
The following paper was originally published in the
Proceedings of the Twelfth Systems Administration Conference (LISA ’98)

Boston, Massachusetts, December 6-11, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Drinking from the Fire(walls) Hose:
Another Approach to Very Large Mailing Lists

Strata Rose Chalup, Christine Hogan, Greg Kulosa, Bryan McDonald, and Bryan Stansell
Global Networking and Computing, Inc.

Drinking from the Fire(walls) Hose: Another
Approach to Very Large Mailing Lists

Strata Rose Chalup, Christine Hogan, Greg Kulosa, Bryan McDonald, and Bryan Stansell –
Global Networking and Computing, Inc.

ABSTRACT

This paper describes a set of tools and procedures which allow very large mailing lists to
be managed with the freeware tool of the administrator’s choice. With the right approach scaling
technology can be applied to a list management tool transparently.

In recent years, many ingenious methods have been proposed for handling email deliveries
to mailing lists of several thousand subscribers. Administration of a mailing list is not limited to
message delivery, however. Tasks such as managing subscribers, dealing with mail bounces, and
preventing list spamming also become more difficult when applied to very large lists.

As a case study, this paper describes the process of moving the well-known ‘‘Firewalls’’
mailing list from its original home at GreatCircle Associates to a new infrastructure at GNAC.
The process was thought to be straightforward and obvious, and it soon became apparent that it
was neither. We trust that our discoveries will benefit other systems administrators undertaking
similar projects, either concerning large mailing lists or moving complex ‘‘legacy systems.’’

Introduction

‘‘And you may ask yourself,
Well . . . How did I get here?’’

– Talking Heads

The Firewalls list began in 1992, at GreatCircle
Associates. It quickly evolved into an important forum
for new ideas, in-depth technical discussions, and
impassioned flame wars. Eventually it would encom-
pass roughly 4500 real-time subscribers and 4900
digest subscribers. A large number of total subscribers
were ‘‘exploder ’’ or reflector lists passing Firewalls
list traffic to unknown third parties at companies and
universities around the world.

Daily message counts ranging from a norm of 20
to peaks of 75 or more yield message deliveries of
95,000 to 342,400. In addition, a growing problem
with spammers began raising both list traffic and the
collective blood pressure of subscribers and list
administrators.

In the fall of 1997, list founder Brent Chapman
joined a startup company as a key player and realized
that he would have little attention left over for any-
thing else. In his own words:

‘‘Firewalls and Firewalls-Digest are very
popular, high-volume mailing lists, and
they take a fair amount of time and effort to
maintain. Life in a high-profile Silicon Val-
ley startup doesn’t leave much time for
anything else, though, so Great Circle
Associates is going into hibernation. There-
fore, after five and a half years and 111+
Mbytes of discussions spanning 45,517
messages and 3018 digests, the Firewalls
and Firewalls-Digest mailing lists are

moving to a new home at GNAC, which is
a consulting and managed services firm
based here in the Silicon Valley that I think
highly of.’’ [0]

Given the explosive growth of the list over the
years, and the demands on Brent’s time, it is very
much to his credit that the list was still functional up
to that point. Now it was GNAC’s turn to re-examine
the list and find out how to bring it back up to speed.

The Existing System

‘‘Like a crystal cathedral afloat on the tide
comes a mountain of ice

on the course to collide,
while passengers sleep thinking

God’s on their side..’’
– Peter Schilling,

‘‘Terra Titanic’’

The Firewalls list environment that GNAC inher-
ited turned out to be, as we expected, a complex sys-
tem of many moving interdependent parts.

We quickly discovered that the core of the Fire-
walls list was the expected Majordomo list manager
[1] wrapped around a dual-sendmail queueing struc-
ture.

To optimize the handoff between majordomo and
sendmail, Brent had set up a special outbound queue
area for list traffic. The sendmail_command and send-
mail_command_flags in majordomo.config were mod-
ified to implement a queue-only sendmail [2] in a cus-
tom queue area.

In addition to the basic Majordomo processing of
the lists, part of the ‘‘Firewalls list’’ functionality was

1998 LISA XII – December 6-11, 1998 – Boston, MA 317

Drinking from the Fire(walls) Hose . . . Rose Chalup, et al.

providing archives via FTP and HTTP. The Mhonarc
[3] text to HTML converter and some scripting glue
took care of the web-accessible archives, and scripts
regularly copied standard Majordomo archives into an
FTP hierarchy.

There were a number of watchdog scripts to
warn about majordomo list processing malfunctions
(e.g., list truncation), as well as some behind the
scenes scripting that created a meticulous ‘‘clean
archive’’ of the list postings for paranoia’s sake.

While there were certainly intricacies, we could
see that the basic structures were sound, and working
well enough on the Great Circle server.

Figure 1: Daily message deliveries.

Where Angels Fear to Tread
We had made some detailed queries about the

Great Circle server, looking for load patterns and other
duties performed by the machine. We’d chosen a simi-
lar (in fact, more heavy-duty) server for our purpose
and felt confident that it could handle anything that the
older Great Circle server had been handling.

For the configuration of the server, we decided to
make minimal changes to the operating systems and
messaging configurations while the list moved. We
carefully prepared a tarball from Brent’s server,
installed it on our host, and did the basic hostname
customizations required to make it run. The prelimi-
nary tests looked good. Mail queued into the right
places, appeared in archive directories, FTP storage,
web pages. Digest files grew. We were ready for
prime-time.

We arranged a special ‘‘test mode’’ that would
simulate list traffic [4] and, with great anticipation, we
turned the key. We knew that there was a heavy spam
load, and a lot of traffic, but we were on a faster server
with more disk spindles, greater memory, and a wider
network pipe. Nothing could go wrong. Go wrong. Go
wrong. [5]

In the Cold Light of Day
Test messages would never make it out of the

queue. The server would chronically lock due to fork-
ing problems. There were crashes and lockouts due to
memory problems. Well, this is why we test things in
the first place.

The dismal failure of the first ‘‘production test’’
caused us to re-consider our stand on keeping the list
management machine and software as close to the
original as possible. We realized that we needed to go
back to ‘‘square zero’’ and examine the fundamental
structure of how the message flow worked. After a
couple of false starts, detailed in subsequent sections,
we soon had messages turning around in record time.
At that point we turned our attention to the secondary
challenges which we we had inherited with the man-
agement of the list, bounce mail and spam. These at
least had been the focus of directed planning for future
enhancements.

The amount of bounce mail that a list of the size
and volume of Firewalls can produce is phenomenal.
Interspersed with the bounce mail would be real
requests from real people who needed something from
the list managers. We had to find some way to ensure
that we were responding in a timely manner to these
requests without getting overwhelmed by the bounce
traffic.

We also knew that the list had become a favorite
venue for spammers sending their useless and annoy-
ing missives. Stopping the spam while still allowing
legitimate posting would pose its own challenges, due
not only to the sheer number of subscribers but to the
percentage of ‘‘subscribers’’ which were actually
mailing lists rather than individuals.

The volume of messages to the list over time is
shown in the graph below. Shortly after GNAC took
over the list the spam problem reached a critical point,

318 1998 LISA XII – December 6-11, 1998 – Boston, MA

Rose Chalup, et al. Drinking from the Fire(walls) Hose . . .

traffic to the list was high and consisted mostly of
spam and complaints about the spam. Immediately
after we implemented spam-control measures, list traf-
fic dropped to an uncharacteristic low for a while
before resuming more normal levels, but without the
spam.

Host Tuning

‘‘Close to the middle of the network,
It seems we’re looking for a center.
What if it turns out to be hollow?
We could be fixing what is broken.’’

– S. Vega,
‘‘The Big Space’’

The Great Circle server had been largely
untuned, which surprised us in light of the implied
message delivery load of the Firewalls and Firewalls-
Digest lists. However, in the interest of minimizing
changes, we had gone with an ‘‘out of the box’’
BSD/OS config. We had also slavishly copied the con-
figurations of the Firewalls-specific application ser-
vices in our zeal for compatibility.

As we discovered, our server was doing much
more than the original server. As you will see below,
the Great Circle server was not actually delivering all
the messages to the subscribers, but instead was using
relaying services of a large ISP for the actual delivery.
Our machine was consequently not tuned correctly to
deal with the memory and process usage profile that
this task required.

We first became aware that the original machine
was relatively un-tuned when we discovered that the
sticky bit was not set on the system copy of Perl. From
there we did further digging, and decided we needed
to go over the entire system and analyze it from
scratch. [6,7]:

Here are the major changes we introduced. None
of them is necessarily dramatic in impact, but together
they represent considerable improvement.

• put operating system and application binaries
on different disks

• doubled our swap space
• balanced swap between disks
• set sticky bits on Perl, sendmail, other key sys-

tem apps
• set sticky bits on all Majordomo binaries &

scripts
• rebuilt kernel and upped syslimits.h variables

(MAX_CHILD, NPROCS)
• installed a cacheing named [8]

Later we would come to double the physical
memory and increase KMEMSIZE to handle some
unusual custom processes that we will be describing
below.

Message Delivery

‘‘I’ve been standing here waiting,
Mr. Postman,

so-o-o patiently –
for just a card or just a letter . . .’’

– The Marvelettes,
‘‘Please, Mr. Postman’’

Once we had the machine tuned, we turned to the
list processing itself. Message turnaround time had
been in the order of days before we took over the list.
It was still at that order of magnitude, and when the
message volume was high, our outbound queue was
growing faster than mail was getting delivered. There
was potential for serious backlogs that would cripple
the list.

Mail basically wasn’t moving. We knew that his-
torically the list was plagued by slow mail, but that the
queues didn’t back up too badly. Why was our mail
backing up? We went back to the Great Circle server
to find out. The answer turned out to be our choice of
‘‘smart host’’ in the sendmail-lists.cf file, which we
had blithely customized to work with the usual GNAC
environment.

As we mentioned earlier, Majordomo was con-
figured to use a queue-only sendmail (designated
‘‘sendmail-lists’’) for message generation. A separate
sendmail daemon would process that queue and keep
it moving. We discovered that for the sake of expedi-
ent message processing by Majordomo, all recipients
of the message were packed into a single RCPT line.
Those of you who have dealt with sendmail exten-
sively are wincing right now, aren’t you?

We also discovered that, in a neat private
arrangement dating back several years, Brent had
arranged for his servers at greatcircle.com to have
relaying capabilities through the UUNet mail servers.
Thus the Great Circle sendmail-lists.cf file merely
specified ‘‘mail.uu.net’’ as the smart host, causing
everything to be forwarded to it for processing. Due
to the way UUNet round-robins its mail services, this
would effectively spread out the processing of these
troublesome messages with monstrous RCPT headers.

Of course, GNAC did not have the option of
passing those messages to UUNET. We would have to
deliver these messages directly, 4K of RCPT
addresses or not. While GNAC has an excellent mail
infrastructure, their core business does not involve
ISP-style mail for thousands of individual subscribers.
Thus GNAC did not have the quantity of dedicated
mail-delivery resources to simply toss the messages
into the network and let them go.

Chunk-Style, Just Like Home-Made
A message with over 4000 recipients can take lit-

erally days to deliver. A sendmail instance processing
the message will work its way laboriously down the
recipient list, pausing at every time-out. It may run out
of resources and die, causing a new sendmail to take

1998 LISA XII – December 6-11, 1998 – Boston, MA 319

Drinking from the Fire(walls) Hose . . . Rose Chalup, et al.

up the torch. No problem, you say, since the new send-
mail instance can use the xfNNNNN queue file to pick
up where the old one left off. Yes, but first it has to
retry all the ‘‘deferred’’ hosts that timed out. Even if
the messages are being farmed out to multiple servers,
each individual message is going to reach individual
subscribers in a highly non-deterministic fashion.

In analyzing our logs and transfer status files, we
found that message deferrals would typically be due to
remote name servers or mail servers failing to respond
before timeout. Due to the large and diverse popula-
tion of the list, we would see rather shocking ratios of
failures to successful deliveries. Many of those fail-
ures were multiple failures trying repeatedly to deliver
the same message to the same site.

At an architectural level, we knew that we had to
get away from the multi-thousand RCPT lines busi-
ness. We also knew that we couldn’t simply force one
recipient per message without making the sendmail
queue directory so large that directory search time
would became a significant factor. Directories with
over 10K nodes are generally undesirable [6] and at
over 4K subscribers we would quickly flood the queue
directory.

Initially we assumed that we would get our
biggest ‘‘win’’ by employing a program such as mail-
cast [9] to batch and sort the recipients by domain and
MX record. Mailcast would simply queue them up and
send one nice copy off to the right host and we’d
shake each others’ hands and go off to hoist a cold one
or two. Imagine our consternation when we discov-
ered that in fact out of approximately 5,000 individual
subscription addresses, some 4,000 were in fact unre-
lated by host, domain, or MX record. For the roughly
4,000 digest recipients, we found about 3,500
uniquely unrelated addresses. Ouch. For us, this
approach was largely indistinguishable from ‘‘one
recipient per message.’’

Since there was not a strong natural grouping
between addresses, it seemed that arbitrary recipient
chunking would be the way to go. We immediately
thought of bulkmail [10], a mail-sending utility that
can perform chunking on huge recipient lists. As we
looked into the specific configuration of bulkmail, we
found that bulkmail and majordomo were not trivially
compatible. Majordomo wants to invoke a mail com-
mand and send a message to it. Bulkmail wants to read
in files with a message and a recipient list. We spent a
couple of lunches wrangling over which of them to
hack to accept the other’s view of the world, and how
exactly to structure the changes to minimize future-
release porting issues. Any way we looked at it, it
looked ugly.

The Portable Queue
At this point, having gone far enough down the

rathole to smell cheese, we popped back up into the
sunshine to re-examine the original goal, namely
chunking the messages into deliverable size. We

realized that we were already producing a clean,
queued message with a highly well-defined structure
[11] in a place that we could control. There was no
reason that we had to perform the chunking at mes-
sage generation. We could do it right in the queue
itself.

Before beginning the move of the Firewalls list,
we had done some preliminary mailflow architecture.
Our original plan was to move the list without struc-
tural changes, then to apply our idealized architecture
in careful stages. Based on the production testing, we
clearly had to accelerate things quite a bit.

One of the original elements we’d planned to
introduce was time-based queuing, where messages
are recursively sifted among various queues based on
how long they have been pending [12]. Reading up on
this approach, we were reminded once again of what
every postmaster knows: queue files are portable.

One of the standard postmaster rites of passage is
dealing with a major multi-day mail backlog on your
bastion host. You eventually realize that the most sane
thing to do is to turn off incoming mail, move all the
queue files into a holding directory, then turn on mail
again. Meanwhile, you do a little quick scripting to
sort things based on which internal mailhubs are in the
envelope headers, make a few tarballs, and just FTP
them down into the right mailhub’s queue, unpack,
voila! We decided to go one step further and ‘‘MIRV’’
[13] the queue files.

Split Personality
We turned off the ‘‘sendmail-lists’’ invocation of

sendmail and replaced it with a cron job called
‘‘qsplit.’’ The qsplit Perl script runs every 5 minutes
and examines the sendmail-lists queue directory. Each
queue file is parsed. The unique portion of the name
(e.g., ‘‘ABC12345’’ in ‘‘qfABC12345’’) is stored as
$ident and used to generate new qf files. If the num-
ber of RCPT lines in the qf file exceeds the qsplit vari-
able $CHUNKSIZE, the message is processed into
multiple messages of $CHUNKSIZE recipients and
zero or one messages of less than $CHUNKSIZE.

Each new qf file has a sequential number
appended to $ident. Thus the first split file from
‘‘qfABC12345’’ would be ‘‘qfABC123451,’’ then
‘‘qfABC123452’’ and so on. Since sendmail will gen-
erate unique queue file identifiers within a given send-
mail queue area, using this method guarantees unique
identifiers for split queue files.

Qsplit is also configured to know about an arbi-
trary number of sendmail queue directories. If the
number of recipients in a parsed qf file is less than
$CHUNKSIZE, qsplit will move the message into one
of the preconfigured queue directories. A round-robin
effect is achieved by keeping track of the last queue
directory into which a file has been placed and putting
the next one in the subsequent directory, wrapping
around as necessary.

320 1998 LISA XII – December 6-11, 1998 – Boston, MA

Rose Chalup, et al. Drinking from the Fire(walls) Hose . . .

For efficiency, each ‘‘new’’ df file is merely an
appropriately numbered hard link. This is particularly
important for the Firewalls-Digest postings, where the
df file can be quite large. Note that since hard links
will not work across partitions, the ‘‘sendmail-lists’’
directory and the processing queue directories must be
on the same filesystem. Qsplit of course removes the
original qf/df files after the splitting is accomplished.
This is why we use hard links rather than symbolic
links, since hard links have no concept of ‘‘the original
file.’’

Splitting the qf files in this way had a dramatic
effect on message turnaround time, as the following
graph shows. For more than a week before we finally
settled upon and implemented our splitting solution,
we had been manually splitting qf files and distribut-
ing them as described. That period is seen in the graph
as a low before a final spike.

Figure 2: Message turnaround time.

Spawn ’til You Die
Each of the queue directories (10, at present)

runs separate instances of sendmail. All of the directo-
ries are managed by a shared spawning daemon, called
simply ‘‘spawn.pl’’. Some experimenting was neces-
sary to find the right timing to use within the configu-
rations, so various copies named things like ‘‘slow-
spawn’’ were created for test runs.

The queue management daemon (spawn.pl)
spawns as many copies of itself as there are queue
areas. It then watches its children and re-starts any of
the spawned processes that die. Each of these child
spawners is chartered with keeping ten sendmail

daemons running to process its queue area. The child
spawners keep track of their sendmail children,
restarting a new sendmail whenever one dies.

There is logic built into the spawners to check
configurable variables for the load average on the sys-
tem, and the amount of memory available. If the load
is too high, or memory too scarce, the child waits until
there are more resources available before starting a
new process. The initial spawning of the children pro-
cesses themselves is also subject to the same limita-
tions. The load average limit in the spawner is set
lower than the sendmail threshold, since starting a
sendmail will cause a load average spike that might
cause sendmail to not do anything once started. In
addition, a variable controls the timing between each
child spawner or new sendmail, so as to minimize load
disruption.

To further speed things up, we also implemented
sendmail’s host-status feature. This creates a directory
structure containing information about when a send-
mail last tried to contact a given host, and whether it
was up or down. If it is down, sendmail doesn’t try
that machine again unless the specified re-try timeout
has expired. We used the sendmail default of one hour.

The trade-off between the massive amount of
disk access that this caused and the saved processing
and wait time has proven to be worthwhile. Setting all
of the sendmails across all of the spawn-managed
queue areas to use the same host-status caching has
given us even greater efficiency.

1998 LISA XII – December 6-11, 1998 – Boston, MA 321

Drinking from the Fire(walls) Hose . . . Rose Chalup, et al.

Less than half a day after implementing this new
queue processing method, only 7,000 recipients out of
the initial 300,000 were still in the queue. All the
recipients remaining in the queue were for ‘‘problem’’
addresses. At some point in the future, we may imple-
ment time-based queues as a subset of the spawn-man-
aged queues.

Design Trade-offs
The astute reader will notice that it requires two

passes of qsplit for a message to go from its initial
bloated qf file in a holding directory to a chunked qf
file in a live sendmail directory, awaiting delivery.
This means that there is guaranteed to be at least five
minutes, possibly as long as 10 minutes, between the
generation of a list message by Majordomo and the
earliest possible outbound opportunity for the mes-
sage.

This is quite deliberate, for two reasons. The
first, as you might guess, is simplicity of coding.
Given that we were under a deadline to announce the
list changeover, and that this level of rearchitecture
had been slated for several weeks down the road, it
was an expedient choice.

The second reason is directly functional for list
purposes. Historically the Firewalls list has been
plagued by flame wars of varying length and duration.
We had been told that introducing a slight delay into
message propagation, within reason, was the most
expedient way to minimize the occurrence of flame-
fests. Exchanging one-liners over a few hours rather
than a few minutes tends to spoil a bit of the fun and
allow cooler heads to prevail. Given the requirement
for slightly delayed propagation, we chose to retain
our 5-10 minute granularity rather than try for a more
immediate delivery.

List Management Issues

‘‘So when I dropped it in the mailbox,
I sent it ‘Special D’
Bright and early next morning
it came right back to me.’’

– E. Presley,
‘‘Return to Sender’’

The outbound mail was only the tip of the ice-
berg. We discovered that the Firewalls list generated
an astounding 80M or more of bounce mail daily.
Keeping bounce mail from overrunning list traffic had
been the primary reason why Brent went to a dual-
sendmail system for the list years ago.

The sendmail-lists was set up for outbound mail
only, with a conventional sendmail receiving incoming
list traffic and the plethora of bounces. Brent and his
compatriot, Michael C. Berch, had put together a
series of scripts for winnowing the postmaster wheat
from the bouncing chaff. While the scripts identified
many user queries and passed them on for human
action, the bulk of the mail was discarded. This meant

that secondary bounces would go uncorrected and trig-
ger new recursive bounces.

Our plan from the beginning was to isolate
bounce traffic even further, putting in a third separate
sendmail structure solely for bounces. We would
accomplish this by defining a virtual interface on the
Internet-facing ethernet port and assigning it to
‘‘bounces.gnac.net’’. By tagging outgoing mail with
From and Reply-To addresses at this host, we could
control bounce traffic.

Automation scripts have been implemented in
Perl, and have proven able to handle the formidable
task of crunching through the huge volume of mail.
We originally explored queuing the bounces via proc-
mail as each message arrived, but quickly found that
the overhead of calling procmail for each inbound
message made batch processing of the bounce mail a
better solution. The scripts, run out of cron, are
explored below.

Automation of Bounce Handling
Since we had made the decision to automate

wherever possible, we designed the script to identify
and sort each message according to its potential for
automation. Thus we arrived at three ‘‘bins’’ into
which to toss processed bounce mail: ‘‘HUMAN,’’
‘‘AUTOMATABLE,’’ and ‘‘JUNK.’’

The first category, JUNK, is for things which
need throwing away. In particular, bounce messages to
a bad address frequently generate second-generation
bounce messages. We had planned on a scripting solu-
tion for these as well, but were pleased to note the
‘‘confDOUBLE_BOUNCE’’ option in the new send-
mail 8.9 configuration. [15] Designed to catch just
such occurrences, this option will let you specify an
address, such as ‘‘| /dev/null,’’ for these. To save on
general I/O and processing wear and tear, however, it
would be desirable to add a double-bounce ruleset and
reject these messages right at the check_compat stage.
[2]

The second category, AUTOMATABLE, is for
messages which will eventually be handled by a pro-
grammatic response. A good example of this is the all-
too-frequent ‘‘I unsubscribed but am still getting mail,
help, get me off this list’’ query. A script will eventu-
ally be written which will pull out the sender’s name
and search for it in the database, then send off a
canned reply describing message propagation and the
results of the search.

Of particular interest in this category are routine
bounce messages. We are in the process of adding a
bounce manager which will extract addresses from a
standard bounce message and process them. By hash-
ing on the address and updating a counter, the script
can quickly determine whether or not this is a repeat
bounce offender. If so, the address can be automati-
cally removed after a certain number of bounces. This
represents a great improvement over the old

322 1998 LISA XII – December 6-11, 1998 – Boston, MA

Rose Chalup, et al. Drinking from the Fire(walls) Hose . . .

‘‘bouncer ’’ list functionality which required hand edit-
ing of the list files to accomplish.

The last category, HUMAN, is for what is left.
These are items that usually require human interven-
tion, either to answer the question posed, or to figure
how this particular item can be automated successfully
as above.

Spam

‘‘There is one thing you must be sure of,
I can’t take any more!’’

– Peter Gabriel,
‘‘Shock the Monkey’’

Spam was a serious problem on the Firewalls
list. The machine that the list runs from does not relay
spam, but spam is sent directly to the list. When we
took on the list, this was one of the issues we intended
to tackle. Based on anecdotal information, we did not
expect traditional solutions to scale to cope with the
Firewalls list. As we looked into our options, an
increasing quantity of Firewalls list traffic became dis-
cussions on how to make the list usable again from the
perspective of the subscriber community.

One conventional approach to cutting down on
spam is to block certain domains or IP address ranges
from successfully sending mail through your sendmail
daemon. This can either be done through sendmail
configuration, or at the network layer using Vixie’s
black-hole BGP feed, or simple filters. These
approaches would not work in our case because much
of the Firewalls mail was still being forwarded from
greatcircle.com, and that mail was a mixture of real
messages and spam.

The simplest-sounding solution was to make the
list a closed list, where only members can post. How-
ever, there were two problems with this. Firstly, a
large number of the lists subscribers were local
exploders at remote sites, whose membership we had
no way of knowing. We did not want to prevent these
people from posting, or to force them to all subscribe
directly to the list. Secondly, Brent had concerns about
how well the majordomo feature to do this would
scale to a list this size, which is the reason that he had
never activated it on his version of the list. He felt that
the interlocking programs that make up Majordomo’s
interpreted Perl core could not feasibly keep up with
the traffic.

Sendmail Database Approach
We also considered taking this same idea,

restricting posting to list members, to a lower level,
and having sendmail do the work via a database
lookup mechanism. The members of both the Fire-
walls and the Firewalls-digest list would be automati-
cally added to the database. In addition, a list called
Firewalls-post could be created for offsite list exploder
members who wish to post. The Firewalls-post list is
maintained by majordomo so that subscribe and

unsubscribe requests can be handled automatically. All
three lists would be made into a generic key/value
sendmail database at regular intervals by a cron script.

We could trigger a database lookup only if the
recipient was ‘‘firewalls’’ or ‘‘firewalls-digest.’’ Oth-
erwise we would end up screening out routine major-
domo requests or postmaster mail. By positioning the
lookup in the check_compat phase of mail processing,
we would be able to reject unauthorized postings
directly at the SMTP connect. Note that system
addresses such as ‘‘firewalls-owner ’’ and ‘‘major-
domo’’ need to be included to allow normal major-
domo operation. These must be qualified with the full
host and domain name in order to prevent spoofing,
e.g., ‘‘majordomo@lists.gnac.net’’ rather than just
‘‘majordomo.’’

Using Majordomo
Clearly the Firewalls-post list that was suggested

for the sendmail solution to the ‘‘invisible sub-
scribers’’ problem could also be applied to major-
domo. Just to make sure that we weren’t re-imple-
menting the wheel for no reason, we also ran some
tests to evaluate the overhead of using the majordomo
‘‘closed list’’ feature.

After running a set of tests using the majordomo
restricted-posting lookups, we found that on our
machine it took about three seconds to perform the
lookup. We decided to accept this as part of the system
overhead, and implemented this feature over the send-
mail based one. We have considered implementing the
sendmail based variant of this on general principle,
however, and to evaluate its use as a solution for other
large lists not using majordomo.

The final component is the communication piece.
We forewarned the list membership that we were
going to implement this feature, and gave the message
a couple of days to reach everyone.

In addition, when majordomo rejects a message
due to this feature, directions on subscribing to the
Firewalls-post list are returned to the sender.

Potential Future Problems
Strictly speaking, a clever spammer could hand-

set the sender to be a legitimate sender such as
‘‘majordomo@lists.gnac.net’’. It would be wise for us
to include a ‘‘remote is identifying as me’’ ruleset as
part of this, so that this kind of spoofing would be
caught and detected with prejudice. [14]

If spammers monitor the list and start spamming
under spoofed names of legitimate posters, we would
have to up the ante and turn on the sendmail features
which do host authentication via DNS. [1, 15] While
this would impose more of a load on the server, our
split sendmail configurations would allow us to imple-
ment this on the main inbound sendmail only, so that
the performance hit would not be too severe. We hope
to avoid this, as many legitimate sites have business
reasons to aggregate traffic or architect their mail

1998 LISA XII – December 6-11, 1998 – Boston, MA 323

Drinking from the Fire(walls) Hose . . . Rose Chalup, et al.

infrastructure in such a way that they do not comply
with strict sendmail checking.

Futures

‘‘All the way to Malibu
from the Land of the Talking Drum:

Just look how far –
look how far we’ve come!’’

– Don Henley,
‘‘Building the Perfect Beast’’

The cutover day for the Firewalls list move was
April 15th, a red-letter day in its own right. Other than
Brent’s dual-sendmail structure, none of the facilities
mentioned in this document existed on that date, nor
had they been planned.

As of the writing of this paper, we are processing
an average of 8184 messages per day. Turn around
time for an individual message has dropped from pre-
queue-split highs of 5-8 days to less than one day, and
in many cases less than half an hour:
Statistics from Wed Apr 15 17:48:17 1998
M msgsfr byt_from msgsto bytes_to Mailer
0 0 0K 504929 2241822K prog
1 0 0K 3499 25520K *file*
3 402707 1831829K 270 914K local
4 51340 268777K 4584 59086K smtp
5 74148 421120K 2122 5626K esmtp
9 64 246K 0 0K uucp-old
======================================
T 528259 2521972K 515404 2332968K

date: Wed Jun 17 18:35:30 PDT 1998

In order to have better tracking of email flow
through the list, we are intending to implement a script
to take hourly snapshots of sendmail.st, process them,
and feed the data to MRTG [16]. We have to do it that
way since start/stop is impossible with so many send-
mails all the time.

The script will need to aggregate the sendmail.st
files of the variously spawned sendmails. They are
separate files because sharing the same .st file could
slow sendmail down unnecessarily as it waits on lock-
ing on the sendmail.st file.

When this is implemented, we intend to make the
MRTG graphs available on the list website.

Further Processing
For lists with more ‘‘real-time’’ needs and less

concern about flame wars, qsplit could be rewritten to
deposit split files directly into processing queues at the
time of splitting.

To improve message flow further, qsplit and
spawner could be applied recursively to create time-
based queues working with the existing spawn-man-
aged queue directories. Messages over a certain age
would be moved to a time-based queue and then split
to a smaller $CHUNKSIZE. By employing progres-
sively smaller chunks, one could force the qf files
down to one RCPT per message by the time they
reached a particular age.

At this point, problem addresses would be identi-
fiable automatically by their queue position. This
could enable management of bad addresses com-
pletely outside of the traditional bounce/postmaster
processing used by most list admins.

List Exploders
We’d like to eventually add some special-case

handling for exploder lists. When we receive a generic
individual user bounce via a remote exploder, it is
very difficult to find the origin exploder and pass on
the error to that list administrator. In fact, there is no
distinction made in the Firewalls or Firewalls-Digest
lists between individuals and exploders, so there are
undoubtedly many exploders which are completely
opaque to us.

One approach would be to increase dramatically
the number of spawn-managed processing queues and
set qsplit to always chunk RCPTs to one per message.
We would further modify qsplit to add an RFC-822
compliant custom header [11] containing the envelope
recipient to each qf file. This header line would be
preserved in any remote mailer bounces, enabling us
to see to which address the original message was sent.
A bounce message whose ‘‘user not found’’ error did
not match the address in the X-Custom-Recipient
header could trigger a custom message to the address
in the header, or be referred to a human administrator
for hand-processing.

Availability

The scripts described in this paper will be made
available at http://www.lists.gnac.net after the publica-
tion of this paper in December, 1998.

Conclusions

‘‘Don’t know much about history . . .’’
– Sam Cooke

Look before you leap!
Taking over the management of the Firewalls list

seemed like an attractive proposition. It should be easy
– just copy over Brent’s setup on to faster equipment
with better Internet connectivity and you’re done. As
we soon found out, it was not that simple.

Follow First Principles
There was no magic involved in turning the list

into something that now runs smoothly. We stepped
through a number of system administration basics.
When the machine was in trouble, we looked at the
hardware to see if more memory would help, and we
looked at the kernel parameters and tuned them appro-
priately. After that, understanding the problems in
detail and how the various solutions would affect the
system allowed us to choose the correct course of
action. Questioning our assumptions and gathering
real data on which to base our decisions also proved
worthwhile. Experimenting with different options off-

324 1998 LISA XII – December 6-11, 1998 – Boston, MA

Rose Chalup, et al. Drinking from the Fire(walls) Hose . . .

line to get real data without affecting the list is always
the right approach for a production system.

Work smarter not harder
The machine was not CPU-bound, so throwing

higher-end equipment at it would not help. It was also
not even coming close to saturating our connectivity.
What we needed to do was find a way to make the
system work smarter. To that end, having understood
the problems we looked at ways to split the recipient
lists into smaller chunks, and at how to get multiple
sendmail processes to constantly churn through the
queues.

Communicate, communicate, communicate.
An important part of our work during the ‘‘hard

times’’ when we had just taken over the list was to
communicate with the readership and let everyone
know what was going on, and that we were working
on fixing each of the problems that arose. There were
many people interested in helping out, and we got
many interesting pointers from folks on the list
(thanks folks!). Letting people know the list of prob-
lems that you are working on, and when you realisti-
cally expect to have them fixed is something we all
need to remember to do. The implementor feels less
pressured and the ‘‘customer ’’ feels plugged in and
listened to.

References

[0] D. Brent Chapman, http://www.greatcircle.
com/lists/firewalls (and posted to the Firewalls
list).

[1] ‘‘Majordomo: How I Manage 17 Mailing Lists
Without Answering ‘-request’ Mail,’’ D. Brent
Chapman, USENIX, LISA VI Proceedings, Octo-
ber 1992. ISBN 1-880446-47-2.

[2] Sendmail, 2nd Ed., Brian Costales with Eric All-
man, O’Reilly and Associates, 1997. ISBN
1-56592-222-0

[3] Mhonarc, a Perl successor to mail2html, http://
www.oac.uci.edu/indiv/ehood/mhonarc.doc.html .

[4] Our ‘‘test mode’’ consisted of two parts. First, a
parallel feed of Firewalls traffic provided by
Brent. Second was merely the sending of a real
message to the list recipients as part of a dry run.
The message would be a precursor to the official
announcements already drafted by Brent Chap-
man (Great Circle) and Christine Hogan
(GNAC).

[5] Westworld, Metro-Goldwyn-Mayer, http://us.
imdb.com/Title?Westworld+(1973).

[6] System Performance Tuning, Mike Loukides,
O’Reilly and Associates, 1992. ISBN
0-937175-60-9

[7] Sun Performance and Tuning, Adrian Cockcroft,
Sun Microsystems Inc., 1995. ISBN
0-13-149642-5

[8] Managing Internet Information Services, Cricket
Liu, Jerry Peek, Russ Jones, Bryan Buus and
Adrian Nye, O’Reilly and Associates, 1994.
ISBN 1-56592-062-7

[9] Strata Rose, VirtualNet Consulting, Dave Ilstrup,
WebAware; unpublished work 1995.

[10] Debian bulkmail, http://molec2.dfis.ull.es/debian/
Packages/stable/mail/bulkmail.html

[11] RFC-822: Standard for the Format of ARPA
Internet Text Messages, D. Crocker, August 13
1982.

[12] ‘‘Tuning Sendmail for Large Mailing Lists,’’
Rob Kolstad, USENIX, LISA XI Proceedings,
October 1997. ISBN 1-880446-90-1.

[13] Multiple Independently Targetable Re-entry
Vehicle, http://www.janes.com/defence/resources/
glossary/defres_glosmi-ml.html.

[14] Sendmail: Theory and Practice, Frederick M.
Avolio and Paul A. Vixie, Digital Press / Butter-
worth-Heinemann, 1995. ISBN 1-55558-127-7

[15] Eric Allman and Sendmail Inc staff, http://
www.sendmail.org/ web site.

[16] MRTG, (Multi Router Traffic Grapher), Tobias
Oetiker and David Rand, http://ee-staff.ethz.
ch/˜oetiker/webtools/mrtg/mrtg.html.

1998 LISA XII – December 6-11, 1998 – Boston, MA 325

326 1998 LISA XII – December 6-11, 1998 – Boston, MA

