
The following paper was originally published in the
Proceedings of the Twelfth Systems Administration Conference (LISA ’98)

Boston, Massachusetts, December 6-11, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

TITAN

Dan Farmer, Earthlink Network
Brad Powell, Sun Microsystems

Matthew Archibald, KLA-Tencor

TITAN
Dan Farmer – Earthlink Network

Brad Powell – Sun Microsystems, Inc.
Matthew Archibald – KLA-Tencor

ABSTRACT

Titan is a freely available host-based security tool that can be used to improve or audit the
security of a UNIX system. It was written almost completely in Bourne shell, with a master
script controlling the execution of many smaller programs. Each of the programs either fixes or
detects potential security problem, and its simple and extremely modular design also makes it
useful to help check or enforce the adherence of a system against its security policy. Finally,
anyone who can write a shell script or program can easily create their own Titan modules.

Titan does not replace other security tools, nor does it fix or patch security bugs; its
primary purpose is to improve the security of the system it runs on by codifying as many
security tricks to secure an OS that the authors could think of. And when used in combination
with other security tools it can help make the transformation of an ‘‘out of the box’’ system into
a firewall or security conscious system a significantly easier task.

NOTE: Due to time, resource, and expertise limitations, the first release of Titan is only
known to run on Solaris Operating Systems, versions Solaris 2.x and Solaris 1.x. However,
many of the small sub-programs within Titan work well with other UNIX’s, and other than
taking the time to create Titan modules for them, there is nothing Sun specific about Titan that
would prevent it working on other UNIX systems.

Introduction

UNIX is often, and justifiably, criticized for
being a difficult system to administer because it is not
only complex and cantankerous but hard to secure. Its
enormous configurability, the fact that vendors don’t
ship secure systems, and that it requires significant
amounts of time, resources, and expertise to safeguard
a host are only some of the reasons that so many
UNIX systems are insecure on the Internet. To com-
pound the problem, like all modern operating systems
it not only becomes less secure as time goes on (sim-
ply due to usage), but with the rapidly changing secu-
rity field, it also requires considerable effort to stay
abreast of the latest information – time that most sys-
tem administrators simply don’t have.

Titan tries to provide at least a partial solution to
all these problems by trying to locate and fix many of
the more common procedural problems that crop up,
as well as put into one place all those damn OS tweaks
that can assist in securing your system. Titan improves
the security of a system by:

• Cutting off entry points into the system.
• Mitigating or preventing the effects of various

denial of service (DOS) attacks.
• Turning on or improving the level of logging

and auditing features.
• Improving network and local (e.g., host level)

defenses.
• Assisting in programmatically defining and

enforcing a system security policy.

It is important to note that Titan’s focus is the
correction of procedural problems. While it can be
used as an adjunct to other auditing tools, whether
host or network based, it does not attempt to find
problems that it cannot correct. An automated tool that
changed weak passwords, unpatched or insecure sys-
tem binaries, and unrestricted filesystem mounts, for
instance, could break or disrupt operations to an unac-
ceptable level. Like most other security tools, Titan is
not meant to be used only once: to achieve effective
security requires an ongoing concern and continued
attention to good security practices. Any competent
system administrator should have considered, if not
resolved or repaired, nearly all of the problems that
Titan addresses on their security critical systems.

Anyone working in security or systems adminis-
tration who has been around the Internet for any
length of time has done it – making the same changes,
over and over again, to secure a system. Worse yet,
each new OS release brings tiny, seemingly arbitrary
changes that can invalidate prior work. And forget it
when a major new release comes out, or you have to
work with another operating system altogether! Just
among the authors of Titan we’ve ftp’d Crack, COPS,
and other security programs from the net thousands of
times – and we’re sure we’re not alone.

The analysis of the security of a system is
depressing – the same sets of problems always come
up. But what’s worse is that these problems can almost
always be easily fixed – so why aren’t they? And the
final sling of indignity is that vendors keep changing

1998 LISA XII – December 6-11, 1998 – Boston, MA 1

TITAN Farmer, Powell, and Archibald

the damn commands to do the same things, even
within the same major version of the OS (what are the
arguments to ndd(1M) that change that TCP behav-
ior?) And it’s certainly not only Sun – it’s DEC, it’s
HP, it’s IBM, it’s everyone that has even a mildly
complex system. Yes, even Microsoft.

So why do these same problems show up over
and over, regardless of the supplier? Good question!
We don’t know the answer, but what we do know is
that having a tool to help ensure your system’s consis-
tency is a very positive step in the right direction.
Hence Titan.

Titan’s main design goals are:
• Security comes first. We can mandate that for

this tool, Security comes first. After Titan has
been run on a system it should be more secure
than before and there will be no remaining sig-
nificant host level security problems that we
know of, other than those involving vendor OS
and independent daemon security issues and
patches (e.g., if the system is a WWW server,
CGI or CGI-like interfaces could be problem-
atic). The system will not be 100% secure –
none are – but it will be pretty darn secure,
especially after applying security patches. Due
to customer pressure vendors can’t take the
chance with their patches and system releases
that things will break – but we can. In our test-
ing and use over the years we haven’t run into a
single thing that Titan has irreparably broken,
but it certainly could happen.

• Easy to use. Titan should be simple to install
and run. While knowledge about the system
will always help, you can trust Titan to do the
right thing in most cases.

• Policy based. Titan can assist in the creation of
a programmatically defined technical system or
site security policy. Classes or types of security
(such as firewall, desktop, etc.) are simple to
define and apply to the appropriate system, and
help produce a consistently secure system in
ways that are readily comprehensible.

• Freely available source code. In security it is
imperative to have complete source code avail-
ability. Having full control over what is run and
possessing the potential for total understanding
of exactly what actions it performs is manda-
tory for a truly effective security tool.

• Modular. Titan is non-monolithic and easily
extended. Shell scripts or other programs can
either be taken out of or added into Titan’s
framework. Doing so will not affect the other
programs.

• Useful. Quite simply, we’ve found Titan to be
enormously handy and something that can be
used quite frequently if security is a significant
concern for you or your systems.

We’re often asked how to tighten down the OS
when a firewall product gets installed. There is a

reasonable expectation from the customer that after
the firewall is installed, the system will not be com-
promised by an attack that is outside the scope of the
firewall product. After all, aren’t firewalls supposed to
protect you? You wouldn’t say it was safe to run a
business on the Internet unless you could protect it,
would you? Unfortunately most people don’t know
what security is, and the firewall sales people are not
going to help.

And it really is unreasonable to expect the user, a
customer, to understand all, or even most of the secu-
rity issues of running a system on the Internet. Why
should they? However, this does place both the spe-
cific firewall vendor and security people in general in
a rather awkward situation. Indeed, what probably
scares firewall vendors more than anything else is the
fact that firewalls are failing because users or adminis-
trators don’t fix, remove, or upgrade old versions of a
potentially vulnerable network service.

Titan Does Not . . .

It is important to note that there are several pro-
cedural security problems that Titan does not attempt
to fix or seal off. CGI programs, often deployed on
WWW servers, are becoming one of the more
widespread security problems on the Internet, and are
nearly impossible to programmatically detect or pre-
vent. Titan also does not render a system impervious
to breakins – not only are inside attacks common, but
new bugs and holes are constantly being found.
Remember – there is an arms race going on out there.

In addition, Titan does not address the problems
of secure software distribution or updates. This means
that Titan is probably not a viable tool to secure all
systems on a large network due to the administrative
costs involved in setting up and maintaining all the
copies of Titan. While NFS, rdist, or other methods of
software replication and deployment could be used,
we would warn that the inherent security risks of such
methods, as well as the myriad dangers of controlling
an organization from a central location probably out-
weigh the benefits in most situations.

Using Titan

Using Titan is fairly simple, but we want to reit-
erate – it cannot secure a system, nor can it fix prob-
lems that will inevitably arise unless you continue to
run it. We suggest that you employ the following
sequence when first utilizing Titan:

• Read the Titan documentation and look at the
programs. Does it do what you want? Does it fit
into your security policy?

• Examine or secure your system using your nor-
mal set of tools and procedures. Note any
flaws.

• Back up your system.
• Run Titan.
• Examine your system again. Are the flaws

2 1998 LISA XII – December 6-11, 1998 – Boston, MA

Farmer, Powell, and Archibald TITAN

gone? Are new ones there? Does everything
still work?

• Install strong authentication on your system, at
least for remote logins. Anyone using the same
reusable password in cleartext over the Internet
except in an emergency is a fool.

• Continually monitor your system, running Titan
and other security tools as well as applying
security patches as necessary or as your secu-
rity policy changes over time.

• Report any problems found with Titan to us so
we can fix them in subsequent releases!

After the initial use of Titan we suggest running
it in the verify mode at least once a week. You can run
Titan from cron in the fix mode, but since it can affect
your system drastically we would suggest being cau-
tious about doing so (in addition, if you run the Trip-
wire integrity checking tool, it will complain vigor-
ously about all the files Titan changes). In addition,
we highly recommend that stronger authentication
(such as with the Logdaemon package or hardware
methods) be installed and utilized on the system.
When data is traversing the network, strong encryp-
tion should be used, if possible, in addition to the extra
authentication.

If Titan does the majority of things that you per-
sonally do to secure your systems but misses a few
points, you might consider writing some additional
Titan modules to perform the tasks. We would also ask
you to send us email about this – if security related,
we would certainly consider including your module in
the general Titan release or rewriting it ourselves.

A Case Study

Lucinda Williams is a ten year veteran of system
administration and security on the Internet, and has
been recently appointed chief security officer for the
medical center of her alma mater, Evil University
(Evil U, aka evil.edu). After modifying Evil U’s gen-
eral security policy to fit in with the needs of her con-
stituents, she has started to implement the technical
aspects of the program. Since the university is
strapped for cash, the firewall (an Ultra running
Solaris 2.6) must also serve as a WWW server. Here
are the steps she takes to create and secure the medical
center ’s firewall:

• A new system is installed with the absolute
minimum number of options required to run the
system, which lives on its own subnet to pre-
vent local packet sniffing. Immediately, inetd is
(temporarily) disabled to help ward off intrud-
ers attacking the system before it has been
properly secured. As soon as she downloads all
the security tools and files needed to install the
system, it is physically disconnected from the
network. GCC (the GNU C compiler) is also
installed so that various security tools can be
compiled. (She could alternately compile them
on another system that is known to be

uncompromised and ftp the binaries over, but
it’s safer to compile them locally to help ensure
that they have not been tampered with.) The
Apache httpd server is installed because of its
good security and source code availability. The
most recent version of sendmail is then put into
place.

• The packet screen is the first defensive tool set
up. Almost without exception, any critical sys-
tem that is not protected by a screening router,
proxy firewall, or both (or, less ideally, a pro-
gram such as screend or IP Filter that duplicates
this function) has not been adequately pro-
tected. While not sufficient to secure a system
or network by itself, it is a necessary part of
any security solution. Under most circum-
stances the router shouldn’t have to allow more
than a half-dozen ports or so from the outside
world. DNS, SMTP, http, telnet, and some
ICMP is all Lucinda allows, although she is
forced by Evil U’s policy to allow NFS, Net-
BIOS, finger, and ftp to the rest of the Univer-
sity.

• At the time of this writing, ftp://sunsolve1.
sun.com/pub/patches/ contains all the Sun OS
and program patches (including many security
fixes). Sun also provides a description of and a
tar file containing all their recommended
patches for their released OS’s, which Lucinda
ftp’s and installs. This is done before running
Titan, since the patches might undo some of the
system modifications Titan performs.

• She has previously checked Titan against her
firewall security policy, and has had to make a
few small changes:

• The issues file needed revision to reflect
Evil U’s administrative policies.

• She needs to allow root ftp access (a
truly abysmal idea, but one required by
university policy), so in the ftpusers.sh
Titan module, she removes root from the
$DEFFTPUSERS variable.

• The university has a customized (and
mandatory) compiled C program that all
systems must run via the /etc/aliases file
for inventory purposes. She has several
choices here – she can modify the Titan
module (aliases.sh) that doesn’t like mail
aliases that point to a program, ignore
the warnings, or not run the alias module
at all. The last can be accomplished
either by creating a Titan policy file with
all the modules that she does want to
run, or by simply moving the shell script
out of the modules directory.

• She runs Titan with the -f flag to fix all the
problems it detects, and then installs Titan in
cron to run with the -v flag once per week.

• Logdaemon – despite being vulnerable to

1998 LISA XII – December 6-11, 1998 – Boston, MA 3

TITAN Farmer, Powell, and Archibald

session hijacking and eavesdropping – is used
to improve the authentication of all users
instead of the popular but much more complex
and potentially dangerous ssh. All accounts
have their normal UNIX reusable password dis-
abled.

• Next she runs Tiger and/or COPS, fixes any
problems found, and creates a cron job to run
the tool once per day, mailing the results to her.

• Logging tools are then set in place next. The
TCP and portmapper wrappers and swatch are
all installed, with syslog sending information
both locally and to a central server, and further-
more any critical events are mailed to Lucinda’s
pager.

• As the final step in the setup process, she
removes GCC and makes a full backup of the
system, storing it off-site.

The system is now ready to run. She’ll test the
initial security with a remote security scanner that is
run on the outside of her domain (and hopefully out-
side the university). Any of the widely available pro-
grams such as SATAN, ISS, SAINT, or CyberGuard
would work, depending on her familiarity with these
and her budget. Initially, the port scanner is the most
important thing to run. She also subscribes to the Bug-
Traq, Sun security advisory, and CERT mailing lists,
and will keep a close eye on the system logs and activ-
ity. She has also created an addendum to her local
security policy that will require any and all CGI pro-
grams to be audited and personally approved by her as
well as being placed in sbox (a CGI safety wrapper). If
all this is done, the system shouldn’t take too much
time to set up and continue to run, and should be a
very secure system. The rest of Evil U is perhaps her
largest security concern, since they have significant
access to the rest of the network she maintains, but
there is little she can do but use the TCP and other
wrappers and auditing tools to watch the traffic.

NFR, tcpdump, or other packet watching tools
can be potentially marvelous tools, but do require a
significant time investiture to run effectively. The
widespread availability of very inexpensive large high
speed disks (to save the voluminous audit data) does
make the process more viable, however.

Titan Features

Although Titan has been a dynamic system, con-
tinually adding features and additional fixes or tests,
we feel it important to cover some of the more inter-
esting tests or features. Code fragments will frequently
be given, but with any of the problems listed below,
looking at the source code of the corresponding Titan
sub-program can be illuminating.

The following sections discuss some of the
changes that Titan makes to a system. However, any
list we could create will be out of date fairly soon –
the complete and up to date list can be found at the

online Titan documentation. Since Solaris 2.x contains
several ways to improve a host’s security that earlier
versions of Solaris did not, we naturally have more
Titan modules for it – and generally recommend run-
ning it or a similar system if security is a concern.

Kernel Level Configuration

Why is it that almost every proxy firewall we see
has ip_forward_src_routed enabled? Source routing
and other such options may have their uses, and at one
time were fine ideas, but they do not belong in the
world of Internet security, unless you’re trying to cir-
cumnavigate it. Tools to abuse and bypass systems
that aren’t sewn up tightly proliferate on the Internet.

Most modern UNIX’s allow a great deal of ker-
nel tuning from the command line. Solaris, for
instance, has ndd(1M), which can get and set configu-
ration parameters in TCP kernel drivers. Putting them
in the /etc/system file makes the change take effect at
boot time. Titan closes various kernel and TCP/IP pro-
tocol holes that we’re aware of, including:

• Fixing the stack. Ever since Aleph1’s pivotal
paper detailing how to exploit buffer overflows,
stack smashing programs have perhaps become
the most common type of exploited coding
error. Solaris allows the kernel stack to be non
executable; it adds the following entry into
/etc/system so that zero-fill-on-demand pages
are marked rw- instead of rwx:

• Don’t allow executing code on the stack
set noexec_user_stack = 1

• And log it when it happens.
set noexec_user_stack_log = 1

• NFS bind. Titan sets the privileged port defini-
tion to all ports above 2050. NFS, which uses
UDP port 2049, has been historically set in an
unsafe port range. If you want to protect other
services above this range, simply change this
parameter.
ndd -set /dev/udp \
udp_smallest_nonpriv_port 2050

ndd -set /dev/tcp \
tcp_smallest_nonpriv_port 2050

• SYN time-out. A good example of Titan’s use
as a short-term workaround until a security
patch has been disseminated by the vendor.
This script was produced from a CERT advi-
sory and placed into a Titan module to run on
all local systems to reset system parameters to a
safer level until the vendor was able to produce
a permanent fix (still useful on older systems!):
ndd -set \

/dev/tcp tcp_ip_abort_cinterval \
10000

echo "tcp_param_arr+14/W 0t10240" | \
adb -kw /dev/ksyms

/dev/mem
ndd -set /dev/tcp tcp_conn_req_max 8192

4 1998 LISA XII – December 6-11, 1998 – Boston, MA

Farmer, Powell, and Archibald TITAN

• Ping echo. Titan can set up your system so that
it does not respond to broadcast ping requests.
Why is this important? Attackers often use a
ping flood as a DOS attack. In addition, by
turning off response to broadcast echo it makes
it more difficult for potential attackers to probe
our system by sending a ping -s to the broad-
cast network address:
ndd -set /dev/ip \

ip_respond_to_echo_broadcast 0

Startup files

• /etc/rc.* , /etc/rc?.d/*, etc. The rc shell scripts
are full of services which startup at boot time
that you may not be aware of. Titan will disable
services that can potentially be used to gather
system information remotely or aid a potential
intruder in an attack – this includes the auto-
mounter, the dmi, lpsched, snmpdx, and other
daemons. Titan disables these services by
either commenting out the services or by sim-
ply moving the files from the rc* directories.

Configuration files

• sendmail.cf. Titan enables the privacy flags that
were introduced in sendmail version 8 with the
‘‘goaway’’ option (among other things this dis-
ables VRFY and EXPN), as well as setting the
sendmail logging to a reasonable level:

Opgoaway
O LogLevel=5

• inetd.conf. Titan tears out many of the default
services in the Internet services daemon’s con-
figuration file. Most of the daemons installed
by default are too chatty, historical sources of
system vulnerabilities, and operationally unnec-
essary. Any inetd service that isn’t protected by
using tcp_wrappers or otherwise restricted and
logged (and/or encrypted) is inherently inse-
cure. You should view any program that talks to
the network with grave suspicion.

• ftpusers. If the file /etc/ftpusers exists and has
users names listed in it, then those users are not
allowed to use ftp. Titan adds in system users
such as ‘‘bin’’, ‘‘lp’’, ‘‘root’’, and others.

• nsswitch.conf. The contents of this file can be
as dangerous as having a ‘‘+’’ in your
/etc/hosts.equiv. Having an ‘‘nis’’ or ‘‘nis+’’
entry in this file gives control of crucial files
that your system trusts to a remote system.
Titan takes the approach that if the local host
doesn’t know about a remote system, then that
remote system can be a threat. Titan errs on the
side of safety and simply builds a minimal
/etc/nsswitch.conf file using the /etc/nss-
witch.files sample file as a starting point for
you to build upon, if necessary.

• syslog.conf. Titan modifies /etc/syslog.conf so

that console auth notice messages also get
logged to a file.

File and Directory Permissions

• System umask. Titan forces the system (root) to
use a default file creation mask (022) that is
more secure than the default. This forces all the
system daemons to create files with saner file
permissions.

• System files and directories. One of the oldest
(and still one of the easiest) ways of bypassing
system security is to find a directory or a binary
file that a privileged user (root most often) is
going to access or execute. If that file or the
directory that the file/binary lives in is modifi-
able by another user, then that user can gain
additional privileges. Because of the great num-
ber of potential problems and different security
models for different types of systems (firewalls,
servers, desktops, etc.), Titan has three modules
that each repair or change one or more aspects
of this. All of them can be run for maximum
security.

General System Configuration

• eeprom. One of the few things that Titan simply
checks and doesn’t fix is if you have ‘‘security-
mode’’ set in your EEPROM (we don’t fix this
because you have to choose a password your-
self). Don’t let us say ‘‘we told you so’’! If you
don’t set your EEPROM password, someone
else may set it for you – and halt your system.
Then you’ll need a new EEPROM (or many of
them, if they break into multiple systems!),
which can take a significant amount of time,
especially if you’re running an older or discon-
tinued architecture.

• vold. Vold(1M) may seem innocuous, but let-
ting users mount file systems without being
root doesn’t sound like a good thing to us, even
if the Sun vold doesn’t allow SUID root shells
on the file system being mounted. You might
consider allowing this on desktops, but cer-
tainly not on servers or firewalls.

Passwords and Authentication

• /etc/passwd. Titan deletes or disables system
accounts that are never (or should never be)
logged into. Any user or system accounts left
on the system have passwords or are disabled,
and system accounts other than root and sys
(which starts accounting) also have a special
non-interactive shell put in place.

• Network Information Services. Titan disables
NIS, NIS+, and DNS for name resolution from
/etc/nsswitch.conf. While all of these network
naming services are insecure, you might have
to enable DNS, although we suggest keeping it
off whenever possible. Never run NIS or NIS+

1998 LISA XII – December 6-11, 1998 – Boston, MA 5

TITAN Farmer, Powell, and Archibald

on a secure system – or it won’t be.
• loginlog. Titan creates /var/adm/loginlog so that

the system will log more than five failed login
attempts. (This doesn’t work with all services
(telnet for example).

Titan and Your Security Policy

Titan creates an /etc/issue file with a dire warn-
ing to stay away from your system. The contents of
this file appear in front of the login prompt. By default
it contains:
###
This system is for the use of
authorized users only. Individuals
using this computer system without
authority, or in excess of their
authority, are subject to having
all of their activities on this
system monitored and recorded by
system personnel.
#
In the course of monitoring individuals
improperly using this system, or in
the course of system maintenance,
the activities of authorized users
may also be monitored.
#
Anyone using this system expressly
consents to such monitoring and is
advised that if such monitoring
reveals possible evidence of criminal
activity, system personnel may
provide the evidence of such monitoring
to law enforcement officials.
###

Although we strongly suggest running all (or
nearly all) the modules in Titan, we realize that not
everyone can afford such strident security measures.
Titan thus allows you to run different sets of modules
as desired by using a simple configuration file. This
configuration, or policy file, is a standard UNIX-style
configuration file that uses pound signs (‘‘#’’) for
comments and contains one Titan module (with any
arguments desired) per line. We include two sample
files, for potential use on desktop and server systems.

Note that the desktop policy disables send-
mail(8). Since firewalls often deliver or forward mail,
this is an optional Titan module. Desktops and most
servers have no business running sendmail, however.

Implementation

As previously mentioned, Titan is a master script
that runs a collection of Bourne shell scripts. How-
ever, before getting any results or fixes from Titan,
you must first run the Configure script, which figures
out which OS type and version you’re running and
creates links to the proper Titan modules. Unless
something goes awry, this takes no input from the
user.

Once configured, Titan has three primary modes
of operation to choose from: Fix, Verify, and Inform.

Fix, the most commonly used, simply tells Titan to run
out and fold, spindle, and mutilate your system in all
the ways it knows about in order to create a more
secure system, while informing you of what it is
doing. The Verify mode uses the same set of tests but
instead of changing the system it simply informs you
that various changes would be made if run in the fix
mode. The Inform mode takes no investigative or cor-
rective action, but simply echos the function of each
module.

Unless you’re using a predefined policy, the
main Titan script will run all the programs in the mod-
ule directory with the same mode. You can either cre-
ate a policy or simply move any modules that you
don’t want run out of the module directory and Titan
will not run them.

Each Titan module accepts one of three argu-
ments – Fix (-f or -F), Verify (-v or -V), or Inform (-i
or -I). The Inform argument merely prints out what the
script will do. Unless run under the policy mode, Titan
runs the modules in alphabetical order (sorted by the
shell using the ‘‘*’’ wild card).

The Anatomy of a Titan Module

Although Titan can run any executable program,
it is currently written almost entirely in Bourne shell.
The Titan scripts are heavily commented, and were
intended to be easy to understand. Following the same
general form, they start by setting a safe umask and
with the copyright notice:

:
#
umask 022
This tool suite was written by
and is copyrighted by Brad Powell,
Matt Archibald, and Dan Farmer
1992, 1993, 1994, 1995, 1996,
1997, 1998 with input from
Casper Dik, and Alec Muffett.
#
The copyright holder disclaims
all responsibility or liability
with respect to its usage or its
effect upon hardware or computer
systems, and maintains copyright
as set out in the "LICENSE
document which accompanies
distribution.

The scripts then set the path and do a sanity
check to verify root is running the program (since
Titan almost exclusively modifies root or system
owned files, it makes little sense to run it as anything
else):

who am I?
MYNAME=‘basename $0‘

UCB rules!
PATH=/usr/ucb:/bin:/usr/bin:/sbin

6 1998 LISA XII – December 6-11, 1998 – Boston, MA

Farmer, Powell, and Archibald TITAN

did things work out or not?
action=‘./sanity_check $MYNAME $1‘
if test $? -ne 0 ; then

exit 1
fi

Titan scripts then have three functions – Intro(),
Check(), and Fix() – to do all the serious work.

The Check() function used when a Titan script is
run in the ‘‘-v’’ (‘‘V’’ for Verify) mode. You might
look through a few of the Titan scripts to see some of
the ways the Check() function examines the system.
The only action that all Titan scripts do in the Check()
function is to output either ‘‘PASSES CHECK’’ or
‘‘FAILS CHECK’’, so users can figure out if this Titan
fix is needed or already applied to the system. It can
be as simple as (taken from dmi-2.6.sh); see Figure 1.

Check() {
if [-f /etc/init.d/init.dmi]; then

echo " dmi daemon is enabled: FAILS CHECK"
exit 1

else
echo " dmi doesn’t start at boot time: PASSES CHECK"

fi
}

Figure 1: Simple fix application test.

if [-f /etc/default/kbd] ; then
echo " Disabling the abort sequence "
ed − /etc/default/kbd <<- !
a
KEYBOARD_ABORT=disabled
.
w
q
!
echo " Modifications to /etc/default/kbd complete"

fi

Figure 2: Simple disable script.

The fix code is similar, but instead of simply stating
that there is a problem, it actually takes action (this
code snippet is from disable-L1-A.sh, which disables
the L1-A or stop-A keyboard sequence by modifying
/etc/default/kbd); see Figure 2.

Finally, a Titan module processes the user argu-
ments to see what action to take, and returns a 0 if the
module is successful, and non-zero if something goes
wrong.

Building a Titan Module

To build your own Titan module, you might want
to start out with the ${TITAN-HOME}/arch/sol2sun4/
src/stubs/skeleton script – unless, of course, you want
to write something other than in Bourne shell. The key
points are that the module accepts the basic three

arguments (-i, -v, and -f) as well as outputting an
appropriate message based on the success, failure, or
the detection of a problem.

For example, simply create a Perl program called
‘‘runme.pl’’ which accepts the standard Titan argu-
ments (-i, -v, or -f) and put it into the Titan module
directory. Running ‘‘Titan -f’’ would cause all the
scripts that are in that directory – including your new
one – to be executed with the ‘‘-f ’’ flag.

It is imperative to keep in mind that if you write
a Titan module it will be run as root and probably
mangle the system in some fashion. Be careful with
the code – it’s easy to disable or otherwise make a sys-
tem useless with a single errant character or a subtle
logical error.

Porting Titan to Other OS’s

Despite the fact that at present Titan only oper-
ates fully on Sun Microsystem’s operating systems we
feel that Titan could be useful with fairly minimal
additional steps on other complex systems. To begin
with, the basic framework of Titan runs on both main
flavors of UNIX – the UCB (Solaris 1.1) and System
V (Solaris 2.x) universes. Perhaps a third of all the
Titan scripts would work or will work with minor
tweaking on most out-of-the-box UNIX’s. Armed with
some basic shell scripting and a bit of security knowl-
edge it would not be difficult to port a significant
amount of the original Titan code to most systems. Of
course, we would be happy to try to place OS specific
code on our WWW site.

1998 LISA XII – December 6-11, 1998 – Boston, MA 7

TITAN Farmer, Powell, and Archibald

One of the most important parts of Titan, how-
ever, is its collection of little tricks and techniques that
are unique to Solaris. The best place to begin amass-
ing a collection of security tweaks for a different sys-
tem is with the documentation and WWW site of the
vendor of the system involved. Nearly all UNIX’s
have documentation with fairly good sections on secu-
rity, and many put out security advisories when new
problems crop up on the Internet. The BugTraq mail-
ing list and http://www.rootshell.com are also excel-
lent references, and it’s usually possible to get the
older advisories on-line too. Anything that can be
typed in at the command line could be placed in a
Titan module, including complete compiled or inter-
preted programs from any languages (C, perl, python,
etc.).

Even Microsoft’s Windows NT has the potential
to be ‘‘Titanized.’’ NT version 5 is supposed to come
out with a scripting language based on ksh, and such
rudimentary things as deleting all default share values,
blocking the default guest accounts, and setting up a
meaningful set of password and account management
policies could be easily written. We are currently
investigating HP-UX and Linux as new platforms.

Conclusions

Host-based security is NOT dead, even in the
largest installations. Indeed, as organizations grow
larger and their resources drop correspondingly they
will be required to pick their security fights wisely –
and we feel that Titan can be useful in protecting or
evaluating the security of key systems, such as fire-
walls, production servers and other critical hosts.

Titan has been invaluable to us in our work as
security professionals – running Titan improves the
security of a system in almost all cases. And while it
is not impossible to create tight, well-maintained,
secure systems, it is, time consuming and very diffi-
cult! And it’s easy to miss one or more of the many
(sometimes crucial) details. Most professionals end up
cobbling together various tools using ad hoc checklists
when installing or auditing a system. Titan is well-
suited for auditing systems as well as creating auto-
mated, formal checklists; if a technical security policy
does not exist it can suggest the beginnings of one and
either determine or force the adherence of a system to
it.

It should be said, as disappointing as this may be,
that the creation of a secure system is (and will proba-
bly always be) far more involved than simply running
a computer program. Without a good security policy
that is adhered to and a diligent and conscientious sys-
tem administrative staff that keeps abreast of the latest
security news and issues, Titan is relatively useless.

Titan’s development future seems bright. Brad,
both the originator and the main force behind the
effort, has worked on and used Titan for many years,
and has no plans to abandon it now. The other

coauthors will be contributing as well, and while we
all hope that the Internet community will give ideas or
Titan modules, Titan’s future is not dependent on that.
Methods for backing out of the changes Titan makes, a
simple GUI interface for policy management, and
ports to other systems are all currently being investi-
gated.

Security tools, from COPS, the TCP wrappers,
Crack, Tiger, SAT AN, to the many commercial secu-
rity tools currently available, are invaluable to keeping
systems monitored and secure. We respectfully put
forth Titan as another freely available tool in the pub-
lic security defense arsenal, and hope that it proves as
valuable to you as it has been for us.

Availability

The latest version of Titan (currently 3.0) is
available at: http://www.fish.com/security/titan.html .
The authors can be contacted by email at: <titan@
fish.com>.

Author Information

Dan Farmer performs security research at Earth-
Link Networks, Inc. In past lives he has authored or
coauthored various security programs and papers,
most notably the COPS and SATAN packages. He also
worked for several years at Sun Microsystems with
Brad and Matt, and can be reached via email at
zen@fish.com.

Brad Powell has been in the Computer and Net-
work Security field for over 10 years. As Senior Secu-
rity Architect for Sun Professional Services, he
designs security solutions including Firewalls, Secu-
rity Architectures, and specialized security products
for banks, industry, and government agencies.

Formerly Brad held the position of Network
Security Engineer designing Sun’s Firewall, security
architecture, and network security policies. Duties
also included electronic intrusion detection and pre-
vention, and implementing security solutions on thou-
sands of internal Sun networks, computing platforms,
and applications, as well as assisting law enforcement
agencies worldwide in investigating computer crime.
Brad can be reached via email at Brad.Pow-
ell@sun.com.

Matthew Archibald left Sun Microsystems Inc.
in 1992, after five years as a systems admin/security
engineer. After some extended work outside of Sun
Microsystems dealing in building and managing
mixed-platform environments he joined Securix/
Dynasoft in 1994 as a Security Consultant. Matthew
subsequently returned to Sun Microsystems Profes-
sional Services for a short stay, providing similar ser-
vices to international customers. Today he works as
the Information & Networks Security Officer for
KLA-Tencor corporation in Santa Clara CA. and can
be reached via email at ir003355@mindspring. com or
Matthew.Archibald@KLA-Tencor.COM.

8 1998 LISA XII – December 6-11, 1998 – Boston, MA

Farmer, Powell, and Archibald TITAN

Bibliography

The BugTraq mailing list. Currently bugtraq@
netspace.org.

http://www.rootshell.com .
Smashing The Stack For Fun And Profit by Aleph

One, Phrack 49, Volume Seven, Issue Forty-
Nine, File 14, November 08, 1996.

Sun Microsystems, Inc. System Manuals, Sun
Microsystems, Inc., 1988-1998.

Sun Microsystems, Inc. Security Bulletin, Sun
Microsystems, Inc., 1991-1998.

1998 LISA XII – December 6-11, 1998 – Boston, MA 9

10 1998 LISA XII – December 6-11, 1998 – Boston, MA

