to import a file or files, the front end
matches its request against all target files it knows
about and imports only those targets. Likewise exports
are performed only for defined source files.

Limitations

While DISTR may seem an advanced tool, it has
many limitations imposed both by a need for simplic-
ity and a lack of implementation time.

DISTR’s daemon is inherently serial. It processes
one request at a time, then looks for the next. This is
both a limitation and a feature. While there is no com-
pelling reason why the daemon cannot fork, I do not
want it forking in my network! File distribution should
never inhibit day to day operation of a workstation.
Even if I do provide the daemon eventually with the
ability to fork, I will limit it to at most four concurrent
operations. This change, however, will change the
semantics of DISTR. Currently, one can invoke serial
updates on one host that are guaranteed to happen seri-
ally on all targets. This will not be so if the daemon
can fork, and configuration files will have to be modi-
fied for this possibility.

The PGP implementation used in DISTR is ver-
sion 2.6.2 using a variant of the front end written for
PGP by Felix Gallo in implementing PENGUIN. This
is a very limited implementation and provides the bare
minimum of functionality. This is simply what was
available at the time DISTR was written. I expect to
replace this with a better PGP interface when possible.

DISTR’s components, both client and daemon,
scan the local configuration file as a text file to

initialize themselves. Since this file contains Perl
code, both of these compile that code on the fly. A
lack of finesse in compiling each attribute’s value
results in quite cryptic error reporting, a deficiency I
plan to remedy shortly. While DISTR in principle will
execute on any host supporting Perl and daemons, it
has only been tested for UNIX. Further development
is needed to make it truly portable, including using
improved PGP library functions.

While DISTR provides a transport layer suitable
for communication between diverse hosts, and a
portable namespace that hosts share, DISTR specifies
nothing about exactly what names hosts will agree
upon and what transformations will occur in translat-
ing information from one format to another. Seman-
tics-preserving transformations, such as distributing
UNIX groups for use in NT, must be hand-configured
by the user.

Security
Despite my best efforts, DISTR is frightfully

insecure. Unfortunately, DISTR’s serious security
problems are the same as would be encountered when
implementing any scalable stateless security mecha-
nism on a network. It is quite easy to compromise it
with a replay attack.

For DISTR to be scalable, we cannot include
mechanisms that compromise that scalability. This
means that we cannot defeat replay attacks the easy
way by assigning serial numbers to requests and
enforcing simply increasing serial numbers. Each host
would have to remember the last request serial number
from each other host, and rebuilding a host after a
crash (when DISTR is most useful) would be prob-
lematic.

Call me irresponsible, but DISTR’s default run-
ning configuration is very insecure. The default
authentication is host-based and RDIST-like, with all
the security problems that implies, including being
prone to address spoofing attacks. The reason for this
is that the average user looking for something like
RDIST will be more likely to utilize DISTR if it acts
something like RDIST in the beginning, and less
likely to utilize it if one has to learn everything about
PGP first.

This has serious implications. If a naive user fails
to heed my warnings and implements recursive propa-
gation on a large network without PGP-authenticating
the files at least, that user’s whole network will be
prone to spoofing. If that same user implements the
PENGUIN lookalike code given above without using
PGP, all bets are off on the security of the network. It
is very easy to completely compromise the security of
DISTR in the configuration file. Since DISTR never
enforces security limits, but makes them optional, it
can never be considered completely secure.

DISTR’s daemon is also prone to denial of ser-
vice attacks based on message volume. Since the

176 1997 LISA XI – October 26-31, 1997 – San Diego, CA

Couch Chaos Out of Order: A Simple, Scalable File Distribution Facility . . .

current protocol sends files to be distributed as part of
the request, the daemon stores them in a temporary
location before determining what to do with them. If a
devious person sends very large files the daemon will
happily fill up /tmp. Though it is more difficult to
get DISTR to install those files anywhere crucial, this
problem is very annoying and will be fixed by revising
DISTR’s protocol.

Critique

It is difficult to evaluate DISTR against other
tools providing the same functions because DISTR’s
priorities are so different. Rather than configuring just
a server, the user of DISTR must configure both
servers and clients. This requires construction of one
configuration file per type of client, as well as boot-
strapping each client with the daemon and its configu-
ration before using DISTR. Whether this is worth the
effort depends upon one’s goals. If the extra function-
ality of DISTR is appealing, the extra work, including
the bootstrap, is probably worth the effort. If one
desires RDIST functionality, then DISTR is much
more work to deploy. If one desires remote privileged
execution of selected scripts, DISTR’s configuration
provides the safest way I know to do it.

It is a dubious practice to provide a mechanism
for use of standard naming without providing guid-
ance about the naming standard, but this is all my time
allows. To avoid massive confusion, users of DISTR
have to remain consistent with their own naming stan-
dards. The best guidance I can give is to adopt a stan-
dard that works like the language, from general to spe-
cific, and clearly identifies platform dependencies by
levels of the naming scheme. Everything under the
name unix should refer to transactions specific to
UNIX, while everything under nt should refer to
transactions specific to Windows-NT. For cross-plat-
form transfers, the name of the action should evoke
the subsystem being updated, e.g., groups for a
cross-platform transfer of user groups between differ-
ent operating systems, mail for generic mail infor-
mation, etc.

It is also a dubious practice to provide a modality
for bridging domains without providing any utility
functions to help. But I am ignorant of other users’
needs. The namespace, however, provides an easy way
to categorize and label server and client protocols for
accomplishing various kinds of transfers. If DISTR or
similar techniques prove popular, I hope users will
help one another out in building these translations.

It is also questionable whether a distribution
mechanism that requires hand-configuration of its dis-
tribution topology is scalable. In a large network, it is
a lot of work to tell all the servers about all their
clients and vice versa. But I know of no reliable auto-
matic method for determining this information from
lists of equivalence classes of clients. The general
problem of mapping a distribution scheme optimally

onto a given topology is intractable, and it is almost as
difficult to precisely describe a network topology
devoid of distribution topology as it is to describe the
distribution topology itself. Worse, typically we would
rather not allow a program to determine which
machines are servers and which are clients; we decide
which machines are servers beforehand. An alternative
to explicitly hand coding the topology seems quite dif-
ficult to implement and of dubious value.

Conclusions

We should remember that in our capacities as
system administrators we are not networking comput-
ers, but people. The first step in this task is to network
the people who maintain the computers. But com-
monly, we ourselves do not manage to bind together
into a group that is stronger than the sum of its parts.
Lack of clarity in our roles combines with ambiguity
in our powers to create situations that pit us against
each other instead of against real problems with the
network.

DISTR provides a beginning of a new cama-
raderie between administrators in what used to be
opposing factions. There is no need to trust anyone
with one’s life – one can trust people to do what they
do best and have no doubt that this is all they do. We
no longer have to give an untrusted person the root
password and wonder exactly how bad things can
become. And we no longer have the potential to blame
people for problems who could not possibly have
caused them due to lack of privilege.

One of the most important parts of being a mem-
ber of a family is learning to protect one’s boundaries
without excluding others. Through no fault of their
own, fiefdoms play the role of outcast family members
in a large family. Fiefdoms exist partially because
they do not have the tools to protect their boundaries
without excluding others. Tools like DISTR are the
first step in transforming fiefdoms into families. Liv-
ing in a good family is a lot more pleasant.

Availability

DISTR 2.0 is in testing and will be available by
conference time in the directory ftp://ftp.eecs.tufts.
edu/pub/distr . DISTR 1.0, although known by the
same name, is quite different in function. It is a front-
end to RDIST that implements only archiving and
rollback features.

Acknowledgements

David Krumme endured multiple excruciating
discussions of functionality during the development of
DISTR’s predecessors, and gave much valuable feed-
back and guidance. Scott Corzine gave me extensive
advice and design help, and helped me develop the
proper paranoic attitude about security and authentica-
tion. My spouse Elizabeth endured proofreading of
many paper revisions. Special thanks to Remy Evard

1997 LISA XI – October 26-31, 1997 – San Diego, CA 177

Chaos Out of Order: A Simple, Scalable File Distribution Facility . . . Couch

for last minute help with clarity and references. The
name DISTR is not just a pun on RDIST. DISTR is
also the name of a primitive operator in the Berkeley
implementation of Backus’ functional programming
language FP. FP’s DISTR is also called the ‘right dis-
tribution primitive’.

Author Biography

Alva L. Couch was born in Winston-Salem,
North Carolina where he attended the North Carolina
School of the Arts as a high school major in bassoon
and contrabassoon performance. He received an S.B.
in Architecture from M.I.T. in 1978, after which he
worked for four years as a systems analyst and admin-
istrator at Harvard Medical School. Returning to
school, he received an M.S. in Mathematics from
Tufts in 1987, and a Ph.D. in Mathematics from Tufts
in 1988. He became a member of the faculty of Tufts
Department of Computer Science in the fall of 1988,
and is currently an Associate Professor of Electrical
Engineering and Computer Science at Tufts. In 1996
he received the Leibner Award for excellence in teach-
ing and advising from Tufts. He has assisted in main-
taining the Tufts computer systems for Computer Sci-
ence teaching and research since 1985, when he was a
Ph.D. student, and is currently responsible for main-
taining the largest independent departmental computer
network at Tufts. He can be reached by surface mail at
the Department of Electrical Engineering and Com-
puter Science, 161 College Avenue, Tufts University,
Medford, MA 02155. He can be reached via electronic
mail as couch@eecs.tufts.edu . His work phone is
(781)627-3674.

References

[1] Jonathan Abbey, ‘‘opt_depot web site,’’ http://
www.arlut.utexas.edu/csd/opt_depot/opt_depot.html .

[2] Paul Albitz and Cricket Liu, DNS and BIND, 2nd
Edition, O’Reilly and Assoc., 1996.

[3] Paul Anderson, ‘‘Towards a High-Level Machine
Configuration System,’’ Proc. LISA-VIII, 1994.

[4] David Bianco, Travis Priest, and David Cordner,
‘‘Cicero: a Package Installation System for an
Integrated Computing Environment,’’ http://ice-
www.larc.nasa.gov/ICE/doc/Cicero/cicero.html .

[5] Murray Cole, Algorithmic Skeletons: Structured
Management of Parallel Computation, MIT
Press, 1989.

[6] Wallace Colyer and Walter Wong, ‘‘Depot: a
Tool for Managing Software Environments,’’
Proc. LISA-VI, 1992.

[7] Michael Cooper, ‘‘Overhauling Rdist for the
’90’s,’’ Proc. LISA-VI, 1992.

[8] Alva Couch and Greg Owen, ‘‘Managing Large
Software Repositories with SLINK,’’ Proc.
SANS-95, 1995.

[9] Alva Couch, SLINK Manual, 1996. http://www.
eecs.tufts.edu/couch/slink.html .

[10] Alva Couch, ‘‘SLINK: Simple, Effective Filesys-
tem Maintenance Abstractions for Community-
Based Administration,’’ Proc. LISA-X, 1996.

[11] David Flanagan, Java in a Nutshell, 2nd edition,
O’Reilly and Assoc., 1997.

[12] David Flanagan, JavaScript: the Definitive
Guide, 2nd edition, O’Reilly and Assoc., 1997.

[13] Felix Gallo, Penguin-3.00, available from CPAN
[16].

[14] James Murray, Windows-NT SNMP: Simple Net-
work Management Protocol, O’Reilly and
Assoc, 1997.

[15] Kenneth Manheimer, Barry Warsaw, Stephen
Clark, and Walter Rowe, ‘‘The Depot: a Frame-
work for Sharing Software Installation Across
Organizational and UNIX platform boundaries,’’
Proc. LISA-IV, 1990.

[16] Jon Orwant, ‘‘Welcome to the Comprehensive
Perl Archive Network!’’ http://www.perl.com/
CPAN-local/CPAN.html, 1997.

[17] Pyzzo Software, Inc., ‘‘PC-Rdist Software Distri-
bution System,’’ http://www.pyzzo.com/pcrdist/ .

[18] Rick Ramsey, All About Administering NIS+,
Sun Microsystems Press.

[19] John P. Rouillard and Richard B. Martin,
‘‘Depot-Lite: A Mechanism for Managing Soft-
ware’’ Proc. LISA-VIII, 1994.

[20] Hal Stern, Managing NFS and NIS, O’Reilly and
Assoc., 1991.

[21] Larry Wall, Tom Christiansen, and Randall
Schwartz, Programming Perl, 2nd edition,
O’Reilly and Assoc., 1996.

[22] Walter C. Wong, ‘‘Local Disk Depot – Customiz-
ing the Software Environment’’ Proc. LISA-VII,
1993.

[23] Tatu Ylönen, ‘‘SSH (Secure Shell) Remote
Login Program,’’ http://www.cs.hut.fi/ssh/ .

[24] ‘‘Lightweight Directory Access Protocol,’’
http://www.umich.edu/ rsug/ldap/ .

[25] ‘‘RevRdist Home Page from Purdue U,’’
http://www.purdue.edu/revrdist/ .

178 1997 LISA XI – October 26-31, 1997 – San Diego, CA

