
The following paper was originally published in the
Proceedings of the Eleventh Systems Administration Conference (LISA ’97)

San Diego, California, October 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

A Better E-Mail Bouncer
Richard J. Holland – Rockwell Collins, Inc.

ABSTRACT

This paper describes a portable electronic mail bouncer which sends detailed information
back to the sender when a mail message can not be delivered to it’s intended recipient. The
bouncer was originally written to handle a large merger between multiple DNS domains, and is
implemented entirely in Perl5 as a mail delivery agent. The bouncer operates under the concept
of "least privilege" so it’s safe to run directly from mail transport agents such as sendmail. The
bouncer is designed to make the human processes and interactions in dealing with undeliverable
E-mail easier for both postmasters and end-users alike.

Introduction

Local Background
Most large networks are in a constant state of

flux when it comes to account management and elec-
tronic mail routing. New users are added daily as old
users are removed, often without thought of potential
future consequences in an ever expanding electronic
world. As more and more computer neophytes start
using the Internet, handling mail delivery problems
and bounces will become a much larger problem for
any large site’s postmaster.

... while talking to mailhost.domain.com.:
>>> RCPT To:<user@mailhost.domain.com>
<<< 550 <user@mailhost.domain.com>... User unknown
550 user@mailhost.domain.com... User unknown

Listing 1: Undeliverable message error.

... while talking to mailhost.domain.com.:
>>> RCPT To:<user@mailhost.domain.com>
<<< 551 User not local; please try <user@elsewhere.com>
551 User not local; please try <user@elsewhere.com>

Listing 2: Forwarding address in return message.

Like postmasters at most sites with several thou-
sand users, our bounced mail is run through multiple
filters in an attempt to either auto-respond to problems
or to sort the problems into related issues for easier
handling. The rapid increase in the amount of unso-
licited commercial E-mail is making this even more
important. This paper examines the other side of these
issues – what an end-user sees in an undeliverable
message, rather than what a postmaster sees. Hope-
fully by improving the end-user interface, we will
lower the number of undeliverable messages a post-
master must deal with directly.

This spring, Collins Avionics & Communication
Division merged with it’s sister company, Collins
Commercial Avionics, to form Rockwell Collins, Inc.
The new combined enterprise network contains over
10,000 active network users, and several thousand old

accounts which no longer exist, but whose userid’s can
not be re-used in an effort to prevent mis-delivered
electronic mail. One of the first steps in merging net-
works of this size are to correct any namespace colli-
sions, both hostnames and login IDs. Forcing unique-
ness of existing usernames generally isn’t looked upon
favorably by the person whose address is changing;
they may have their old address printed on business
correspondence and recorded in thousands of ‘‘From:’’
headers scattered across the Internet. In an enterprise
network, even a collision rate of less than 5% can
make a user-friendly solution a value-added task. In an
effort to help our users and customers do business
more efficiently, we’re notifying senders when an
address changes with a clearly written explanation of
what happened and why. This bounced message gives
the sender the recipient’s new address, similar to the
sendmail redirect [1] feature, but with more detailed
information.

Why E-Mail is Bounced
In most cases it is possible to use alias maps on

mail hubs and gateways to re-route electronic mail to
the user’s new address automatically, but usually the
user has no way to control how long this forwarding is
enabled. When it is removed, the old address suddenly
generates undeliverable messages with brief errors
such as those shown in Listing 1. While this tells the
user why the message was returned, it doesn’t explain
why the username they’re sending to is now unknown,

1997 LISA XI – October 26-31, 1997 – San Diego, CA 221

A Better E-Mail Bouncer Richard J. Holland

nor does it suggest any corrective actions. While the
above example makes perfect sense to any Postmaster
or System Administrator, many end-users simply don’t
understand how to interpret many computer-generated
error messages like this, and then must contact a Sys-
tem Administrator or attempt to contact the person
they’re trying to send the E-mail to via alternate
means to get the new E-mail address.

Newer versions of sendmail (Berkeley v6.25 and
later) can be configured to take advantage of a feature
called redirect which is used to provide forwarding
addresses in the returned message, rather than just say-
ing ‘‘User unknown.’’ A sample redirect bounce
might look like Listing 2. Once again sufficient for
System Administrators, this time the error message
communicates the recipient’s new address. However,
these terse error messages often confuse end users
who may wonder if this is just informational and
whether or not their message was delivered to the new
address provided or not.

Bouncer Design Considerations
With a user community of over 10,000 people,

we wanted to develop a methodology for returning
undeliverable messages to senders with concise, plain
English explanations of why the message is being
returned, and suggest corrective actions they should
take to ensure their message is delivered successfully
in the future. The bouncer needs to handle many
potential reasons for a userid change such as names-
pace collisions, legal name changes, employees who
have left the company, etc. In order to facilitate rapid
communications, in addition to returning a mail mes-
sage to the sender, where possible an attempt is made
to deliver the message to the user’s new address if per-
mitted by local security policies.

The final implementation language was also
given careful consideration. First and foremost,
because of our migration schedules we needed a lan-
guage which would facilitate rapid prototyping and
development. Ideally, the language would also allow
us to easily secure the bouncer. Perl [2] meets both of
these requirements for several reasons:

• Perl scripts are usually shorter than comparable
shell scripts or C programs, and are therefore
easier to maintain. The entire bouncer program
is under 1,000 lines of code, including com-
ments.

• Most functions the bouncer needed to perform
could be handled with native perl functions,
which means we didn’t need to pass user input
to a shell, with potentially disastrous results.
We could also take advantage of Perl’s taintperl
program, which considers any user-supplied
data as ‘‘tainted’’ and therefore unsafe for shell
interpretation.

• Perl’s unmatched regular expression capabili-
ties were the final deciding point. Since a good
portion of the bouncer’s task is to parse text

(configuration files and E-mail messages) and
perform actions based on recipient and sender
information, Perl was a natural choice for a fast
implementation which is easy to maintain by
even junior System Administrators.

Implementation & Configuration

Filter Implementation
The initial implementations of the bouncer pro-

gram ran with minimal privileges as a simple mail fil-
ter. Users who were to have their mail bounced would
receive an alias similar to:

oldname: newname,bouncer or
oldname: bouncer

In this way, the recipient would receive a copy of
the message if permitted by local security restrictions,
and the bouncer account would also receive a copy.
The bouncer account contained a simple .forward file
which reset IFS for security purposes, executed the
bouncer script, and if it failed, returned an exit status
of 75 so that sendmail would bounce the message as it
normally would have. The .forward file read:

|IFS=’ ’ & exec /path/bouncer.pl\
|| exit 75 #bouncer

The first problem with this implementation is that
mailing list distribution programs write their headers
in many different ways. There doesn’t seem to be any
standard as to which header will contain the mailing
list address, and which will contain the mailing list
maintainer ’s address.

The other problem with the filter implementation
is that if the original recipient appears only in a Bcc:
header, the recipient is hidden from the filter; only the
delivery agent knows who to deliver the message to.
By the time the message reaches the bouncer, the Bcc:
headers have been removed for privacy reasons by the
mail transfer or delivery agent.

Delivery Agent Implementation
Because of these problems, the bouncer was re-

written as a mail delivery agent. This required the
addition of a few lines to the mail system’s send-
mail.cf configuration file, and a re-write of the
bouncer code for security reasons. At the same time,
the code was moved to the mail server’s local file sys-
tems, rather than the bouncer account’s home direc-
tory (in fact, the bouncer account is no longer needed;
the delivery agent can be run as any unprivileged user,
such as ‘‘nobody’’). Because the bouncer is running as
a delivery agent, it must run under the same assump-
tions a SUID [3] program would run, since it’s
launched via sendmail with system privileges. Since
the bouncer doesn’t actually have to do any local mail
delivery, it can relinquish these privileges immediately
(running instead as ‘‘nobody’’), which minimizes the
risk of security issues. In addition, it carefully
‘‘untaints’’ all user input that is passed back to

222 1997 LISA XI – October 26-31, 1997 – San Diego, CA

Richard J. Holland A Better E-Mail Bouncer

external programs, to prevent a shell from interpreting
malicious data.

Configuration of the delivery agent requires the
addition of two lines to the sendmail.cf file. The first
addition is a mail delivery agent command line, such
as:

Mbouncer, P=/bin/bouncer,
F=DFMPlms S=10, R=20,
A=bouncer -a $f -d $u

This line fully defines the operation of the bouncer
program and it’s interaction with sendmail. The F=
flag tells sendmail that the bouncer needs a Date:
header (D), a From: header (F), a Message-ID: header
(M), and a Return-Path: header (P). It also states that
/bin/bouncer is a local delivery agent (l), that multiple
recipients are permissible (m), and to strip quotation
marks (s). The S= flag tells sendmail to process the
sender ’s envelope and header addresses with ruleset
10 (after ruleset 3 and 1, but before ruleset 4). The R=
flag tells sendmail to process the recipient’s envelope
and header addresses with ruleset 20 (after rulesets 3,
0, and 2, but before ruleset 4). The A= flag declares
the command line arguments the bouncer will see in
it’s argv[] array. In this case, sendmail will pass the
sender ’s envelope address after the -a option ($f
macro) and will pass multiple recipients after the -d
option ($u macro).

R$+<@bouncer> $#bouncer $:$1<@bouncer> user@bouncer

Listing 3: Ruleset 0 rule to redirect bouncer messages

R$+<@$+.bouncer> $#bouncer $:$1<@$2.bouncer> user@*.domain.com.bouncer

Listing 4: Additional rule for *.bouncer

Once the delivery agent has been established,
ruleset 0 must be modified in order to enable it. If
addresses of the form user@bouncer are to be han-
dled, the line in Listing 3 is added to ruleset 0. If
addresses of the form user@newdomain.com.bouncer
are to be handled, the line in Listing 4 is added to rule-
set 0. Which of these rules are used is at the discretion
of the postmaster implementing the bouncer; either or
both (or other similar configurations) can be used,
depending on the local site’s configuration prefer-
ences. For example, if there is already a host named
bouncer in the new domain, the second address speci-
fication would be preferable to avoid confusion. The
bouncer program will handle both cases, as ignores
everything after the username portion of the address.

Functionality & Configuration
The bouncer code has several configurable

options within the code itself. These options are all
defined at the beginning of the program and allow the
administrator to set:

• Who receives E-mail/pages if the bouncer fails
in some unforeseen way?

• Who should the bouncer deliver mail as (e.g.,

MAILER-DAEMON, postmaster, etc.)?
• Who should replies to bounced messages be

delivered (e.g., helpdesk, postmaster, etc.)?
• Which Precedence: headers indicate a message

that should not be bounced?
• If a message isn’t bounced, is it delivered with

an addendum to the original recipient?
• Who should the bouncer run as (i.e., ‘‘nobody’’

or another specific user)?
• Error messages & explanatory text settings for

various situations.

The address configuration file is relatively
straight forward and allows the administrator to spec-
ify the old address, new address, some personal con-
tact information for the recipient, and a configuration
code used to determine which explanatory text is sent
in the bounced messages for each user.

In an attempt to prevent mail loops, the bouncer
follows RFC 822 [4] conventions for returning unde-
liverable mail. Additionally, in order to deal with
mailing list programs which put the list maintainer’s
address in the Errors-To: header, it is given prece-
dence. If there is no Error-To: header, the Sender:
header is used to determine how to send the bounce to.
In the absence of a Sender: header, the From: header
will be used, and if the From: header does not exist, a
last ditch effort is made using the sender’s address
from the SMTP message envelope.

Finally, any message with a Precedence: header
matching an administrator-configurable setting will be
handled by sending a separate not to the recipient,
rather than replying to the sender. In this way, users
will be reminded to update their mailing list subscrip-
tions with their new address, and there is a much
smaller risk of starting mail loops between the
bouncer and a mailing list program. By default, Prece-
dence: headers which trigger this behavior are any that
match bulk, junk, list [5].

Logging Bounced Mail
Logging of all bounced mail is handled by send-

mail itself, which will create an entry in the syslog
output just as if the normal local delivery agent had
been run. In this case however, the local delivery agent
will be the bouncer, so it’s relatively easy to pull a list
of all bounced E-mail messages from the syslog out-
put. A sample syslog entry is shown in Listing 5.

Sample Configuration
For a simple example of how the bouncer is con-

figured, assume there is someone named John D Smith
on one network, and another user named Jeff D Smith

1997 LISA XI – October 26-31, 1997 – San Diego, CA 223

A Better E-Mail Bouncer Richard J. Holland

on a second network. John’s E-mail address is
jdsmith@domain1.com and Jeff’s address is
jdsmith@domain2.com. When the two networks are
combined, it is desirable for each to answer for the
new network (domain3.com) as well as both old net-
works (domain1.com and domain2.com) for backward
compatibility. In this manner the same mail servers
may be used to provide redundant delivery hubs for
the same domain.

Sep 6 10:57:35 mailhub sendmail[527]: AA186621431: from=<user@somedomain.com>
Sep 6 10:57:35 mailhub sendmail[527]: AA186621431: size=80, class=0,

pri=10080, nrcpts=2
Sep 6 10:57:35 mailhub sendmail[527]: AA186621431:

msgid=<9708068735.AA873561403@somedomain.com>
Sep 6 10:57:35 mailhub sendmail[527]: AA186621431: relay=somehost [127.0.0.1]
Sep 6 10:57:36 mailhub sendmail[527]: AA186621431: to=jdsmith@bouncer,

delay=00:00:01, stat=Sent, mailer=bouncer

Listing 5: Sample syslog entry.

Due to the consolidation of networks between domain1.com and
domain2.com to form a common network newdomain.com, some Electronic
Mail addresses were changed. This message is automatically generated
in response to your E-mail to one of the persons listed below. In
this case, we were unable to determine which user you intended to
send to, and request that you re-send your E-mail message to the
new address listed after the person’s name below:

John D Smith (Phone Number) [jdsmith1@newdomain.com]
Jeff D Smith (Phone Number) [jdsmith2@newdomain.com]

For your convenience, a copy of your original message is included below.
==
[original message including headers]

Figure 1: Sample of a bounced message with indeterminate recipient.

In order to implement this improved delivery
system, one or both of the addresses above much
change. Sendmail’s redirect can’t be used in this case
because it only handles the case where one user
changes their address; in this case, both users should
change their addresses to avoid confusion, since dif-
ferent people may remember either Jeff or John as
jdsmith@[someplace].com. If only Jeff were to
change his userid, then John would likely start receiv-
ing mail in the future which the sender actually
intended for Jeff, not realizing that Jeff had changed
his userid.

The solution in this case is to change both
addresses to something like jdsmith1@newdo-
main.com for John, and jdsmith2@newdomain.com
for Jeff. In this way, both are unique and neither main-
tains the original address. Prior to changing the
userid’s, the bouncer is configured to respond to any
of the following addresses:

jdsmith@domain1.com
jdsmith@domain2.com
jdsmith@newdomain.com

with a message that might look like that in Figure 1.
This response would expedite the updating of address
information that an external customer might be main-
taining, while at the same time preventing phone calls
to John or Jeff. It will also hopefully prevent the end
users from having to contact a Network Helpdesk or
the local postmaster to inquire why mail to jdsmith
generates a ‘username unknown...’ message when it
was successfully deliverable in the past.

The configuration of the bouncer program’s
reply is contained within a single ASCII file. The for-
mat of the file is:

code=user1,user2,[...]: \
text (address1@[domain]), \
text (address2@[domain]),[...]

where code is a two digit numeric code, user# is a
username, text is any arbitrary text, and address# is the
corresponding new address for user#. The domain is
optional, and if left off, a default domain will be
inserted automatically (configurable via an option in
the bouncer code). By grouping multiple users on the
same line or multiple lines using a backslash (\) as a
line continuation character, the names and addresses
displayed for a given address can be controlled. In the
scenario for John and Jeff given above, the bouncer
address configuration would look like:

01=jdsmith: John D Smith \
(555-1212) (jdsmith1@), \
Jeff D Smith (555-1234) \
(jdsmith2@)

224 1997 LISA XI – October 26-31, 1997 – San Diego, CA

Richard J. Holland A Better E-Mail Bouncer

Since no domain is specified, newdomain.com is
appended automatically. This makes it simple to
update if one of the jdsmith’s moves into yet another
domain later (i.e., leaves the company, changes depart-
ments, etc). It could then be updated to read:

01=jdsmith: John D Smith \
(555-1212) (jdsmith1@), \
Jeff D Smith (555-9875) \
(jdsmith2@elsewhere.com)

The numeric code (01 in this example) is used by the
bouncer program to determine which explanation is
prepended to the bounced message. For example, you
might set up the following codes and explanations:

• Code ‘‘01’’ to be used for a division merger
with explanation of: Due to the consolidation of
networks between domain1.com and
domain2.com to form a common network new-
domain.com, some Electronic Mail addresses
were changed. This message is automatically
generated in response to your E-mail to one of
the persons listed below. In this case, we were
unable to determine which user you intended to
send to, and request that you re-send your E-
mail message to the new address listed after the
person’s name below:

Users who’ve had their address changed because of a namespace
collision in the domain merger
01=jdsmith: John D Smith (555-1212) (jdsmith1@),\

Jeff D Smith (555-1234) (jdsmith2@)

Users who’ve had their address changed because of a name change
02=jadoe: Jane A Smith (formerly Jane A Doe, 555-1111) (jasmith@)

Users who’re no longer valid on this network
03=jsbrown: John S Brown (moved to Div XYZ) (jsbrown@xyz.domain.com)

Figure 2: Fully populated sample bouncer.cfg file.

jdsmith: jdsmith@bouncer # can’t tell who they want to send to here;
just bounce it

jadoe: jasmith,jadoe@bouncer # forward and notify sender of new address
jsbrown: jsbrown@bouncer # dont fwd -- may have confidential

information: just bounce it

Figure 3: Sample mail.aliases map for sample bouncer.cfg configuration.

• Code ‘‘02’’ to be used for name changes with
explanation of: The person you sent mail to has
changed their mail address because their name
changed. This message is automatically gener-
ated in response to your E-mail, and has been
delivered to the new mail address for you. This
is only an information message to allow you to
update your records to reflect the user’s new
address.

• Code ‘‘03’’ may be used for users who have left
the domain: The person you sent mail to listed
below no longer has a mail address on this net-
work. For security reasons, your message has

not been forwarded to the person. Please re-
send your message to their new address listed
below if you still would like them to receive it.

A fully populated configuration file might then look
like that shown in Figure 2. Once the bouncer is ready
to handle the invalid addresses, the aliases file would
be updated accordingly, as in Figure 3.

Alternative Solutions and Future

Alternative Solutions
As currently written, the bouncer behaves in a

similar manner to the vacation [6] program. However,
the bouncer is centrally managed and has finer control
over what happens with each recipient’s messages.
The only configuration which needs to be done is to
initially set the administrator options in the bouncer
code, update the address information inside the single
ASCII address configuration file, and configure the
aliases for old usernames so they will be directed at
the bouncer. If vacation were to be used for this imple-
mentation, each old account would need to be main-
tained, have a .forward file, and an individual vacation
configuration. In the sample case provided earlier,
vacation would not be a viable long-term solution
when the password maps between domain1 and
domain2 are eventually merged, because of the user-
name conflict. While this problem can be circum-
vented with the creative use of aliases and sendmail.cf
rules, the configuration of the bouncer is much simpler
and obviates the need to maintain multiple configura-
tions for each account that’s changed.

Another alternative would be to take advantage
of sendmail’s #error delivery agent. However, this
would require further modification of the sendmail.cf
file in order to provide multiple error conditions, and
tends to produce terse error messages. This would not
meet the design goals of the bouncer – simple configu-
ration and detailed explanations – and is more difficult

1997 LISA XI – October 26-31, 1997 – San Diego, CA 225

A Better E-Mail Bouncer Richard J. Holland

to maintain, especially by junior administrators. The
advantage to the bouncer is that once the sendmail.cf
is initially set up, no further modifications need be
made. Junior System Administrators can modify the
bouncer.cfg and mail.aliases maps to configure new
bouncer entries.

Future Direction

If enough traffic is being directed through the
bouncer, it might be better implement in a compiled
language such as C, to prevent the startup costs of
Perl. However, the current delivery agent implementa-
tion takes less than 1 second to execute, so it would
take a very large site to justify this more complex task.
For example, our site contains over 10,000 accounts.
If a namespace collision rate of 5% is assumed, this
means that 500 usernames are going to be handled by
the bouncer. If each address receives 10 pieces of E-
mail per day, this is only 5,000 messages to handle.
Most modern gateways can handle much more than
this without any performance problems in an average
day; ours typically process 75,000 to 100,000 mes-
sages in an average day with no noticeable perfor-
mance problems. With the load balancing provided by
MX record preferences [7], only extremely large sites
may ever need to re-implement the bouncer for perfor-
mance reasons.

The main feature lacking from the bouncer is the
ability to auto-detect and stop mail loops. As much
care as possible was invested in determining sender
information and handling mailing list processors, but
there is still small possibility that the bouncer program
could get into a loop with another mail delivery agent
such as a mailing list processor. While this shouldn’t
happen with such popular mailing list packages such
as majordomo or listserv, not everyone uses these to
process heir mailing lists, and not all mailing list pro-
cessors follow the RFC’s and use the correct header
formats. An algorithm for detecting and preventing
these types of mail loops will be added to future
releases of the bouncer code.

Availability

Please contact the author directly for further
information and program availability information.

Author Information

Rich Holland is the Technical Lead for the Enter-
prise E-mail Team at Rockwell Collins, Inc. where he
is responsible for technical leadership and future
direction in merging multiple mail systems into a com-
mon system for use by over 10,000 end users world-
wide. Before coming to Rockwell, he was a Senior
System Administrator for Synopsys where he oversaw
the care and feeding of the Synopsys Porting Center
machines. Reach him via U.S. Mail at Rockwell
Collins, Inc.; M/S 106-193; 400 Collins Rd. NE;
Cedar Rapids, IA 52498. His E-mail addresses are

<rjhollan@collins.rockwell.com> and <holland@pobox.
com>.

References

[1] Sendmail 8.x (Berkeley) Release Notes, ftp://ftp.
cs.berkeley.edu/pub/sendmail.

[2] Programming Perl, Randal Schwartz and Larry
Wall, O’Reilly & Associates, Inc., 1991.

[3] Practical UNIX Security, 2nd Ed., Simson
Garfinkel and Gene Spafford, O’Reilly & Asso-
ciates, Inc., April 1996.

[4] RFC 822: Standard for the Format of ARPA
Internet Text Messages, Network Information
Center, 1982.

[5] Sendmail, Brian Costales, Eric Allman, and Neil
Rickert, O’Reilly & Associates, Inc., November
1993.

[6] vacation(1) man pages.
[7] DNS and BIND, 2nd ed., Paul Albitz, O’Reilly &

Associates, Inc., January, 1997.
[8] Perl Home Page, http://www.perl.org/ .
[9] AUSCERT Security Papers, http://www.auscert.

org.au/information/papers.html .

226 1997 LISA XI – October 26-31, 1997 – San Diego, CA

