
The following paper was originally published in the
Proceedings of the Twelfth Systems Administration Conference (LISA ’98)

Boston, Massachusetts, December 6-11, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Ganymede
An Extensible and Customizable Directory Management Framework

Jonathan Abbey and Michael Mulvaney
The University of Texas at Austin



Ganymede: An Extensible and Customizable
Directory Management Framework

Jonathan Abbey and Michael Mulvaney – The University of Texas at Austin

ABSTRACT

In the fall of 1994, Applied Research Laboratories, The University of Texas at Austin
(ARL:UT) presented a paper [1] at LISA VIII, describing work that we had performed
designing and implementing a management framework for NIS and DNS, called GASH. In the
years since that paper was presented, it has become clear that the design of GASH was
insufficient to meet the complex, idiosyncratic, and rapidly changing needs of modern
networking. GASH suffered from being too inflexible to be rapidly retooled for a changing
network environment, from being limited to a single user at a time, and from being unable to
provide management services to custom clients.

In the face of these issues, the Computer Science Division at ARL:UT went back to the
drawing board and developed a Java-based directory management framework on the basis of the
design principles presented in our GASH paper. Written in Java, Ganymede 1 is based on a
distributed object design using the Java Remote Method Invocation [2] protocol and features a
multi-threaded, multi-user server, and a graphical, explorer-style client. By supporting
customization through a graphical schema editor, plug-in Java classes, and external build scripts,
Ganymede is able to support a variety of directory services, including NIS, DNS, LDAP, and
even NT user and group management.

Introduction

In early 1992, our laboratory had a problem. We
had a need to pull computers from all over the lab
together into a common NIS [3] and DNS [4] regime,
but the lab was separated into several roughly
autonomous groups. We needed a way to create a cen-
tralized NIS and DNS domain while preserving the
ability of the groups to control their own user and
group accounts. In addition, we needed to centralize
email delivery and administer automounter volume
definitions to support a useful and transparent network
architecture. In response to all this, the Computer Sci-
ence Division at ARL:UT developed the Group
Administration Shell (GASH, for short), a text-based
shell that allows designated users in our laboratory to
issue commands that modify our NIS and DNS tables.
We put this into operation in late 1993, and for the last
four and a half years, we have run our laboratory on
GASH, enjoying significant benefits in database con-
sistency and simplicity of administration.

There have been problems with GASH, however.
GASH was a very rigid program that directly manipu-
lated NIS source files and a complex system database
file that was transformed into DNS by a Perl script.
Whenever we had a need to alter or elaborate any
aspect of our network computing environment, we
found that modifying GASH was extremely difficult
and time-consuming. In addition, certain aspects of

1Which stands for The ‘‘GAsh Network Manager, Deluxe
Edition,’’ of course.

GASH’s operation proved troublesome in practice.
The permissions and ownership model used by GASH
was very idiosyncratic, and made it difficult to transfer
users between groups. More fundamentally, GASH
had no clean way to interact with other tools. If a user
wanted to change his password, he had to have his
GASH administrator change it with GASH, or use
yppasswd and take the chance that the yppasswd dae-
mon might conflict with an administrator making
changes in GASH. GASH was clearly an inadequate
tool to take us into the future. We wanted to be able to
tie our network and account management tools into
our personnel databases, we wanted to be able to mod-
ify our network topology as needed without spending
six months reworking the 50,000 lines of C code in
GASH each time, we wanted to support LDAP and
NT, and we wanted all of our end users to be able to
take advantage of our management tools, which
wasn’t practical with a single-user tool.

By late 1995, we knew something had to be
done. Looking around, we were not able to find a suit-
able and reasonably priced commercial tool that was
focused on the issues we had developed GASH to
address and that would give us the path to the future
we wanted. The network management packages we
were aware of at the time were all focused on manag-
ing distributed workstations rather than managing cen-
tralized directory services.

We had a lot of experience and insights into the
problem domain we were dealing with. We knew we
wanted a client-server system. We knew we wanted a
generic system that could be easily customized, and

1998 LISA XII – December 6-11, 1998 – Boston, MA 197



Ganymede: An Extensible and Customizable Abbey and Mulvaney

we knew we wanted a GUI. So, our task was set. We
would work to build a GUI GASH Construction Set.

A GUI GASH Construction Set
In our LISA VIII paper [1], we observed that we

saw some potential in reworking GASH around an
object database [5] to facilitate automatic consistency
maintenance and the provisioning of a GUI. By late
1995, a certain highly caffeinated object oriented pro-
gramming language was making a lot of noise for its
sophistication, ease of use, and portability. After doing
an extensive design review, we determined that Java
looked as though it would enable us to meet our
design goals on all fronts. The Java Virtual Machine
provided us with the ability to have our code run on
PC’s and Mac’s as well as on our UNIX workstations
and X terminals, and the Java Remote Method Invoca-
tion (RMI) protocol allowed us to do a true distributed
object design [6] without having to worry about
obtaining a CORBA ORB 2 for all the machines in our
laboratory.

After spending the first half of 1996 doing
design work with pen and paper, we began the work of
implementing Ganymede. Two years and 140,000
lines of Java later, in mid-1998, we are currently beta-
testing the Ganymede system. We have produced a
robust and customizable client/server system capable
of doing everything GASH did, with plenty of room to
grow. Our beta-testers have run the Ganymede server
on Sparc Solaris, AIX, Linux, and FreeBSD. The
client has been run successfully on Windows 95 and
NT using Sun’s Java browser plug-in and from the
command line on the UNIX platforms mentioned
above. At the lab, we are running Ganymede on a test
basis with all the data from our installation of GASH
loaded into the server and experiencing full function-
ality and essentially perfect up time on the server
under the 1.2 beta 4 JDK. We expect to have fully
transitioned to running the lab on Ganymede by the
time of the LISA 1998 conference.

What Is Ganymede?

Ganymede is a system for managing data which
is to be fed into a network through some standard dis-
tribution mechanism, such as NIS, DNS, Rdist, LDAP,
or the NT Domain Controller system. Ganymede is
designed with an emphasis on providing tight control
over what types of changes can be made to the
database it manages, and on allowing multiple users to
make changes to that database simultaneously. The

2CORBA stands for the Common Object Request Broker
Architecture. It is a standard for allowing object oriented
code to communicate, object-to-object, across networks. An
ORB is an Object Request Broker, a piece of software that
handles the network communications on behalf of object ori-
ented code on a given system. The CORBA specification is
a product of the Object Management Group (OMG), and
more information can be found at their website [7].

Ganymede server is not intended to serve as a high-
volume directory server, but rather is designed to work
with directory systems designed for high-volume use,
such as NIS, DNS, and LDAP, whose servers may not
themselves provide useful mechanisms for managing
changes.

The Ganymede system is based on a client-server
design. The server contains a built-in object database,
and supports custom Java plug-ins which provide
intelligent management of object types defined in the
server. The server supports an admin console which
can monitor the server and that includes a GUI schema
editor that can alter the definition of the database held
in the server as the server runs. Several clients can be
talking to the Ganymede server simultaneously, each
browsing the database, issuing queries, making
changes, and committing transactions without interfer-
ing with each other. Whenever a client commits
changes to the database, the server can schedule one
or more custom builder tasks to write out source files
for NIS, DNS, or whatever is being supported, and
then run an external script to propagate the exported
data into the network environment. See Figure 1 for a
diagram of the overall system.

Ganymede Server

Client Client Client

External
Build
Scripts

Plug-in
Schema
Code

RMI

Transaction Manager Namespace Manager

Object Store

Permissions Manager Task Scheduler

Figure 1: Ganymede Block Diagram.

The Ganymede Server

The Ganymede server, like the rest of the
Ganymede system, is written entirely in Java. It con-
tains over 100 classes, which provide for the storage
and manipulation of objects, the management of
object locking and transactions, the scheduling of
database checks and external build processes, and a
comprehensive ownership and permissions model,
among other features.

Object Store
The Ganymede server has a built-in object

database which is held in memory while the
Ganymede server runs. The objects in the database are
held in a set of thread-synchronized hashing data
structures. This design gives the server good perfor-
mance and multi-threaded safety at the cost of a poten-
tially large RAM footprint. The in-memory database is
backed by an on-disk ganymede.db file. During

198 1998 LISA XII – December 6-11, 1998 – Boston, MA



Abbey and Mulvaney Ganymede: An Extensible and Customizable

execution, the server dumps its database to
ganymede.db every two hours. Between dumps, the
server maintains a journal file, which is a record of
transactions made since the last database dump.

The Ganymede database is broken down by
object type. Everything held in the database is an
instance of a defined object type. Such object types
might include things like ‘‘User,’’ ‘‘Group,’’ ‘‘Sys-
tem,’’ and so on. There are a number of object types
pre-defined in the database that the server depends on
for its operation. These are shown in Table 1, below.
We will discuss all of these built-in object types in
more detail later. For now, notice that each object type
in the database is identified by an object type code.
The server can handle Object Type ID’s from 0 to 32k,
but Type ID’s of 256 or less are reserved for the
server ’s internal use. Object Type ID’s above 256 are
available for Ganymede adopters to define for their
own use.

Object Object Type ID
Owner Group 0
Admin Persona 1
Role 2
User 3
System Event 4
Builder Task 5
Object Event 6

Table 1: Mandatory Object Types.

Each type of object in the Ganymede database
has its own set of data fields defined. Each field has a
name and ID, and can have certain options defined,
depending on the type of field. The Ganymede server
supports eight different types of fields, as shown in
Table 2. Most types of fields just hold a single value,
but String, IP Address, and Object Reference fields
can be defined to be vectors, holding up to 32k values
in a single field. String, Integer, and IP Address fields
can be connected to a namespace defined in the
server. The server manages such fields to make sure
that the values in them are kept unique across the rele-
vant objects and fields.

Field Type Options
String Vector, Length, Chars Allowed
Integer Max/Min Value
Password Crypted/Non-Crypted
Date Max/Min Value
Boolean Labeled/Non-Labeled
Permission Matrix
IP address Vector, IPv4 or IPv6
Object Reference Vector, Target Type

Table 2: Field Types.

Most of these field types are self-explanatory,
but a couple require some discussion. The permission
matrix field type is used by the Ganymede

permissions system and is not really useful in any
other context. We’ll talk about where the server uses
the permission matrix field type when we discuss the
Ganymede permissions system. We do need to talk
about the object reference field type, but before we
get into the details of this field type we need to talk
about how objects in the server are identified.

Invids and Invid Fields

Objects in the database are identified by an
object called an invid, which stands for INVariant ID.
An invid is a Ganymede object identifier, and is
implemented as a pair of numbers. The first number is
the object’s type id, the second is a number between 0
and 2 billion unique to that object within its object
type. Object numbers are never re-used. This makes it
possible to unambiguously track the history of an
object in the server’s logs, but it does limit the server
to handling 2 billion objects of a particular type over
its lifetime.

The object reference field type is simply a field
that holds invids. In fact, from now on, we’ll refer to
this field type as an invid field. Invid fields are used
throughout Ganymede to link objects together. When
one object’s invid is placed in an invid field in another
object, those objects are said to be linked. All object
links in Ganymede are symmetrical, so that each
object has references to all objects in the database that
point at it, and vice versa. Because all objects in the
database are symmetrically linked, the database can
easily be kept up-to-date whenever objects are deleted.
All that the server has to do in order to clean up after
deleting an object is to modify all objects that were
listed in the invid fields of the deleted object; it is not
necessary to sweep through the entire database look-
ing for linked objects. Another advantage of using
invids to link objects is that objects in the database can
be renamed or relabeled without disturbing the link-
ages established in the server.

Invid fields can be configured so that an invid
field in one object is linked to an invid field in another
object. This is shown in the schema editor screen shot
in Figure 2. In this screen shot, we see the users field
in the group object being edited. The users field in the
group object is an invid field that points to the groups
field in the user object. When the client edits a group
object, the server will automatically provide a list of
users that can be placed in this field. Adding a user to
this group will automatically cause the group to be
added to the user, and vice versa. The user can look at
either object and see the relationship. This bi-direc-
tional linking is very important to the structure of the
Ganymede server. It is responsible for a lot of the
intelligence of the server. If a user were to try to delete
a group, but didn’t have permission to edit the users
listed in the group, the server would detect this and
might reject the operation, depending on how the
schema was configured.

1998 LISA XII – December 6-11, 1998 – Boston, MA 199



Ganymede: An Extensible and Customizable Abbey and Mulvaney

Some object reference fields are ‘‘edit-in-place,’’
which means that the objects referenced by that field
are handled as if they were contained within the refer-
encing object. An object type must be designated in
the schema editor as an embedded object in order to
be linked to an edit-in-place field. An embedded
object is for the most part very much like any other
object in the database, but it does not have its owner-
ship and permissions tracked independently of its par-
ent, and the server handles its creation and deletion a
little bit differently. The easiest way to see the differ-
ences between embedded and top-level objects is by
looking at the special fields the server uses to keep
track of these objects.

Figure 2: The Schema Editor Editing an Invid Field.

Mandatory Fields

Just as there are mandatory object types, so too
are there a number of mandatory field definitions. The
fields shown in Table 3 are defined in all non-embed-
ded object types in the server. All field ID’s below 100
are reserved for global fields (fields defined in all top-
level objects). Field ID’s between 100 and 256 are
devoted to fields in the mandatory object types that the
server depends on for its operations. Field ID’s above
256 are user-assignable fields and can be configured in
the schema editor.

Embedded objects have a different set of manda-
tory fields, which are shown in Table 4. The con-
tainer field is simply a pointer to the object that the
embedded object is contained in. This field is linked to
the field in the parent where the embedded object
appears.

Field Type Field ID
Owner List Invid Vector 0
Expiration Date Date 1
Removal Date Date 2
Notes String 3
Creation Date Date 4
Creator Identifier String 5
Last Modification Date Date 6
Last Modifier Identifier String 7
Back Links Invid Vector 8

Table 3: Mandatory Fields For Top-Level Objects.

Field Type Field ID
Container Invid 0
Back Links Invid Vector 8

Table 4: Mandatory Fields For Embedded Objects.

Most of the mandatory fields should need no
explanation. We’ll discuss the owner list field when
we talk about the Ganymede permissions system a bit
later on. For now, let’s talk about the back links field.

The back links field is a bit special. Previously,
we said that the server guarantees that all references
made in an invid field are symmetrical, and we gave
the example of user and group object types having
their groups and users fields symmetrically linked.
This kind of visible bi-directional linking sometimes
doesn’t make sense. In cases where it doesn’t, an invid
field can be configured so that it points to an object
without specifying the target field. The server will use

200 1998 LISA XII – December 6-11, 1998 – Boston, MA



Abbey and Mulvaney Ganymede: An Extensible and Customizable

the back links field to handle the back-reference. The
client won’t see this back-link, but the server will, and
will use it when the referenced object is deleted.

Figure 3: The Schema Editor Binding a Custom Class.

package arlut.csd.ganymede.custom;

import arlut.csd.ganymede.*;

public class userCustom extends DBEditObject {

// Boilerplate Constructors Omitted

public boolean fieldRequired(DBObject object,
short fieldid)

{
switch (fieldid)
{

case userSchema.USERNAME:
case userSchema.UID:
case userSchema.HOMEDIR:
case userSchema.LOGINSHELL:

return true;
case userSchema.PASSWORD:

return !object.isInactivated();
}

return false;
}

}

Figure 4: A Simple Custom DBEditObject Subclass.

The DBEditObject Class and Server Customization
One of the keys to the Ganymede server’s flexi-

bility is that it takes advantage of Java’s object ori-
ented language features and dynamic linking to allow
individual customizers to write classes to manage
objects. The DBEditObject class in the server is con-
sulted on every major decision having to do with how
the server should handle operations on an object. The
Ganymede schema editor allows adopters to bind

custom DBEditObject subclasses with object types in
the server. Figure 3 shows the arlut.csd.ganymede.
custom.userCustom class being bound to the user
object.

DBEditObject provides over two dozen methods
that can be overridden by custom logic to inject intelli-
gence into the Ganymede server. While it is out of the
scope of this paper to describe all of the ways in which
DBEditObject can be customized, we can mention a
few highlights, and we will provide a simple sample
of customization through DBEditObject subclassing.

1998 LISA XII – December 6-11, 1998 – Boston, MA 201



Ganymede: An Extensible and Customizable Abbey and Mulvaney

The DBEditObject class provides the ability for
custom code to extend or override the default permis-
sions system, to approve or deny any change to fields
within an object based on the contents of the object, its
relations with other objects, or the identity of the
admin seeking to make the changes. It can provide a
list of valid choices for string and invid fields. It can
return custom dialogs in response to attempted opera-
tions, or even involve the client in a step-by-step wiz-
ard interaction sequence. It can get involved when a
transaction is committed, to take actions outside of the
database, such as creating home directories when
users are created, or connecting changes to an object
in the Ganymede database to an external database.

Figure 6: Ganymede Admin Persona.

For a simple example of what is involved in a
DBEditObject subclass, see Figure 4. This example
shows the code necessary to specify what fields must
be present in a user object when a transaction is com-
mitted.

Permissions and Ownership
One of the critical elements of Ganymede’s

design is the permissions model. Ganymede provides
a universal permissions model that allows complete
flexibility in apportioning privileges to classes of
users/administrators, without becoming so unwieldy
as to be impractical. The model is designed to support
group administration, with ownership over objects
shared by groups of administrators. Different classes
of administrators can be defined, each with different
privileges over different kinds of objects, and different
fields within those objects. The Ganymede server has
three object types defined to support this model, the
admin persona, owner group, and role objects, as
shown in Figure 5.

Each user in the Ganymede system can have one
or more admin personae associated with it. The admin
personae represent administrative privilege sets that
the user can select, through an su-like mechanism in

202 1998 LISA XII – December 6-11, 1998 – Boston, MA



Abbey and Mulvaney Ganymede: An Extensible and Customizable

the client. An admin persona object marries a list of
owner group objects and a list of role objects to define
the objects and operations that can be performed. The
owner group objects define what objects are consid-
ered to be under the ownership of that admin persona,
while the role objects define what operations the
admin persona is permitted to perform.

Figure 7: Ganymede Owner Group.

Objects
In 

Database
Admin

Persona

Admin
Persona

Admin
Persona

Owner Group

Owner Group

Role Role

User

Default Role

User

Figure 5: Ganymede Permissions Objects.

Admin Personae

All users registered with Ganymede may have
some minimal permissions granted them by the
default role object. This will typically include the
ability to edit their own passwords, shells, and finger
information, and to view some information about
other users registered in the Ganymede database. If an
individual is to have more privileges than that, an
admin persona must be created for the user, as shown
in Figure 6.

An admin persona includes a password, which
must be entered by the user in order to access their
extended privileges, a list of owner groups and roles,
check boxes indicating whether the admin is privi-
leged to run the server-monitoring console, and an
optional email address for Ganymede to use to send
mail to in response to the admin’s actions.

Owner Groups

As mentioned above, all objects in the database
are owned by owner groups, rather than by individual
administrators. This design decision came out of our
experience with GASH. By having all ownership
vested in owner groups rather than in individual

1998 LISA XII – December 6-11, 1998 – Boston, MA 203



Ganymede: An Extensible and Customizable Abbey and Mulvaney

administrators, it is possible to bring a new adminis-
trator into a group without having to manually add that
administrator to the ownership list of hundreds or
thousands of objects. Other fields defined in the owner
group object (see Figure 7) are designed to let admin-
istrators in a group share email notification for actions
taken on objects owned by that owner group.

Figure 9: System Netgroup Objects Owned by an Owner Group.

The Ganymede server supports a hierarchy of
owner groups. One owner group can own another. Not
only do the admins in the first owner group have own-
ership rights over the second, but also over all objects
owned by that owner group. Figure 8 illustrates this.
Admins belonging to the engineering owner group in
Figure 8 own not only the hardware and software
owner groups, but also all of the objects owned by
those groups. In addition, owner groups are consid-
ered to own themselves, so an admin belonging to the
engineering owner group could, if permitted by the
roles granted to him, add or delete admins from the
engineering group as well as the hardware and soft-
ware groups.

The supergash owner group is special; all
objects in the database, including all owner groups,
are implicitly owned by the supergash owner group.
Any admins belonging to the supergash owner group
have ‘‘root’’ privileges over the Ganymede database.

supergash

Software Division

Engineering Group

Hardware Division

Figure 8: A Hierarchy of Ganymede Owner Groups.

204 1998 LISA XII – December 6-11, 1998 – Boston, MA



Abbey and Mulvaney Ganymede: An Extensible and Customizable

An admin with editing privileges for an owner
group can add or remove objects from that owner
group by simply editing the owner group. This is
shown in Figure 9.

Figure 10: A Ganymede Role.

Roles

The role object defines what an admin persona
can do, both for objects owned by the admin through
his owner group membership, and for objects ‘‘at
large’’ in the database. Each role object contains two
permissions matrices: one for objects owned, and
one for default permissions. These permission matri-
ces contain an array of booleans which allow access to
the database by object type and field, with create, edit,
view, and delete permissions categories. An admin can
only view, edit, create or delete objects and fields that
are specifically granted him by his set of roles. See
Figure 10 for a list of fields defined in the role object.

Of special interest in Figure 10 is the ‘‘Delegat-
able Role?’’ check box. In order to support a true
hierarchy of administrative control, admins can be
granted the power to create new roles, and to create
new admins. An admin who creates a new role or
admin may not grant that role or admin privileges that
he himself does not have from a delegatable role. That

is, if an admin has the GASH admin and secretary
roles, and only the secretary role is delegatable, the
admin will only be able to grant the secretary role to
admins that he creates, and if he creates a new Role,
will only be able to set bits in that Role that he got
from either the secretary or default roles. Figure 11
demonstrates this. The check boxes that are visible
correspond to bits that the admin editing the role has
himself had granted to him through a delegatable role.
The boxes X’ed out represent privileges that this
admin may not grant to other roles.

The combination of the owner groups, which
determine which objects are accessible, and the roles,
which determine what can be done to those objects,
provides complete flexibility while maintaining the
ability to make wide-ranging changes in the authoriza-
tion schema by simply editing one or two objects in
the Ganymede database.

As implied above, all of the objects in the
Ganymede server, including the owner group, role,
and admin persona objects, are administered by this
permissions system. The same permissions system that
controls access to the Ganymede database also con-
trols access to the controls themselves.

1998 LISA XII – December 6-11, 1998 – Boston, MA 205



Ganymede: An Extensible and Customizable Abbey and Mulvaney

As powerful as this system is, it is not complete.
There will be cases where a more specialized permis-
sions model is required. Take for instance the case of
maintaining a public mailing list where users should
be able to add and remove themselves, but not touch
any other user in the list. All that would be required to
support this sort of model would be to bind a custom
DBEditObject subclass to the Mail List object type in
the Ganymede server and redefine the anony-
mousLinkOK() and anonymousUnlinkOK() meth-
ods in DBEditObject. Other methods in the DBEditO-
bject class can be overridden to implement custom
ownership determination logic, or even to entirely
override the normal persona/role/owner group permis-
sions system.

Figure 11: Permission Bits in a Role.

Transactions
The Ganymede server is built around a transac-

tional model wherein clients connected to the server
check out objects for editing. There may be many
clients connected to the server simultaneously, but
changes made to objects in one transaction will not be
visible to other users until the transaction is commit-
ted. Queries issued by clients are guaranteed to be
atomic with respect to transactions across the duration
of their processing.

The server supports checkpointing and rollback
within the course of a transaction. This allows for
complex sequences of operations to be attempted and
undone if the sequence could not be carried to comple-
tion successfully.

The transaction commit process in the
Ganymede server is based on two-phase commit logic,
so that custom code can be written to connect

transactions issued in Ganymede to transactions in
external databases.

In the Ganymede server, whenever transactions
are committed, a record of the transaction is written to
a journal file. This journal file allows the server to
recover any transactions that were committed between
the time that the server last performed a full database
dump and an abnormal shutdown. The worst case for
the Ganymede server on power failure or server crash
is the loss of the most recently issued transaction.

When transactions are committed, the Ganymede
scheduler schedules external build processes for exe-
cution. If multiple transactions are committed while
the Ganymede scheduler is still executing the previous
external build, the Ganymede scheduler will simply
initiate another external build when the first build
completes. Thus, multiple transactions made by users
may be propagated to the external environment in
bulk, depending on the rate that transactions are com-
mitted and the time necessary to complete an external
build.

Logging and Email Notification
Ganymede, like GASH before it, has a very thor-

ough logging and email notification system. All sig-
nificant events on the server are logged to disk, and
can also be emailed to interested parties. There are a
wide variety of system events built into the server,
and a supergash-level administrator can customize the
server ’s email notification behavior. Figure 12 shows
the notification options for a system event.

While the system event categories are more-or-
less hard-coded into the server, it is important that cus-
tom object types can have their significant events

206 1998 LISA XII – December 6-11, 1998 – Boston, MA



Abbey and Mulvaney Ganymede: An Extensible and Customizable

handled specially as needed. To support this, the
Ganymede server also supports object events, which
meld one of a set of common happenings to objects
along with the type of object of interest. Figure 13
tells the story.

Figure 12: A System Event Record.

One of the lessons we learned from GASH is that
it is often important for admins to be able to tell what
has happened to objects under their control. In
response to this, the Ganymede log file has been
designed to be easily parsed. The server itself can scan
its own log file to report on changes made to an
object, as shown in Figure 14.

Background Tasks
The Ganymede server includes a built-in task

scheduling facility, similar to cron. A background
thread queues various tasks for execution, including
those shown in Figure 15.

The ‘‘garbage collection’’ task runs every night
at midnight to do a bit of preemptive house cleaning in
the server. The ‘‘database dumper’’ task runs every
two hours, consolidating the database and cleaning the
journal file. The ‘‘expiration’’ and ‘‘warning tasks’’
each run once a day, to handle objects that have had

their expiration or removal times set. The warning
task is responsible for looking at objects that will
expire or be removed in the near future, and sending
out warnings to the administrators responsible for
those objects through email. And then, there are the
builder tasks.

Builder Tasks

Just as it is possible to define custom subclasses
of DBEditObject to provide custom management of
object types in the server, it is also possible to define
custom builder tasks to be loaded into the server at
runtime, as in Figure 16. Whenever a transaction is
committed, any builder tasks registered with the server
are scheduled for execution. The builder tasks will
scan the Ganymede database, write out source files for
NIS, DNS, etc., and call an external shell script to take
those source files and propagate the data into NIS,
DNS, or whatever else is being managed.

Schema Kits

The combination of a Ganymede schema defini-
tion, a set of custom DBEditObject subclasses, and
any custom builder tasks together comprise a
Ganymede schema kit. As currently available for

1998 LISA XII – December 6-11, 1998 – Boston, MA 207



Ganymede: An Extensible and Customizable Abbey and Mulvaney

download, the Ganymede server includes three
schema kits. One is an ‘‘nisonly’’ kit that handles
Solaris-style passwd and group files, another is a
‘‘bsd’’ kit for managing BSD 4.4 master.passwd and
group files, and the third is a full-scale ‘‘gash’’ kit that
was designed as a way for adopters of GASH to have
a minimal-work ‘‘drop-in’’ replacement for their exist-
ing GASH installations. Each of these kits includes a
loader program to scan the original files and create a
ganymede.db file which Ganymede can then manage.

Figure 13: An Object Event Record.

The nisonly and bsd kits are provided so that
UNIX admins can download Ganymede, load their
passwd and group files, and start playing with
Ganymede without a large commitment of time. The
GASH kit is a much richer environment, and imple-
ments the complex network management logic
described in our LISA VIII paper [1]. The GASH kit,
like GASH itself, is designed to manage a single DNS
domain and a single NIS domain, with support for
NIS-specific features like netgroups and automounter
configuration maps.

We are working on developing a next-generation
schema based on the GASH model. This schema is to
have richer support for DNS, including support for
generic subnetwork allocation. We also want to sepa-
rate out personal identification from the user account.
Having separate person objects would facilitate proper
generation of a canonical LDAP directory for our

laboratory, and would allow us to track responsibility
for user accounts more conveniently.

Another design feature of our next-generation
schema is support for NT and UNIX integration. We
are currently shadowing our UNIX accounts into our
NT domain controller using Rsh and some Perl scripts
on the NT side. In our next-generation schema we
plan to have a check-box on user objects to control
whether or not the account should be replicated on NT,
and to support NT group accounts as well as UNIX
group accounts within Ganymede.

There are quite a number of other interesting
possibilities for schema development. One obvious
possibility is a DNS-only schema, with support for
managing a large number of DNS domains and IP
address ranges. We have demonstrated in our work
implementing the GASH kit in Ganymede that the
DBEditObject customization hooks are adequate to
handle multiple-interface systems and network alloca-
tion. Creating a DNS-only schema kit would be some
work, but we do not believe that the task would be
overly difficult, and such a schema kit could be of
considerable utility for ISP companies.

The Ganymede Client

The Ganymede server supports a generic Java
interface for clients, allowing various custom clients
and automated processes to talk to the server. After

208 1998 LISA XII – December 6-11, 1998 – Boston, MA



Abbey and Mulvaney Ganymede: An Extensible and Customizable

connecting, clients can manipulate objects through
RMI references to the objects in the database.

Figure 14: A User Object’s Sordid History.

The generic client API permits us to write a vari-
ety of custom clients to handle specific tasks. For
example, we have developed a command-line-based
application that changes a user’s password and looks
just like Unix’s passwd command. After prompting for
the user’s current and new passwords, this client logs
on to the server, checks out the appropriate user
object, changes the password, and logs out. Clients
could easily be written to do bulk edits to the database,
or to tie automated processes of various sorts to the
Ganymede server.

Most of our effort in client development has
gone into developing a generic GUI client. This client
has very little customization built in to it; it queries the
server at run-time to get information about the schema
being used. With a few exceptions to provide special
handling for the mandatory object types that the
Ganymede server depends on, it is completely generic,
and can be used with any database definition in the
server.

This primary Ganymede client displays a large
window with two main panels. The left panel displays
a tree that lists all the objects in the database, sorted
by object type, while the right panel holds windows
used for viewing and editing objects. The tree is built
when a user first logs in, and can be used to browse
the database. Each node of the tree has a context-sen-
sitive menu associated with it, which is accessible by
right-clicking on the node.

When the client first connects to the server, it
opens a new transaction. The user can commit or can-
cel changes to the database made during the open
transaction by using the ‘‘Commit’’ or ‘‘Cancel’’ but-
ton in the lower right-hand corner of the client. No
changes are made to the database until the ‘‘Commit’’
button is clicked, so the user has the ability to cancel
any actions he performed during the transaction.

Logging In

The client can be run either as an applet in a Web
browser or as an application. When the Ganymede
client is run in a Web browser, it appears as an applet
in the browser’s window, as shown in Figure 17.
After entering a correct username and password, the

1998 LISA XII – December 6-11, 1998 – Boston, MA 209



Ganymede: An Extensible and Customizable Abbey and Mulvaney

main client window appears. At this time, the client
has queried the server to determine what sort of
objects have been defined and to retrieve a definition
for each type of object that the user will be able to
edit. The client caches this information to speed up
later operations.

Figure 15: The Admin Console, Showing Registered Tasks.

When logging in as an end user, the only visible
object in the tree is the user’s own user object. In order
to gain more privileges, a user can access his admin
persona by choosing a persona on the Persona menu.
The user will be presented with the dialog shown in
Figure 18, where he will enter the password for his
admin persona. Successfully changing to a new admin
persona causes the client to rebuild the tree in order to
reflect the expanded permissions, as well as to close
any windows that might be open.

By default, the tree only shows those objects
which are editable by the current admin persona, but
the user can choose to have the tree display all the
objects he has permission to view by selecting the
Show All Objects menu item from the menu shown in
Figure 19. Typically, the default role will grant users
permission to view only a small number of objects,

such as other users in the same group. Most adminis-
trators will be have roles assigned them which grant
privilege to browse more of the database.

Editing Objects

After opening an object node, a list of the
editable objects of that type is shown. When the ‘‘Edit
Object’’ menu item is chosen from the tree’s pop-up
menu, an editable window is placed in the right-hand
side panel. This window allows for the editing of this
object.

When an object is first opened for editing or
viewing, the server generates and sends the client a
remote reference corresponding to that object. The
client then talks directly to the object to determine
what fields are defined within it, and builds up the
fields displayed in the editing window.

Most types of fields in an object are displayed
with simple GUI widgets: check boxes for boolean
fields, date fields for dates, and text fields for single
strings, IP addresses, and numbers. Object reference
fields are either pull-down lists for scalar fields, or a
composite selector for vector lists. The selector shows
a list of available references on one side, and a list of

210 1998 LISA XII – December 6-11, 1998 – Boston, MA



Abbey and Mulvaney Ganymede: An Extensible and Customizable

selected references on the other. By moving the labels
between the two lists, references are added or removed
from the field.

Figure 16: Registering a Builder Task.

Figure 17: Ganymede Login Screen.

Embedded objects are handled by embedding an
edit panel within the main edit panel, as shown in

Figure 20. The embedded object’s fields can be hid-
den or revealed by clicking on a icon in the panel’s
container. Because embedded objects are always
employed in a vector context, there are also controls to
add or delete objects of the appropriate type from the
containing object. Embedded objects may themselves

1998 LISA XII – December 6-11, 1998 – Boston, MA 211



Ganymede: An Extensible and Customizable Abbey and Mulvaney

contain more embedded objects, and so a complex
hierarchy of containment can be managed, if neces-
sary.

Figure 18: Admin Password Dialog.

Figure 19: Object Menu.

Return Values

When a field is changed, the server reports to the
client by sending a special object called a return
value, which tells the client what happened as a result
of the change. In a simple case, the return value

contains information about the success or failure of
the change. The return value is capable of much
more, however; it can instruct the client to display an
informational dialog, and it can tell the client which
other fields need to be rescanned because of the
change to the current field, either in the current object
or other open objects. This causes the client to query
the server and update the specified fields immediately.
Also, the server can use the dialog to initiate a

212 1998 LISA XII – December 6-11, 1998 – Boston, MA



Abbey and Mulvaney Ganymede: An Extensible and Customizable

complex series of wizards to gather more information
about a complicated action.

Figure 20: Editing an Embedded Object.

Figure 21: Picking a New Home Group.

Sometimes changes to the database require more
information than can be provided by simply editing a

single field. In such cases, the server can send a defi-
nition for a custom dialog to the client. The dialog
may include graphics, text, and a range of GUI fields.
The information from this dialog is sent back to the

1998 LISA XII – December 6-11, 1998 – Boston, MA 213



Ganymede: An Extensible and Customizable Abbey and Mulvaney

server, which may in turn send down a new dialog to
continue the discussion. In this way the server can
walk the client through a series of steps using the tra-
ditional GUI wizard.

Figure 22: The Query Box.

Figure 23: The Query Result.

For example, when editing a group, removing a
user reference from the home users field de-selects
that group as the user’s home group. This is demon-
strated in Figure 21. In the GASH Schema, a user
must have a home group, so a new home group must
be chosen. In order to find out which group the user
object should now have as the home group, the server
sends a dialog with a list of the user’s current groups
to the client.3 After choosing a group from this list the
server places the user in the new home group, and
completes the operation initiated when the user tried

3Actually, the server only does this if the user belongs to
two or more other groups. If the user only belongs to one
group, that group is designated as the home group. If the us-
er does not belong to any other groups, the operation will
not be permitted. All of this logic is coded into the GASH
schema, which we are using for demonstration purposes in
this paper.

to modify the home users field.

Queries

The Ganymede server provides a powerful and
flexible query mechanism. The client uses this system
behind the scenes in many places. The client uses the
server ’s generic query mechanism when it loads
objects into the tree, for example. Users can create
their own queries as well, using the query box shown
in Figure 22.

The query box allows the user to build rather
complex queries. The query box is interactive, and
uses the client’s cache of schema information to guide
the user as to what fields and choices are available.
Multiple query terms can be put together to specify as
narrow a search as is desired. The user can further
customize the query by indicating what fields should
be returned in the server’s report. When the query is
submitted, the results are displayed in a table, like the
one in Figure 23. The table contains one row for each
object matching the query, and displays the values of
the fields in the columns of the table. The table allows
for sorting on each column, rearranging column

214 1998 LISA XII – December 6-11, 1998 – Boston, MA



Abbey and Mulvaney Ganymede: An Extensible and Customizable

widths, and exporting the contents of the table either
to disk or as an email message. Reports can be gener-
ated, either as tab- or comma-separated ASCII, or
encoded as an HTML table.

Adoption Considerations

We hope that Ganymede will prove attractive to
a large community of administrators. We feel that its
sophistication, flexibility, and portability will allow it
to be widely adopted in a way that GASH could not
be. Ganymede is not appropriate for all environments,
however. There are issues regarding security and per-
formance that should be taken into account when con-
sidering Ganymede’s suitability.

Security
While Ganymede has an effective permissions

and ownership model, it does not support encrypted
communications between the client and the server. At
the current time, Ganymede is based on RMI over a
non-encrypted socket layer, and as such is not appro-
priate for use on the open Internet for those who are
concerned about packet-sniffing.

Sun is moving to support RMI over custom
socket classes in the Java 1.2 JDK, which will make it
possible to produce a version of Ganymede that uses
Secure Socket Layer (SSL) encryption. Sun has not
yet committed to producing a freely available imple-
mentation of SSL sockets for Java, but third-party
companies have demonstrated RMI over SSL using
their SSL implementations [8]. These implementations
tend to be very pricey, however, and there are the
inevitable U.S. export and licensing issues to consider.

When and if an affordable SSL solution for RMI
appears, Ganymede could be retrofitted to provide a
higher level of security with very little work.

Performance and Scalability
When we originally designed Ganymede, we set

as a goal the ability for Ganymede to scale up to han-
dle 50,000 network object records, a figure some six
times higher than we were handling with GASH. The
main factors determining how well Ganymede will
scale are memory, Java Virtual Machine (JVM) effi-
ciency, and thread and database contention in the
Ganymede server.

Memory

Ganymede has limitations on its scalability due
to its RAM-resident database. Our current database is
loaded with DNS information for 2,087 systems with
2176 total interfaces, 48 administrators, 753 user
accounts, 238 account groups, 1200 email alias
records, 234 NIS netgroups, 520 NFS volume defini-
tions, 753 automounter entries for home directories,
and network connectivity information for 517 rooms.
This comprises a total of about a megabyte of GASH
data files in text form, some 8,526 objects or so in the
Ganymede server.

With this data loaded, the Ganymede server takes
up just under 40 megabytes of RAM. Since the
machine we are running the Ganymede server on has a
gigabyte of memory, scaling up by a factor of six or so
would not be a problem for us, at least as far as abso-
lute RAM consumption is concerned.

JVM Efficiency

The biggest problem with such scaling is not the
actual consumption of memory, but the time required
for the server to handle garbage collection. In an ear-
lier stage of development, the Ganymede server was
taking up nearly 100 megabytes of RAM with our
dataset loaded, and we would experience frequent and
significant lags in the server’s responsiveness. We
were, however, running the Ganymede server on a rel-
atively slow, relatively loaded machine, a 60-MHz
multiprocessor Sparc system, which was also respon-
sible for the laboratory’s Web, news, mail and file ser-
vices. In addition, we were running the JVM in inter-
preted mode with debug logging enabled, rather than
using the JVM’s Just-In-Time compiler (JIT) to con-
vert the Java code to Sparc machine code. The latest
1.2 beta seems to be much more efficient, however.
We are expecting that a good generational garbage
collector, such as is promised with Sun’s next genera-
tion HotSpot JVM, will do away with concerns over
garbage collection overhead, even with a substantially
larger database.

The biggest delays that users are likely to
encounter will occur when the builder tasks are run-
ning. The builder task base class is designed so that
the builder task can lock the database while it assem-
bles the data needed for the build, and then release it
while it is running external scripts to process the data.
While the first phase of the builder task is running, no
transactions may proceed to commit. A common
source of delay is for a user to make some changes,
commit the transaction, then immediately try to make
some more changes and commit that transaction. The
second transaction cannot proceed to completion
while the server is busy writing out data files in
response to the first.

Thread and Database Contention

Which brings us to the issue of thread and
database contention. The Ganymede server has been
designed to try to keep thread contention low. Queries
on the Ganymede database are a very frequent occur-
rence, and the query system has been specially opti-
mized. Any number of clients can issue queries on the
database without experiencing thread contention for
access to the objects in the database, as long as no
transactions are committing. While a transaction is
being committed, no queries can be issued on object
types involved in the transaction until the transaction
finishes committing. Individual object accesses pro-
ceed normally, as the server does do table-level syn-
chronization at all times. Queries are guaranteed to be

1998 LISA XII – December 6-11, 1998 – Boston, MA 215



Ganymede: An Extensible and Customizable Abbey and Mulvaney

transaction-consistent, and are not processed while a
transaction is being committed.

One important thing to note with regards to scal-
ability is that the Ganymede server does not support
multiple users simultaneously making changes to an
individual object. This is most important with owner
groups. If two administrators in the same owner group
try to create an object and place it in that owner group,
one of them will be unable to do so, and must wait
until the other either commits or aborts his transaction
so that the owner group is released. Whenever an
object is added to or removed from an owner group,
such contention can arise. Simply editing an object
owned by a particular owner group, however, will not
cause such contention.

The answer to this contention problem is to take
advantage of the ability of the Ganymede server to
support owner group hierarchies. If a group of admins
gets large enough that the admins are often getting in
each other’s way trying to create or delete objects, it is
a simple thing to create sub-owner groups that the
objects can be placed in without contention.

Current Performance

With the current 1.2 beta 4 JDK we have had five
users and an admin console connected to the
Ganymede server simultaneously, with each user mak-
ing changes and browsing the database without notice-
able pauses. We do look forward to moving
Ganymede to a modern UltraSparc server at some
point, but even at the current level of performance,
Ganymede provides very acceptable performance for
our needs. Right now, we have less than 50 adminis-
trators registered in GASH, so it is rather unlikely that
more than five admins will ever be using Ganymede at
the same time. Once we have fully replaced GASH
with Ganymede in the lab, we will be looking to see
how well Ganymede scales. Ultimately, we hope to
allow our end-users to have free access to Ganymede
to handle their own passwords, shell information, and
the like. At this time we don’t know how heavily
Ganymede will wind up being loaded in that environ-
ment, but it seems unlikely that too great a number of
users would ever try to change their passwords at the
same time.

Reflections on Java

When we first started investigating the possibil-
ity of developing a next-generation GASH, Java was
far less developed than it is today. Version 1.0 was the
exciting new thing, and critical features like RMI had
not yet been released. But the promise of a sophisti-
cated, operating-system agnostic development plat-
form with widespread industry support was com-
pelling. When Sun released RMI Alpha2 in mid-1996,
it became clear that a distributed object design for
Ganymede would be possible with Java. At that point,
the basic outline of the Ganymede design started to
take shape.

Since then, we have developed Ganymede as
Java has itself been under development. In some cases
we have wound up developing pieces that were not yet
available from Sun, such as the tree and table compo-
nents used in the client and the admin console. In
many other cases, such as with RMI, we have found
Sun providing just the right thing at the right time to
make our work possible. We’ve had to wrestle with
frustrating bugs as Java has matured, but the bugs got
fixed. The momentum behind Java, both from Sun and
from other companies has continually reinforced the
appropriateness of our initial decision to go with Java.

Indeed, we do not believe that we could have
done Ganymede with any other technology, given the
resource constraints we were under. Java gave us a
portable GUI, a distributed object API, a large set of
thread-safe class libraries, and both memory and type
safety. Most of these things can be had for C or C++,
but only for serious money and/or limited portability.
We certainly couldn’t think of making a freely dis-
tributable tool using commercial C++ class libraries.
With Java, we were able to write a distributed, multi-
threaded, portable GUI application of 140,000 lines of
code using nothing but X-Emacs and the Java Devel-
opment Kit.

Concluding Thoughts

Ganymede represents an attempt to provide a
comprehensive and flexible management system that
can be placed on top of the existing directory infras-
tructure already in place in typical UNIX networks. It
is not designed to answer all the questions about how
to organize directory services, but rather to allow
adopters to bring their own experience and environ-
ment into the design of their directory management
tool box. In this respect it differs greatly from GASH,
which had a particular network management philoso-
phy hard-wired into its implementation.

Ganymede seems most similar to Novell’s Nov-
ell Directory Services [9] and Microsoft’s forthcoming
Active Directory [10] in as much as it provides both a
customizable directory database and a set of GUI tools
to manage the database. It differs from these in that it
does less; the Ganymede server is not designed to act
as a high volume directory server. Ganymede does not
support database replication or distributed manage-
ment with multiple Ganymede servers. Instead it is
designed to leverage existing directory mechanisms
such as NIS, DNS, and commercial LDAP servers
which have their own mechanisms for providing relia-
bility and scalability through backup servers.
Ganymede depends on the flexibility of scripting
mechanisms on UNIX to provide support for getting
the directory data where it needs to go. Finally,
Ganymede does not provide native support for LDAP
or, indeed, any other standard directory API.
Ganymede can feed data to servers which support
such API’s, but administrative programs written to

216 1998 LISA XII – December 6-11, 1998 – Boston, MA



Abbey and Mulvaney Ganymede: An Extensible and Customizable

manage directory services using such API’s will find
Ganymede, on the whole, an incompatible partner.

Ganymede does, however, provide a good solu-
tion for the medium-to-large-sized UNIX or mixed
network. It has particularly good support for group
administration, with the permissions system and the
mail and logging system designed to facilitate admin-
istration teams. In addition, the Ganymede server is
customizable in a rather deep way. Not only can the
definition of the database schema be customized, but
also a considerable amount of intelligence can be
placed in the server using plug-in Java classes. This
notion of an intelligent server is in keeping with our
original design goal for GASH to produce a tool that
would make it possible for a broad audience to safely
manipulate our centralized directory information.
Ganymede can be taught about a particular environ-
ment, and will work to keep it in good order.

Anticipated Future Developments

Barring some continuing polishing work, the
Ganymede system is complete and ready to use as it is
today. Our main goals at this point are to get
Ganymede fully implemented within our laboratory,
and to get Ganymede documented well enough that
people can begin to work on developing their own
custom schema kits. Essentially, most things that we
can see needing to be done with Ganymede revolve
around the development and elaboration of schema
kits.

One important development would be to imple-
ment secure authentication and encryption for client-
server communications. As we mentioned in our secu-
rity discussion above, this will depend on an afford-
able implementation of the SSL protocol for Java.

One possible downside of Ganymede compared
to GASH is that the Ganymede client requires a GUI
display, whereas GASH could be run from a TTY con-
sole. It would be nice to have a completely functional
and generic text client for Ganymede for those cases
when a GUI display is not available.

Availability

Ganymede is currently available in pre-release at
ftp://ftp.arlut.utexas.edu/pub/ganymede/, with docu-
mentation, screen shots, and information on joining
the Ganymede developer’s mailing list at
http://www.arlut.utexas.edu/gash2/. While we don’t
yet have the licensing finalized, we intend to place
Ganymede under the GNU Public License. Once we
have Ganymede fully implemented in the laboratory
and have licensing approved, we will formally release
Ganymede 1.0.

Credits

Many people have contributed to the develop-
ment of Ganymede. In addition to Jon and Mike,
Navin Manohar and Erik Grostic made important

contributions to the client-side code development. Gil
Kloepfer provided design guidance for handling net-
work issues and code for the GASH kit’s back-end
DNS support. Dan Scott supported the project admin-
istratively, and contributed greatly to the higher level
design issues in Ganymede, as well as providing
invaluable user interface design feedback and bug
reporting.

A lot of Ganymede is based on the experience
and design work that went into GASH. In addition to
the aforementioned names, Dean Kennedy and Pug
Bainter should be credited for their design work on
GASH. Pug Bainter authored the original GASH
makefiles that Ganymede’s GASH kit uses to propa-
gate information from Ganymede into NIS and DNS.

Finally, thanks to all of the administrators at
ARL:UT and elsewhere who provided feedback on
GASH and let it be known that things could perhaps
be just a little bit better.

Author Information

Jonathan Abbey initiated the Ganymede project
at ARL:UT in late 1995 and has been working on it
pretty much nonstop ever since. He graduated with a
B.S. in Computer Science in 1993 from The Univer-
sity of Texas at Austin, and has worked at Applied
Research Laboratories since September 1989. He is
reachable at jonabbey@arlut.utexas.edu .

Michael Mulvaney has worked on the Ganymede
project since joining ARL:UT in early 1997, develop-
ing the Ganymede client. He graduated with a B.A. in
Economics in 1996 from The University of Texas at
Austin. He is reachable at mikem@mail.utexas.edu .

References

[1] Abbey, J. ‘‘The Group Administration Shell and
the GASH Network Computing Environment,’’
Proc. LISA VIII, September, 1994.

[2] Sun Microsystems, http://java.sun.com/products/
jdk/rmi/ .

[3] Stern, H. Managing NFS and NIS, O’Reilly &
Associates, Inc., 1991.

[4] Albitz, P., Liu, C. DNS and BIND, O’Reilly &
Associates, Inc., 1993.

[5] Loomis, Mary E. S., Object Databases: The
Essentials, Addison Wesley, 1995.

[6] Hogan, C., Cox, A., Hunter, T. ‘‘Decentralising
Distributed Systems Administration,’’ Proc.
LISA IX, September, 1995.

[7] Object Management Group, http://www.omg.
org/ .

[8] http://www.java.sun.com/products/jdk/1.2/docs/
guide/rmi/SSLInfo.html .

[9] Novell Corp., http://www.novell.com/products/
nds/index.html .

[10] Microsoft Corp., http://www.microsoft.com/ntserver/
basics/future/activedirectory/ .

1998 LISA XII – December 6-11, 1998 – Boston, MA 217



Ganymede: An Extensible and Customizable Abbey and Mulvaney

218 1998 LISA XII – December 6-11, 1998 – Boston, MA


