
The following paper was originally published in the
Proceedings of the Eleventh Systems Administration Conference (LISA ’97)

San Diego, California, October 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Tuning Sendmail for Large Mailing Lists
Rob Kolstad – Berkeley Software Design, Inc.

ABSTRACT

One of BSDI’s mail servers hosts what might be the Internet’s busiest mailing lists:
inet-access@earth.com . This list now has about 2,000 subscribers and occasionally processes
traffic as high as 200 separate messages per day. This 400,000 message per day aggregate is a
taxing load for a non-optimized mailing system.

When the project started, the mail queues sometimes lagged as much as five days
(hundreds of thousands of messages) behind. A single message could take more than five hours
to attempt delivery to members of the list. Furthermore, the disk load was high as sendmail
processed the queues repeatedly (trying to deliver previously missed mail). All in all, the
system’s efficiency was remarkably low.

This paper describes the procedures undertaken to reduce delivery times to under five
minutes (for all 2,000 subscribers) and mitigate problems associated with unavailable hosts.

Outline

First, the paper discusses the problem of large
mailing lists and processing them. After outlining the
goals for the new processing system, the state of the
old system is described. The methodologies employed
to reduce overhead and increase throughput are then
discussed along with tools for measuring and aiding
performance. Finally, the final state of the system is
presented.

The Problem

Mailing Lists
Mailing lists are surely the first (and arguably

only) ‘push technology.’ New information is moved
toward the consumer shortly after it is produced.
These with online mail systems (vs. POP-style mail
systems) who additionally employ biff(1), can receive
notification of mail delivery in real-time. This conve-
nience and timeliness have motivated mailing lists’
popularity since the first days of ARPANET mailers.
As the ’net proliferates, lists are increasingly for a
variety of discussions and for a variety of communi-
ties.

Mailing list sizes run from the tiny (a handful of
recipients) to the huge. InfoBeat (formerly Mercury
Mail) creates customized content for various mailing
lists and (in August, 1997) sends out more than
200,000 messages every afternoon.

Surprisingly, mailing lists continue to be popular
in spite of other technologies like USENET News and
the World Wide Web. This might be because of the
pure ‘push’ properties of the mailing lists. I hypothe-
size that people have integrated mail reading into their
daily (or hour or minutely) task schedule and that the
mingling of mailing lists into such a paradigm is just
too convenient to change.

Mailing List Servers
The convenience and efficacy of receiving mail-

ing lists depends on the mailing list servers (hereafter
‘list servers’ or just ‘servers’). If a list server fails to
deliver a message in a timely manner (or at all!), much
of the effectiveness of mailing lists is lost. As lists
grow, delivery becomes an ever more resource-inten-
sive procedure that is complicated by all sorts of fac-
tors, including: host outages, network link outages,
DNS service problems, slow clients, slow networks,
and packet loss. Any of these factors can increase
mail delivery time from the 50-1000 millisecond time-
frame to the multi-day timeframe (as much as seven
orders of magnitude).

Furthermore, queueing a large number of mes-
sages to a list server can seriously impact its perfor-
mance on other tasks. Sendmail’s standard paradigm
for processing disk queues can cause severe resource
saturation when mail queues have more than one or
two thousand messages ready to be delivered. This
saturation can impact server efficiency so that only a
few messages per minute are delivered. Tuning such
systems is painful since disk operation (including pag-
ing in editors, for example) is impacted. Mixing high
priority mail delivery (e.g., corporate mail) with a high
volume mailing list can produce disastrous and unac-
ceptable results like 12 hour delivery times for mail
from one desktop to another desktop in the same
office.

The properties suggest a set of goals for a good
mail server environment.

Goals for Mailing List Servers

The combined needs of the message recipients
and list administrators yield a set of common-sense
goals:

• Fast delivery of messages (low latency)
• Reasonable consumption of server resources

1997 LISA XI – October 26-31, 1997 – San Diego, CA 195

Tuning Sendmail for Large Mailing Lists Kolstad

• Easy (or least low time commitment) adminis-
tration

• Use of existing tools for list processing
• Ability to monitor results to ensure goals are

being met

Delivery speed is surely a primary consideration
of mailing lists. Arguments can be made that reason-
able maximum delivery times run anywhere from a
few minutes to an hour. Analyses of ‘‘as fast as possi-
ble’’ suggest that a maximum delivery time of 5-10
minutes for a few thousand users is reasonable and
acceptable to the vast majority of users.

Reasonable server resource usage is an impor-
tant goal for list servers. Otherwise, they do not scale
well with increased list size and become too expensive
for organizations to support (both in terms of hard-
ware resources and both direct and indirect adminis-
tration costs).

Reasonable administration costs is another
important goal. List servers that require more than a
few minutes of daily maintenance start to become
problematical when:

the list administrator is unavailable (e.g., for
vacation or a conference),
management is looking for ways to reduce
overhead, or
the personal patience of the administrator is
tried (for any reason).

Use of existing tools is a prerequisite for contin-
uing goals of low-impact administration, low-impact
costs (both direct and indirect) for running a mailing
list, and ability to share innovations with other list
administrators. Our site would probably opt out of
running mailing lists if costs for extra software were
required.

Monitoring performance and resource usage
becomes important once the hardware costs of server
mailing lists are exposed. Neither network bandwidth,
server hardware, nor administration time is free. If
high quality service is not in the offing, these costs are
best directed towards other, higher impact and more
effective services.

Initial State

BSDI hosts the inet-access@earth.com mailing
list. It currently support approximately 2,000 sub-
scribers with anywhere from 100 to 200 messages per
day. At the time this analysis began, the message had
just over half that many subscribers and slightly less
traffic.

Probably the biggest problem was that delivery
times were starting to exceed five hours and the sys-
tem load seemed to be increasing very quickly. Pag-
ing was high; disk I/O was high; machine performance
was sagging.

A quick check revealed 50,000 messages in the
mail queue. This was surely one of the causes of the

high disk I/O as sendmail explored the queue with
each new process instantiated to mop up previously
undelivered mail.

Checking ps(1), showed over 100 sendmail pro-
cesses running. Normally, this wouldn’t seem very
painful for a mail server, but in this case each process
consumed over 2.5 MB of memory! This caused the
paging and exacerbated the disk load.

The load average ran from 5 to 20 even though
the CPU was not saturated. The (mostly) busy disks
and paging were keeping jobs from running.

Interestingly enough, most queued deliveries
would ‘catch up’ overnight and the mail queues would
be quite tolerably small by the time the first morning
batch of list mail began to be distributed. This put a
certain kind of cap (18 hours) on mail delivery time,
but the overall big picture was quite alarming since
other mail going through the mail delivery machine
would be delivered in hours instead of milliseconds.

The ‘Fast Fix’

As a quick-and-dirty fix to increase throughput,
Tony Sanders (inet-access’s owner and list maintainer)
gathered statistics about mail delivery times. Here is a
typical line (displayed here broken down into fields)
that he used to analyze the delivery time:

Sep 6 10:54:25 − date message was delivered
ace − hostname upon which sendmail is running
sendmail[24338]: − process name and PID
KAA24336: − date message was delivered
to=peter.j.scott@jpl.nasa.gov, −

recipient
ctladdr=kolstad (101/0), − sender
delay=00:00:07, − delay from time message

was queued until delivery
xdelay=00:00:06, − time for this particular

delivery attempt
mailer=smtp, − mailer used
relay=mailhub.jpl.nasa.gov.

[137.78.18.34], −
destination machine

stat=Sent (Message received and
queued) − final status

On a daily basis, Tony Sanders gleaned the xdelay
information for each recipient (across dozens of mail
messages in a given day) and then sorted outgoing
mail list so that those with lower xdelay averages were
delivered before those with higher averages. This had
the property of rewarding ‘good citizens’ with out-
standing delivery time (i.e., the first 100 or so good
citizens received their mail within a minute of its
arrival at the list server). Furthermore, ‘better’ citi-
zens were not punished by having their mail delayed
by multi-minute timeouts behind unavailable hosts.
Those people at the end of the queue still waited over
five hours for their mail to be delivered.

196 1997 LISA XI – October 26-31, 1997 – San Diego, CA

Kolstad Tuning Sendmail for Large Mailing Lists

The First Suggestion

I entered the scene because one of my mailing
lists (the USA Computing Olympiad list) was being
delivered ever more slowly. What used to take 20
minutes was taking hours.

I checked out the system and observed the symp-
toms reported above. I suggested that the 1,500 per-
son mailing list be split into 75 lists of 20 recipients.
My reasoning was that 75 lists of recipients would be
processed in parallel and all the ‘waiting’ (for hosts to
answer, etc.) would be parallelized and there would
‘always’ be some host ready to communicate. And, of
course, how long could 20 deliveries take? I was hop-
ing to deliver all the messages in a minute or two by
this increase in parallelism.

In a bizarrely political process, I was completely
overruled by our system administration staff who
complained quickly and bitterly that we could not pos-
sibly support the RAM and process slot requirements
of 75 parallel sendmail processes. The fears were
based on the notion that three or four messages would
arrive in a small interval and thus stress the system
with 4 x 75 = 300 processes and, worse, 4 x 75 x 2.5 =
750 MB of virtual memory requests. I was surprised
that sendmail used up so much data space (since the
code space is shared), but I am a strong believer in
delegating authority and this particular authority had
in fact been deleted.

Second Try, First Suggestion

I bargained with the administrators. I suggested
that we split list into four lists of 375 recipients each.
They were not pleased. However, being the company
president, the subtle force of that office won the day.
We fixed the outgoing mailing list processor to mail to
four different aliases of 375 recipients instead of one
big alias of 1,400 recipients.

Primitive analysis tools showed a an improve-
ment in throughput of roughly 4x. ‘Maximum’ mail
delays were reduced from over five hours to less than
two hours. The delivery rate was increased propor-
tionally. The number of processes in use did, in fact,
increase. The RAM usage was high but not nearly as
high as the 2.5 MB per process that had been feared.

It was difficult to measure throughput since the
mail queue status indicators are only updated every
ten message deliveries. It was at this point that we
committed a huge error and changed the update rate in
the /etc/sendmail.cf file from 10 to 1:

checkpoint queue runs after every
N successful deliveries
O CheckpointInterval=1

Do not do this at home.

An Aside on the Environment

For better or for worse, the inet-access mailing
list environment was a ‘live’ environment. Everyone
involved in this project had to take care not to endan-
ger the ultimate throughput of the list. We knew that
we lagged as many as 50,000 messages by the time
prime-time for mailing ended each day. A bad move
would result in getting more than one day behind and,
thus, potentially failing to catch up overnight when the
traffic was reduced. We feared that falling too far
behind would leave us unable to catch up ever.

Second Experiment

Heartily encouraged by the results of four lists
instead of one, I wanted to increase the number of lists
while decreasing the number of users per list.

It was clear at this point that monitoring tools
were necessary that could:

• monitor the instantaneous rate of delivery and
• summarize the day’s performance.

Without such tools, evaluating the status of a new
experiment would be difficult if not impossible.

It was decided to watch processes, RAM use,
disk I/O rates, and network I/O rates. A bottleneck in
any of these areas would cause a ‘hard limit’ on per-
formance.

As the number of recipients in each ‘list chunk’
was decreased, delivery rates and throughput
increased.

This was puzzling, to an extent, because of the
initial fears of process table crowding and virtual
memory consumption. Observation of the RAM use
showed that a sendmail process delivering a single
message never used much RAM. Later observations
showed that only ‘older’ sendmail processes used lots
of RAM, suggesting speculation about a memory leak
or a table that grows with status information about
destination hosts. At any rate, having solved the puz-
zle, it was easy to envision ever more list chunks with
ever smaller sets of recipients.

Disk I/O continued to increase as the number of
entries in /var/spool/mqueue increased. Network I/O
never got very high. Our T-1 line was never seeing
much usage, never more than 10-15%.

Delivery times had declined to less than one
hour. This caused queue sizes to be considerably
reduced so that list delivery was keeping up with the
lowest possible expectation of throughput. This was a
good milestone.

Head Scratching

We observed RAM usage was now relatively
low. We were trying to find the bottlenecks that were
reducing throughput. We observed:

• Disks are getting busier
• CPU isn’t that busy
• Load average isn’t getting worse

1997 LISA XI – October 26-31, 1997 – San Diego, CA 197

Tuning Sendmail for Large Mailing Lists Kolstad

• Network isn’t the problem
The actual cause of less-than-maximum throughput
was unknown.

Maximum Throughput
Of course, when one is concerned about achiev-

ing maximum possible throughput, one should try to
figure out precisely what the maximum throughput
could possibly be.

I wrote a small program, ‘mailtest.c.’ This pro-
gram implemented what is arguably the smallest set of
steps necessary to deliver a message, it:

Mail Delivery Performance
Sat Dec 14 23:48:01 MST 1996

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

08:00

09:00

10:00

11:00

12:00

13:00

14:00

15:00

16:00

17:00

18:00

19:00

20:00

21:00

22:00

23:00

24:00

Figure 1: Initial batchstat output.

• Opened port 25 on the destination machine
(note that DNS resolution is in some other pro-
cess),

• ran the SMTP protocol,
• sent approximately the shortest message that

the mailing list saw,
• closed the remote port, and
• exited.

On a PentiumPro/200 processor, this task (in repeated
observations) ran in about 30 ms. This is implies that
the maximum throughput of a mailer (under the most
ideal of all possible conditions) running on a PPro200
processor with a nearby recipient machine whose
name was already resolved was:

3600 sec/hour / 30 ms/message = 120,000 mes-
sages/hour.

The main bottleneck for this particular experi-
ment was the CPU though the network was running
close behind.

Statistics

It was time to build tools. The first tool (‘batch-
stat’) was designed to show a day’s summary of mail
throughput. See Figure 1 for a sample of its output.

Initial observations were performed by watching
the output of the mailq command. Tony Sanders
wrote a slightly modified version called mailqq that
showed the number of messages to be delivered
instead of the names of all recipients for a message. It
also found the sum for all messages waiting to be
delivered.

The process of running mailqq while the
/var/spool/mqueue queueing file update interval was
set to update after each message was delivered gave a
relatively depiction of mail throughput, though its
effect on disk performance was quite debilitating
(since it read so many files to find its statistics). More
on this later.

198 1997 LISA XI – October 26-31, 1997 – San Diego, CA

Kolstad Tuning Sendmail for Large Mailing Lists

batchstat
The batchstat program labels the output page, the

left axis in a processing rate measured in mes-
sages/hour, and the bottom axis in time throughout a
single day. Note that statistics for a day often start at
2:00 am instead of midnight. This doesn’t change our
observations, though.

The dark black vertical spikes running up from
the X axis depict ‘instantaneous message delivery
rates’ through the day. These are actually averages
over a minute or two. The light vertical lines below
the X axis show when a new message arrived for
delivery to the mailing list. Later versions of this pro-
gram went out of their way to ensure at least one pixel
between these bars so that high arrival rates could be
observed accurately.

The lighter gray bar that slowly increases in
value across time is the integral of the spikes: it shows
the total messages delivered so far since midnight. In
this example, about 98,000 messages were delivered
across the day.

The obvious goal of a mailing list delivery pro-
gram is to deliver all the messages the instant a mes-
sage arrives. On this graph, such behavior would dis-
play as a spike whose height is infinitely high for a
very short period of time. Higher thinner/narrower
spikes for each incoming message show better perfor-
mance of a mailing list handler.

realstat
Waiting an entire day to see if the spikes showed

up for mail deliveries was a nailbiting experience.
The realstat program read the realtime output shown
in /var/log/maillog so it could display performance in
a small window. Figure 2 shows realstat’s output dur-
ing a slow period.

9:00:00 480/ 2
9:00:15 960/ 4
9:00:30 960/ 4 --
9:00:45 2160/ 9 *--
9:01:00 1920/ 8 *--
9:01:15 720/ 3 --
9:01:30 2400/ 10 **--
9:01:45 720/ 3 --
9:02:00 1440/ 6 *-
9:02:15 960/ 4 -
9:02:30 960/ 4 --
9:02:45 1440/ 6 *--

Figure 2: Realstat Output During Slow Period

The first column shows the time of the observation.
The observation time is actually the 15 seconds lead-
ing up to the time of observation. The second column
shows the hourly rate of message delivery. The next
column shows the actual number of messages deliv-
ered in the previous interval. This number is scaled
and presented graphically as ‘*’s. The set of dashes
shows, in the same scaling, the number of messages

that were attempted to be delivered but, for some rea-
son, failed. For this graph, far more messages failed
to be delivered than succeeded.

mailstat
The mailstat program calculates a numerical

summary of messages delivered since the
/var/log/maillog file began. See Figure 3 for sample
output.

mailstat: Sat Feb 22 09:05:40 MST 1997
failed deliveries

MMM DD HH mhosts/recipt mhosts/recipt
=== == == ============= =============
Feb 22 02 433/ 612 1111/ 1111
Feb 22 03 495/ 696 1298/ 1298
Feb 22 04 431/ 615 1137/ 1137
Feb 22 05 421/ 610 810/ 810
Feb 22 06 422/ 606 717/ 717
Feb 22 07 411/ 587 931/ 931
Feb 22 08 427/ 616 1039/ 1039
Feb 22 09 22/ 22 105/ 105
========= ============= =============
Totals 3062/ 4364 7148/ 7148

Figure 3: Mailstat output, slow day.

The first three columns show the date and hour for the
summary shown to the right. Subsequent columns
show the number of hosts that a message to which a
message actually failed to be delivered and the num-
ber of messages that failed (which, surely, is always at
least as high as the number of hosts). Similar statics
follow for successful deliveries. Figure 4 shows mail-
stat output when the queue is full of messages that
can’t be delivered for some reason.

mailstat: Sat Feb 22 09:03:49 MST 1997
failed deliveries

MMM DD HH mhosts/recipt mhosts/recipt
=== == == ============= =============
Feb 22 03 18811/ 18811 522/ 522
Feb 22 04 27065/ 27065 574/ 574
Feb 22 05 29342/ 29346 1738/ 1887
Feb 22 06 29973/ 29978 8/ 8
Feb 22 07 26668/ 26675 1556/ 1690
Feb 22 08 11768/ 11787 1347/ 1464
Feb 22 09 1893/ 1896 566/ 606
========= ============= =============
Totals 145520/145558 6311/ 6751

Figure 4: Mailstat (few deliveries, many failures).

Further Experiments

We continued to increase the delivery paral-
lelism. Eventually, there 100 lists of 15-20 people
each. This caused ever-decreased delivery time, a
very busy machine, and incredibly busy disks.

Examination of the disk I/O rates showed that
each mail delivery was causing lots of disk I/O. This
brought to mind the update of the queueing files for
each mail delivery. Because sendmail is super-safe in
its algorithms for changing on-disk data structures,

1997 LISA XI – October 26-31, 1997 – San Diego, CA 199

Tuning Sendmail for Large Mailing Lists Kolstad

many of the operations for updating the queueing files
ended up requiring synchronous disk operations.
While this enabled observation of disk queue sizes, it
required an unacceptable disk I/O load burden.
Besides, one can observe /var/log/maillog to get an
even better understanding of statistics for mail deliv-
ery. There was no double that synchronous disk oper-
ations were destroying performance.

The configuration file was changed to ‘update
the queueing files every 10 deliveries.’ This change
immediately removed the disk I/O bottleneck from the
system’s performance. Figure 5 shows 275,000 mes-
sages transmitted in one day with very high through-
put. Even though the throughput is averaged across
60 seconds, some of the spikes are trending toward the
theoretical maximum throughput (though the condi-
tions are far less than ideal).

Mail Delivery Performance
Thu Jan 9 23:48:00 MST 1997

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

08:00

09:00

10:00

11:00

12:00

13:00

14:00

15:00

16:00

17:00

18:00

19:00

20:00

21:00

22:00

23:00

24:00

Figure 5: Improved throughput (small message queues, disk bottleneck removed).

Next Analysis Step

Trying to characterize both the high and low per-
formance periods led to a certain set of discoveries.
First, the number of hosts unavailable for delivery has
a profound impact on throughput. Why? Because a
sendmail process waits a long time in the vain hope
that a response might be received to the open on port

25. Second, the number of messages available to
deliver impacts performance. How? Because when
lots of messages can be delivered, more processes can
run in parallel and deliver more messages per unit
time.

It was observed that the mail queue still had sub-
stantial size, even though messages were being deliv-
ered quickly through the day. Figure 6 shows some
(edited) mailqq output when the queue size was
nonzero.

Each message has a few ‘stragglers’ that are not
being delivered. A quick perl script (‘latedudes’)
shows the message counts and names of recipients
with messages in the mailqueue:

82 todd@acc.com
127 glennh@netstation.net
127 ispmail@zhi.dialup.access.net
127 jnussbaum@americandata.net
127 kevinc@rrt.com
127 mp3@cyber-gate.com
127 nevin@shadowave.com
127 tcosta@biznm.com
164 rdavis@masschaos.de.convex.com
200 whenpigsfly@worldsrv.net

200 1997 LISA XI – October 26-31, 1997 – San Diego, CA

Kolstad Tuning Sendmail for Large Mailing Lists

388 cbrown@matnet.com
559 robert_thompsen_at_usr-css...
593 berney.ortiz@mailserver.oi...
595 list.inet-access@optimum.net

What a surprise to find some recipients had not
accepted mail for many days. In the worst case, each
of these messages would have its own queue file in the
mail spool.

The impact of each of these recipients can range
from the trivial to the dramatic. Here’s what happens
when sendmail tries to send to a host that is ‘busy,
hung, or dead.’ First, sendmail tries to connect to the
host. Maybe the connection succeeds (but host turns
out to be slow or net is losing lots-o-packets). Maybe
the connection fails.

[...]
nrecipients length date sender
3 BAA08598 1554 Sat Feb 22 01:02 <inet-access@earth.com>
3 BAA08677 1017 Sat Feb 22 01:29 <inet-access@earth.com>
3 FAA10201 1438 Sat Feb 22 05:24 <inet-access@earth.com>
3 FAA10208 1438 Sat Feb 22 05:24 <inet-access@earth.com>
3 HAA10369 1527 Sat Feb 22 07:46 <inet-access@earth.com>
3 IAA10524* 423 Sat Feb 22 08:52 <inet-access@earth.com>
4 HAA10371 1527 Sat Feb 22 07:46 <inet-access@earth.com>
4 HAA10383 1527 Sat Feb 22 07:46 <inet-access@earth.com>
4 IAA10544 423 Sat Feb 22 08:53 <inet-access@earth.com>
4 IAA10558 423 Sat Feb 22 08:53 <inet-access@earth.com>
5 IAA10541* 423 Sat Feb 22 08:53 <inet-access@earth.com>

Figure 6: Mail queue analysis after several nondeliveries.

Each step in the SMTP protocol from connection
through completion has long time-out (like as much as
300 seconds). This means that a particular sendmail
process idles for five minutes waiting for a reply. This
reduces throughput – especially when 100 sendmail
processes are conducting this exercise in parallel.

At any point in time, 1-3% of recipients – and
these recipients are ISPs – are unavailable. InfoBeat
reports a number closer to 10% for average users.
This is not to say that users and ISPs have control on
all possible outages – cable cuts do make a difference.
Nevertheless, in a mailing list with 1,400 - 2,000 par-
ticipants, 2% is anywhere from 28 to 40 recipients.
This means a total of 6,000 to 8,000 messages per day
can not be delivered!

Next Step

Obviously, it would be advantageous to reduce
timeouts for initial contact/mail transmission. This
would enable ‘good citizen’ sites to continue their
good throughput. Some sort of ‘reaper’ process could
come along later to deliver to slower (or dead) hosts.

Happily, all these times are configurable in send-
mail. We reduced them 5x. This sped up initial mail
delivery, though some messages were, of course, not

delivered. A second sendmail.cf file with slower
timeouts was created and run three times/hour.

Note that this is all in the context of sendmail
already remembering when a host is unavailable and
not trying that host again for a one hour period.

Reducing Queue Search Time

The most painful part of running mailing lists is
the manual removing and adding people to the list.
For the inet-access list, Tony had a policy of not
removing people from the list for a bounce or even for
two days of list bounces. This made the outgoing
queue grow significantly.

So we created 10 more queues to run separately.
We moved jobs moved from queue to queue when
older than a certain amount of time. We automatically
scheduled ever more ‘reaper’ processes to run those
(presumably smaller) queues.

Regrettably, it never seemed to help. Perfor-
mance differences were barely measurable, if at all.
This idea was abandoned.

Summary of Modifications So Far

All in all, it doesn’t take many changes to speed
sendmail’s throughput dramatically.

First of all, use lots of parallelism (hundreds of
processes in parallel). Of course, one should reduce
impact of unavailable recipients by keeping track of
hosts that won’t answer and by reducing the timeout
for hosts that can’t keep up with standard Internet
speeds.

Stragglers continue to have effects by slowing
mailq commands (which touch each file) and slowing
sendmail itself for queue runs (which also touch each
file).

The mail delivery time was reduced and through-
put increased with ever better spikes; see Figure 7. In
fact, the high load performance is also outstanding.
Figure 8 shows deliveries after one main spooling
machine was down until noon one day.

1997 LISA XI – October 26-31, 1997 – San Diego, CA 201

Tuning Sendmail for Large Mailing Lists Kolstad

Mail Delivery Performance
Sat Jan 4 23:48:00 MST 1997

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

08:00

09:00

10:00

11:00

12:00

13:00

14:00

15:00

16:00

17:00

18:00

19:00

20:00

21:00

22:00

23:00

24:00

Figure 7: Good performance after modifications.

Mail Delivery Performance
Tue Jan 7 23:48:02 MST 1997

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

08:00

09:00

10:00

11:00

12:00

13:00

14:00

15:00

16:00

17:00

18:00

19:00

20:00

21:00

22:00

23:00

24:00

Figure 8: Good performance under load.

202 1997 LISA XI – October 26-31, 1997 – San Diego, CA

Kolstad Tuning Sendmail for Large Mailing Lists

Futures

Now that the system is up, running, and manage-
able again, it’s easy to see some of the future improve-
ments that might be tried.

First of all, stragglers should be coalesced into a
single message/recipient-list pair. This would reduce
the queue sizes trivially. One can even envision creat-
ing a large digest for stragglers and having one queued
file per straggler instead of one queued file per mes-
sage. Obviously, it depends on the ratio of stragglers
to messages per day.

Mail Delivery Performance
Fri Aug 29 23:52:00 MDT 1997

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

08:00

09:00

10:00

11:00

12:00

13:00

14:00

15:00

16:00

17:00

18:00

19:00

20:00

21:00

22:00

23:00

24:00

Figure 9: High traffic with new file system.

Secondly, one might consider a policy of just
deleting messages older than, say, 24 hours. These
people can always look at an archive.

A grandiose plan (and I do mean unmanageable)
would be to rewrite sendmail for a high – but constant
– number of concurrent transmission processes cou-
pled with the use of extended SMTP to send multiple
messages once a machine is up. This would make
sendmail treats its queues in a sort of contrapositive
way to the way it treats them now (sending all mes-
sages to one site rather than one message to all sites).

To be fair, though, sendmail already close to
achieving highest possible bandwidth for a given

speed of network connections. It’s not clear any of
these measures would increase actual throughput.

Also note that even with these improvements,
messages smaller than 10KB or so don’t push T-1
speeds to their limit yet. It takes pictures for that.

Availability

All scripts mentioned here are available by send-
ing a short yet descriptive e-mail request to the author
<kolstad@bsdi.com> .

Conclusion

It is not that difficult to reduce mailing list
latency dramatically. We now have a script to insert in
/etc/aliases to break message into parts. The time to
deliver 95% of a mail queue was reduced from 5 hours
to 3.5 minutes. The unavailability of recipients is still
the biggest performance problem.

And, most amazingly, sendmail does about as
good as can be done in delivering large amounts of
mail! Figure 9 shows the latest performance figures as
traffic has increased and a new file system design has
reduced file I/O dramatically.

1997 LISA XI – October 26-31, 1997 – San Diego, CA 203

204 1997 LISA XI – October 26-31, 1997 – San Diego, CA

