
The following paper was originally published in the
Proceedings of the Twelfth Systems Administration Conference (LISA ’98)

Boston, Massachusetts, December 6-11, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Single Sign-On and the System Administrator

Michael Fleming Grubb and Rob Carter
Duke University

Single Sign-On and the
System Administrator

Michael Fleming Grubb and Rob Carter – Duke University

ABSTRACT

Large organizations are increasingly shifting critical computing operations from traditional
host-based application platforms to network-distributed, client-server platforms. The resulting
proliferation of disparate systems poses problems for end-users, who must frequently track
multiple electronic identities across different systems, as well as for system administrators, who
must manage security and access for those systems. Single sign-on mechanisms have become
increasingly important in solving these problems. System administrators who are not already
being pressured to provide single sign-on solutions can expect to be in the near future. Duke
University has recently embarked on an enterprise-wide single sign-on project. This paper
discusses the various factors involved in the decision to deploy a single sign-on solution,
reviews a variety of available approaches to the problem of electronic identity proliferation, and
documents Duke’s research and findings to date.

Introduction

The number of mission-critical computing plat-
forms in today’s enterprise is exploding. Applications
that were once housed on ‘‘big iron’’ (MVS main-
frames, enterprise-class Unix servers, etc.) are increas-
ingly replaced with network-distributed client-server
applications running across large numbers of smaller
systems. Concurrently, the number of end users asso-
ciated with these systems has increased dramatically
in recent years. Together, these changes have resulted
in a sizable increase in the number of disparate sys-
tems which end users interact with on a regular basis
and which system administrators manage.

The forces driving these changes are well-
known. Increased functionality and faster response
time for end-users, increased demand for access to
organizational information, decreased total cost of
ownership, and Y2K considerations have all con-
tributed to the explosion in network-based systems.
While network-distributed applications have obvious
advantages for both end-users and system administra-
tors, their growth poses new problems for authentica-
tion, auditing, and security management.

In the traditional, host-based application environ-
ment, authentication was simplistic. Users were
authenticated by the host operating system as they pre-
sented for entry into the system, and were then granted
access to applications and data based on their locally-
authenticated identities. Multiple applications co-
located on a single large host system would share
authentication information through the host’s operat-
ing system, and access to the host system could be
managed cheaply and centrally.

Audit trails could also be maintained centrally,
and because all applications shared a common, operat-
ing system-specific authentication mechanism, could

easily be correlated between applications. Each indi-
vidual would appear with a single identity across all
applications on the central host. Therefore, audit
records pertaining to an individual’s actions within
one application housed on the central host could easily
be correlated with records pertaining to other actions
taken by that same individual. Similarly, security and
access management was straightforward, amounting in
most cases to little more than maintaining a single user
database and various application-specific authoriza-
tion tables.

With the advent of network-distributed applica-
tions and the accompanying increase in the number of
disparate enterprise systems, authentication and
related issues have become more complex. Each dif-
ferent application or service may require separate
authentication for its users. Users of multiple applica-
tions or systems may be confronted with a maddening
list of disparate electronic identities and authenticators
to remember. End users may be required to authenti-
cate themselves multiple times during a single work
session, and may have to remember and maintain a
daunting number of login ids and passwords.

From the standpoint of the system administrator,
the situation is no less disturbing. In the more dis-
tributed world, administrators must maintain authenti-
cation information across multiple platforms by creat-
ing, issuing, and deleting users’ authentication infor-
mation in multiple different contexts. While auto-
mated account management systems and distributed
management tools (e.g., Tivoli, CA/Unicenter) can
reduce the per-user effort involved in managing user
identities across multiple systems, they are often as
difficult to manage and maintain as the systems they
support.

Further, administrators who manage electronic
security for their organizations must often go to great

1998 LISA XII – December 6-11, 1998 – Boston, MA 63

Single Sign-On and the System Administrator Fleming Grubb and Carter

lengths to ensure that audit trails from disparate sys-
tems, regardless of whether they share authentication
information with one another, can be reconciled.
Actions performed by one individual across a number
of different systems may be difficult to correlate with
that single individual if the systems involved do not
agree as to the individual’s authenticated identity.

Additionally, the proliferation of electronic iden-
tities has social ramifications that can be devastating
to overall system security. Presented with ten or more
different authenticators for separate applications and
systems, many end-users will resort to using insecure
but easily remembered passwords, or will resort to
recording their authentication information in an inse-
cure fashion. At Duke, the authors have frequently run
across this phenomenon in the form of users (and in
some cases, system administrators) taping lists of their
various logins and passwords to monitors in their
offices. Enforcing any reasonable security policy in
such an environment can be well-nigh impossible.

As end-users become increasingly frustrated by
these issues, and as organizational leaders grow in
their awareness of the serious security ramifications of
electronic identity proliferation, pressure increases on
systems administrators to provide technical solutions
to these problems. Typically, this pressure results in
the demand for a ‘‘single sign-on solution.’’

Single sign-on is something of a holy grail for
large organizations. Everyone seems to want it, many
people claim to have it for sale, but no one seems to
agree as to what, exactly, it is. To many, ‘‘single sign-
on’’ means that each user in the enterprise has only
one userid and associated password. To others, ‘‘single
sign-on’’ means that wherever a user logs in, he is pre-
sented with an interface and application set that is
specifically tailored to him and which follows him
throughout the enterprise. Another interpretation,
favored by the authors, is that ‘‘single sign-on’’ per se
is the goal of presenting the end user with only one
authentication challenge during a single work session.

At Duke, the demand for a ‘‘single sign-on solu-
tion’’ started in earnest as the University began work
on a number of parallel enterprise-wide computing
projects. Payroll, human resources, student informa-
tion systems, and purchasing were all targeted for
migration off the institutional MVS mainframe and
onto a set of distributed Unix-based systems. As the
software engineers working on the deployment of
these new systems began to consider work-flow pat-
terns and information sharing requirements, and as
users began to realistically consider the effect these
new systems would have on their day to day activities,
they realized the potential pitfalls in managing user
information across such widely-distributed systems.

The authors, as lead system administrators for
the arm of the university charged with the design and
maintenance of institutional computing infrastructure,
were approached with a deceptively simple question:

How should the University go about providing a ‘‘sin-
gle sign-on’’ for the many and varied enterprise-wide
applications in use and soon to be deployed on cam-
pus? A review committee, chaired by the authors, was
formed and charged with answering this question.
What was originally expected to be a three-month
review process followed by rapid deployment of a
complete solution has since become a 9-month-long
investigation culminating in a recommended institu-
tional strategy for user authentication which, we hope,
will limit but not eliminate the proliferation of elec-
tronic authenticators across the enterprise. With this
paper, we hope to offer other systems administrators
the benefit of experience thus far at Duke in designing
and implementing a comprehensive single sign-on
solution.

Single Sign-On: One Password, Two Flavors

Before designing a single sign-on solution, a sys-
tem administrator must first determine precisely what
‘‘single sign-on’’ means in her local environment. Is
the demand for a single sign-on solution being driven
by a need for enhanced security and auditability, or is
it more an outgrowth of end-user frustration with the
proliferation of electronic identities? To what extent
are existing systems, many of which may already
house multiple authenticators for individual users, to
be participants in a single sign-on solution? Is the user
population highly mobile, or do individual users work
from fixed locations, and to what extent do individual
users need simultaneous access to multiple different
applications or systems? Answers to these and other
basic questions will help focus efforts on solutions
appropriate to local environments.

In particular, it is critical that organizations
investigating single sign-on solutions decide whether
their need is for a method by which to reduce the num-
ber of authenticators each end-user must remember
and maintain, or whether their need is for a method by
which to reduce the number of authentication opera-
tions a given user must perform in the course of a sin-
gle work session. In the former case, the ultimate goal
is the creation of a Single Authentication Realm, or
SAR, where each user has only one authenticator
(userid and password). In the latter case, the ultimate
goal is the creation of an actual Single Sign-On, or
SSO, mechanism, where each user authenticates only
once during each work session. In the SAR case, indi-
vidual users may be required to authenticate multiple
times during a given work session, typically once for
each disparate application or system accessed. In the
SSO case, each user performs at most one authentica-
tion operation during each work session, although
multiple authentication operations may be performed
on behalf of the user by SSO software during the
course of the user’s work.

Building an enterprise-wide SAR is not a neces-
sary prerequisite to an SSO solution, but in many
cases it may be sufficient to meet an organization’s

64 1998 LISA XII – December 6-11, 1998 – Boston, MA

Fleming Grubb and Carter Single Sign-On and the System Administrator

needs. A SAR can eliminate many of the security risks
associated with electronic identity proliferation. With
only one set of authentication information to remem-
ber and maintain, users are less likely to practice poor
password hygiene and are more likely to protect their
authenticator information. A SAR can also eliminate
many of the system administration problems posed by
userid proliferation. As each user has only one authen-
ticated identity, reconciling audit trails across systems
participating in the SAR becomes as easy as reconcil-
ing audit trails across multiple host-based applications
on a single host, and user identity management (creat-
ing and removing authentication information for indi-
vidual users) is reduced to managing data associated
with the SAR. A SAR can also significantly reduce
the overall cost of managing access to critical systems
by reducing the number of times individual users must
be initially certified (that is, the number of times indi-
viduals’ actual identities must be ascertained and
recorded in order to validate new authentication iden-
tities issued to them). With a functioning SAR, each
individual need only be identified by system staff once
(to authenticate their identity within the SAR at its
inception), so strong certification policies can be
enforced with less time investment by both end-users
and system administrators.

A SAR, however, may not be sufficient to satisfy
the demands of an organization’s user population.
While each user may have only one authenticator
(e.g., a login/password pair) to remember and main-
tain, users may still be annoyed by the need to repeat-
edly enter authentication information during a single
work session. At Duke, this has been of particular con-
cern to the health-care community associated with the
University’s Medical Center. Physicians, nurses, and
other health-care providers are understandably con-
cerned about the time they may be required to spend
repeatedly identifying themselves to different systems
during a single session. In life or death situations, the
few seconds a physician spends re-authenticating dur-
ing a critical work session may make a real difference
in the outcome of his or her patient’s treatment.

Depending on exactly how it is implemented, a
SAR may also increase the exposure of secure authen-
tication information on possibly insecure networks,
resulting in an overall decrease in system security. In
essence, although each user need only remember one
combination to open any organizational safe, the like-
lihood of that combination being compromised by a
determined safe-cracker bent on watching the user’s
day-to-day activities may be increased under some cir-
cumstances.

Addressing these latter issues usually involves
the deployment of a full SSO solution. This may take
various forms: a carefully-designed SAR issuing
reusable authentication credentials honored by all par-
ticipating systems and services, a redesigned set of
endpoint systems and applications built specifically to
rely on a third-party authentication system to identify

users, a separate SSO application designed to proxy
authentication operations for previously-authenticated
users, or some mixture of all three. In addition to the
advantages offered by its underlying (or implicit)
SAR, an SSO solution can increase overall user satis-
faction with computing systems, and can reduce the
frequency and extent of a system’s security exposure.

Depending on the specific SSO approach chosen,
however, deploying and maintaining an SSO solution
can be both labor-intensive for the system administra-
tor and expensive. Maintaining the SAR and/or SSO
infrastructure itself may in some circumstances
become a significant drain on system administrators.
Developing and maintaining interfaces between a
given SSO mechanism and legacy applications or
application environments may also be difficult or
impossible. Additionally, cost considerations may
limit the extent to which an SSO mechanism can be
deployed enterprise-wide.

Application-Independent Authentication vs. Appli-
cation-Dependent Authorization

It is important to note that both SAR and SSO
solutions pertain to authentication, rather than autho-
rization. Authentication, for purposes of this discus-
sion, is the process by which the unique identity of an
individual user is determined and represented in elec-
tronic form. Authorization, on the other hand, is the
process by which a particular authenticated individual
is identified as authorized to access a particular ser-
vice or datum. As the authors found in early discus-
sions at Duke with interested parties, authentication
and authorization are frequently confused with one
another, and as the authors also found in early discus-
sions at Duke, authorization issues are frequently
much more political than authentication issues.

Authentication is by its nature an application-
independent process because an individual’s identity is
unique to the individual, regardless of what role the
individual is fulfilling or what operation the individual
is attempting to perform. Authorization is by contrast
an application-dependent process because different
applications may need to control access within their
individual domains quite differently. User authoriza-
tion poses its own unique set of challenges for both
application programmers and system administrators,
none of which are directly addressed by SAR or SSO
solutions.

Authentication and authorization are, however,
closely interrelated. In order to make appropriate
authorization decisions, applications must among
other things have access to reliable authentication
information. An application which cannot uniquely
identify its user cannot hope to make appropriate
authorization decisions. Ideally, a SAR can provide
the basis for building a cross-platform authorization
infrastructure within an organization. While authoriza-
tion mechanisms are outside the scope of this paper, it

1998 LISA XII – December 6-11, 1998 – Boston, MA 65

Single Sign-On and the System Administrator Fleming Grubb and Carter

should be noted that strong authentication mechanisms
can play a part in supporting strong authorization
mechanisms.

Options for Establishing a SAR

Once a decision has been made to implement a
Single Authentication Realm, the system administrator
may be tasked with recommending a particular
authentication solution for use within the SAR. There
are a variety of authentication options, each with its
own strengths and weaknesses. Depending on organi-
zation-specific needs, any or all of the available
options may need to be investigated or used in the
development of an enterprise-wide SAR.

Policy-Based SAR: Solution by Fiat

Perhaps the simplest, although certainly neither
the most robust nor the most functional solution the
authors have heard of for building a SAR for a large
enterprise is to dictate by organizational policy that
each user shall use one userid and password for each
system and application. Effectively, the organization
achieves a SAR by fiat; institutional policy forbids the
proliferation of authenticators.

In the authors’ experience, such restrictive dicta
are virtually impossible to enforce in any but the
smallest and most tightly-managed organizations. As
the number of users increases, and particularly as there
are more system administrators who must cooperate
with such a policy in order to make it enforceable, the
labor required to enforce the policy increases beyond
manageable limits.

Further, it is impossible to enforce such a restric-
tive policy across disparate systems without sacrific-
ing password security; either those administrators
responsible for enforcement of the policy must have
access to users’ individual authenticator information,
or systems must somehow compare authenticators on
a regular basis to identify violations of the policy.

Moreover, successful implementation of such a
restrictive policy could increase the overall security
vulnerability of systems managed under the policy by
increasing the number of points from which the secu-
rity of users’ authenticators are vulnerable to attack.
Because all cooperating systems must replicate users’
authentication information locally, the security of all
cooperating systems is limited by the security of the
most loosely-managed system in the group. Also,
since there is no single location from which all possi-
bly-compromised authenticators owned by a particular
individual can be modified or revoked, it becomes
time consuming and expensive for system administra-
tors to address emergent security breaches, and users
run the risk of neglecting to update one or more com-
promised authenticators, leaving themselves open to
continued attack.

Despite its weaknesses, this approach can be
made to work under certain circumstances. A similar

approach has been in use within the Duke University
Medical Center for a number of years. Upon arrival,
each employee of the Medical Center is assigned a
DEMPO (Duke Electronic Mail Post Office) id which
is guaranteed unique within the set of DEMPO ids,
along with a DEMPO password. System administra-
tors throughout the Medical Center are required, by
policy, to use DEMPO ids in creating accounts on
their systems.

When the policy was instituted, in the late 1980s,
the Medical Center had only a few multi-user systems,
and still fewer system administrators. The majority of
computing within the Medical Center was still central-
ized on a large MVS mainframe, and the majority of
departmental computing platforms within the Medical
Center were managed by a handful of corporate sys-
tem administrators. Along with the policy, the Medical
Center established an electronic mail service based on
the PMDF product from Innosoft, and used a PMDF
mail gateway to provide the appearance of a unified
electronic mail system using DEMPO ids as electronic
mail aliases. This unified electronic mail service made
the DEMPO id mandate somewhat more palatable to
end-users than it might otherwise have been, and
given the limited number of administrators involved,
the project was an initial success. Once the DEMPO id
policy had become a part of the Medical Center corpo-
rate culture, its success as an organizational policy
was a fait accompli.

A variety of complications have arisen over the
years as a result of this policy. For example, DEMPO
ids are assigned to end-users based on their surnames
at the time of their hiring. Since many individuals
change their surnames as a result of changes in marital
status, adoption, etc., there are frequent requests to
change users’ DEMPO ids to match their new sur-
names, requests which cannot be honored under exist-
ing policy. Further, enforcement of the DEMPO id
policy has been impossible in an environment in
which individual principal investigators have almost
complete control over their grant-funded operations,
and each failure in enforcement leads to increased
friction among those system administrators who are
forced to follow the stated policy. Although the policy
has been in effect within the Medical Center for a
number of years, it continues to be the cause of
repeated complaints by end-users and system adminis-
trators alike.

Unfortunately, this policy-based approach may
often be the first one put forward by managers and
administrators eager to arrive at a ‘‘quick fix’’ for the
problem of identity proliferation. This method may, at
first, seem like a low-cost, high-yield solution to what
could otherwise be an expensive and complex problem
to solve. At Duke, this was the case; it was originally
suggested that enforcing a strict policy across systems
might provide a simple way to control identity prolif-
eration at the institution. We strongly discourage this

66 1998 LISA XII – December 6-11, 1998 – Boston, MA

Fleming Grubb and Carter Single Sign-On and the System Administrator

approach, which was ultimately discarded at Duke in
favor of other, more feature-rich options.

Network-Based Authentication Mechanisms: A
Better Approach
A more sound approach to the creation of a SAR

is the use of a network-based authentication service of
some kind. A number of different services are avail-
able to the system administrator, ranging in complex-
ity from simple network-distributed databases to com-
plex third-party authentication protocols based on var-
ious encryption technologies. Each of these
approaches has its own strengths and weaknesses, and
any or all of them may reasonably be viewed as candi-
dates for partial or complete SAR solutions, depend-
ing on the specific requirements of an organization.

The simplest and most widely-utilized network-
based solutions are network-distributed databases. By
providing network-distributed access to a single
authentication database, multiple cooperating systems
can share users’ authentication information, yielding a
SAR. Some of the most common implementations of
this approach are little more than network extensions
of the well-known Unix passwd(4) table mechanism.

rgc HS TXT "rgc:PASSWORDCRYPT:103:4:His Nobs:/home/rgc:/bin/bash"
103 HS TXT "rgc:PASSWORDCRYPT:103:4:His Nobs:/home/rgc:/bin/bash"

Figure 1: Domain table records.

Hesiod: Authentication via DNS

One such approach, Hesiod, is a mechanism for
distributing passwd table information (or virtually any
arbitrary textual information) across a network using
extensions to the traditional domain name service
(DNS). Developed in the late 1980s at MIT, Hesiod
builds on what was and still is a well-supported stan-
dard for network-based information distribution. In the
Hesiod approach, authentication information tradition-
ally stored in a local Unix passwd table (userids,
encrypted passwords, etc.) is stored in extended DNS
records and made available via extensions to the nor-
mal domain name resolution protocol (cf. RFCs 1034
& 1035). Hesiod-capable DNS servers support, in
addition to the traditional DNS records of class ‘‘IN,’’
records of class ‘‘HS.’’ Class ‘‘HS’’ records may
include records of type ‘‘TXT,’’ containing arbitrary
text strings indexed by other arbitrary text strings.

For a number of years, Digital Equipment Cor-
poration’s Ultrix operating system provided native
support for Hesiod as a means of distributing Unix
passwd table information. The DEC implementation
of Hesiod was in use for some time within Duke’s
public Unix computing facilities, and presents a rea-
sonable example of the Hesiod approach.

In this implementation, additional Hesiod
pseudo-domains are constructed containing class
‘‘HS,’’ type ‘‘TXT’’ records carrying user information
in the standard Unix passwd and group table formats.

The primary DNS server for a given domain,
‘‘team.foo.org’’ for example, publishes not only the
authoritative ‘‘team.foo.org’’ DNS information, but
also authoritative Hesiod information for the pseudo-
domains ‘‘passwd.team.foo.org’’ and
‘‘group.team.foo.org.’’ These pseudo-domain tables
contain standard passwd and group table information.
For example, the ‘‘passwd.team.foo.org’’ domain table
might include records of the form show in Figure 1
that support access to user passwd table entries
indexed on both login id and uid number.

This information, along with standard DNS
information, is then made available across a network
via an extended version of the standard name resolu-
tion protocol. An extension to the standard DNS API
is made available through Hesiod-aware replacements
for the standard resolver routines (commonly, a single
‘‘hes_resolve()’’ routine and a single ‘‘hes_error()’’
routine) to allow applications to search for authentica-
tion information in the form of passwd table entries.
Hesiod queries for records pertaining to ‘‘rgc.passwd.
team.foo.org’’ or ‘‘103.passwd.team.foo.org’’ would,
in the example above, return passwd table information
for the user ‘‘His Nobs.’’

In the DEC implementation of Hesiod, this abil-
ity to index individual passwd table entries within a
Hesiod server’s primary Hesiod tables on multiple
keys was used to provide native support within the
Ultrix operating system for Hesiod as a primary
authentication mechanism. Under Ultrix, Hesiod-
aware versions of the standard getpwnam(), getp-
wuid(), and getpwent() library calls were made avail-
able which would, depending on the configuration of a
given system, return information retrieved via the
Hesiod resolver API. Thus, a homogeneous network
of Ultrix machines could achieve the benefits of a
SAR through direct use of Hesiod.

Hesiod exhibits a number of strengths. Having
been developed as part of the MIT Athena project,
source code to implementations of Hesiod is freely
available, and having been implemented as an exten-
sion to a well-known and well-standardized protocol,
Hesiod boasts a level of standards compliance few
similar systems achieve. Hesiod tables are relatively
easy to manage, being structured similarly to regular
DNS tables, and can be distributed across multiple
Hesiod servers via the same zone transfer mechanism
used to synchronize DNS tables between primary and
secondary domain name servers. As is the case with
traditional DNS information, Hesiod information can
be published by multiple cooperating servers, some of
which may act as ‘‘caching’’ servers to enhance Hes-
iod look-up performance across wide-area networks.

1998 LISA XII – December 6-11, 1998 – Boston, MA 67

Single Sign-On and the System Administrator Fleming Grubb and Carter

Hesiod is not, however, a perfect solution to the
SAR problem. To date, the authors are only aware of
one major vendor providing native operating system
support for Hesiod as a primary authentication mecha-
nism (Digital Equipment Corporation). Although it is
possible to use the open Hesiod API to modify any
arbitrary operating system or application to support a
Hesiod-based SAR, retrofitting Hesiod support into
existing applications (particularly vended applica-
tions) can be difficult.

Additionally, Hesiod does not in itself provide
any mechanism for securing information stored in
Hesiod tables. Not only are Hesiod tables stored in
plain text on Hesiod servers, but Hesiod information is
also transported over the network in plain text. Fur-
ther, Hesiod servers do not necessarily enforce any
limits on what client machines can gain access to Hes-
iod information, although recent versions of the BIND
name server can be used to address that problem.
These properties make Hesiod unsuitable for the dis-
tribution of secure information, and depending on the
security requirements of specific organizations, unsuit-
able as the basis for a SAR.

NIS (YP): Authentication Databases via RPCs

Another network-based authentication database
approach to developing a SAR is the use of Sun’s Yel-
low Pages (YP) or Network Information Nameservice.
Developed by Sun Microsystems under the auspices of
the company’s ONC development project, NIS (for-
merly known as Yellow Pages) provides much the
same functionality as Hesiod, but uses a completely
different network infrastructure. Although NIS was
originally developed as a Sun Microsystems initiative,
the subsequent opening of Sun’s ONC RPC interface
has led to a number of different vendors offering sup-
port for the mechanism.

In the NIS environment, as in the Hesiod envi-
ronment, groups of cooperating machines are referred
to as domains. Although they frequently coincide with
DNS domains, NIS domains are completely orthogo-
nal to DNS domains. Machines in multiple different
DNS domains can, in theory, be members of the same
NIS domain, and vice-versa.

Like Hesiod, NIS provides a mechanism for dis-
tributing arbitrary database tables (termed ‘‘maps’’)
from a single set of database servers to a number of
clients across a network. Also as is the case with Hes-
iod, the database tables distributed by NIS can include
authentication information, typically stored in the
standard Unix passwd and group table format.

NIS, however, uses a completely different mech-
anism to actually distribute information across the net-
work. Whereas Hesiod relies on the pre-existing DNS
standard for network extensibility, NIS relies on Sun’s
ONC RPC mechanism. In the NIS scenario, client
machines within a given NIS domain use any of a
variety of NIS-specific RPC calls to perform search,
retrieval, and update operations on NIS data tables

stored on NIS servers. NIS clients are directed to their
respective domains’ NIS servers via a process of client
binding. NIS client machines are intrinsically aware of
the NIS servers in their environment, and direct any
required RPC calls to their respective servers.

When used as the basis for a SAR, NIS takes the
place of the traditional Unix passwd and group table
mechanism, much as Hesiod does in the earlier exam-
ple. NIS client systems are typically equipped with
NIS-aware versions of the standard getpwnam(), getp-
went(), and getpwuid() routines, allowing the use of
NIS for network-based access to authentication infor-
mation in a manner that is transparent to applications
written to use native Unix authentication mechanisms.

As is the case with Hesiod, there may be more
than one NIS server configured for a given NIS
domain. In such cases, one NIS server acts as the mas-
ter, processing all updates and periodically conveying
new copies of its master tables to the other servers,
which act as slaves. Both NIS master servers and NIS
slave servers can respond to RPC requests, permitting
multiple servers to be used both for redundancy and
for load balancing. NIS is ‘‘open,’’ in the sense that
Sun Microsystems has released information about the
NIS API and its associated network protocols, and
various free versions of Unix and Unix-like operating
systems include source code to functional NIS imple-
mentations.

Like Hesiod, NIS suffers from some serious
drawbacks when viewed as a complete SAR solution.
While NIS is supported ‘‘out of the box’’ by a wider
variety of operating systems and applications plat-
forms than Hesiod, they suffer from similar security
problems. NIS implementations used as the basis for
SARs typically still expose secure authentication
information on a possibly insecure network, and may
in some cases promiscuously distribute passwd table
information to systems outside a given NIS domain.
Such exposure is widely considered to constitute a
security breach, since publication of user authentica-
tion information (particularly encrypted passwords)
can assist would-be intruders in the exercise of brute-
force and cryptographic attacks against the authentica-
tion system.

NIS+: Security at a Cost

Partially to address concerns regarding the open-
ness of the NIS and Hesiod security models, Sun
Microsystems developed NIS+, a NIS (version 2) fol-
low-on. NIS+ provides some of the same features as
Hesiod and NIS, but does so through yet another com-
pletely different network distribution mechanism.
Although similar to NIS in name and general function-
ality, NIS+ represents a major shift in Sun’s approach
to network-distributed passwd table information.

Like NIS, NIS+ relies on an RPC mechanism to
achieve network distribution of arbitrary data, and like
NIS, NIS+ is designed specifically to solve the prob-
lem of extending the traditional Unix passwd table

68 1998 LISA XII – December 6-11, 1998 – Boston, MA

Fleming Grubb and Carter Single Sign-On and the System Administrator

mechanism (and similar mechanisms) into a net-
worked environment. NIS+, however, relies on a mod-
ified RPC mechanism called ‘‘Secure RPC.’’ In the
traditional NIS model, arbitrary clients can bind them-
selves to any available NIS server and execute RPCs
to access data housed on the server, leaving open the
possibility of unauthorized accesses to secure authen-
tication data. In the NIS+ model, clients and servers
share a secret encryption key, allowing NIS+ clients
and servers to cross-authenticate before information in
any NIS+ tables is accessed. This additionally allows
Secure RPC-based applications like NIS+ to take
advantage of session-level encryption of network con-
versations, limiting or eliminating the exposure of
secure information in plain text across a possibly inse-
cure network. As a replacement for traditional NIS
implementations in supported environments, NIS+
offers some significant security advantages.

NIS+ suffers from some serious drawbacks as
the basis for a SAR in a heterogeneous network envi-
ronment, however. To our knowledge, Sun Microsys-
tems has not ‘‘opened up’’ the NIS+ protocols suffi-
ciently to enable competing implementations. Thus,
stable NIS+ clients are only available for use with Sun
platforms (although note that there has been some lim-
ited success with reverse engineering NIS+ behavior
for FreeBSD, Linux and other Free Unix platforms).
While NIS+ servers can be operated in ‘‘NIS compati-
bility mode’’ to support non-Sun clients, running
servers in compatibility mode erodes any security
advantages offered by NIS+, making the NIS+-in-
compatibility-mode server little more secure than a
traditional NIS server.

Further, NIS+ has been demonstrated to suffer
from serious performance degradation and stability
problems in very large environments. The authors
have particular experience with these problems, hav-
ing been tasked with managing a NIS+-based passwd
table distribution mechanism for a collection of
approximately 200 Solaris machines for over two
years. At Duke, NIS+ is in use as a mechanism for dis-
tributing passwd table information (but not, as we will
discuss later, actual authentication information) for
some 37,000 Solaris users, and we have observed a
number of serious problems with this rather large
NIS+ deployment.

While running performance of NIS+ in the pres-
ence of no underlying server or network problems has
not been a significant issue, serious problems have
arisen when one or more NIS+ servers have failed.
Specifically, it has been our experience that multiple
NIS+ servers cannot be expected to function reliably
in failsafe modes. In theory, NIS+ shares the tradi-
tional NIS feature of supporting multiple servers
within a given NIS+ domain, each of which can
respond to service requests from clients in the event of
a failure among the server group. In practice, our
experience at Duke has been that NIS+ servers fre-
quently exhibit failure modes in which, rather than

refusing to respond to RPC requests and triggering
client fall-back to other servers in the NIS+ domain,
they respond incorrectly to RPC requests, resulting in
clients receiving incorrect or invalid information. Fur-
ther, because NIS+ (unlike NIS) offers no mechanism
for forcing a particular client machine to direct its
Secure RPC calls to a particular NIS+ server, we have
found it to be exceedingly difficult to localize NIS+
failures when they occur, and nearly impossible to
resolve them in an acceptable timeframe.

NIS+ has also exhibited serious administrative
performance problems at times when it has been nec-
essary to perform significant updates to large NIS+
tables. Transferring Duke’s 37,000-entry passwd table
from the local NIS+ master server to its slaves across
a 100-Mbit FDDI ring has been observed to take as
long as 15 minutes. More significantly, regenerating
NIS+ credential information (required by the Secure
RPC framework underlying the NIS+ service) for all
37,000 system users has been seen to take in excess of
12 hours real time on an 85-MHz Sparc5 workstation,
during which time no access is available to NIS+
objects within the directory tree rooted on the affected
server. Solutions to these problems recommended by
the vendor have essentially amounted to replacing
NIS+ with another service. NIS+, we have been told,
was designed to support tables containing up to 10,000
objects, and is known to suffer performance degrada-
tion when table sizes increase beyond that limit.

These issues have driven us at Duke to work
toward eliminating as many dependencies on NIS+ as
possible, and lead us to recommend against NIS+ as
the basis for a SAR in any heterogeneous or large
environment. NIS+ can be used effectively as a
replacement for NIS or YP in small, homogeneous
environments, but does not scale well to large applica-
tions and is not appropriate for use in heterogeneous
computing environments.

RADIUS, etc.: SAR by Proxy

Hesiod, NIS, and NIS+ are all SAR-like services
based on the concept of distributing a single database
of authentication information (usually a Unix-style
passwd table) to a variety of possibly heterogeneous
systems. Authentication is still achieved, with these
mechanisms, through client-based look-up of authenti-
cation information and direct comparison of authenti-
cators presented by end-users against those recorded
in central authentication databases. While this
approach has some advantages, among them interoper-
ability with a plethora of existing applications
designed around the traditional Unix security model,
other approaches to network-distributed authentication
are available.

One such approach, authentication by proxy, is
exemplified by the RADIUS (Remote Authentication
Dial In User Service) authentication mechanism. In
the RADIUS scenario, authentication is achieved by
clients passing their users’ authenticators to a central

1998 LISA XII – December 6-11, 1998 – Boston, MA 69

Single Sign-On and the System Administrator Fleming Grubb and Carter

RADIUS server, which performs table look-ups to
determine their validity, and returns an ‘‘accept’’ or
‘‘reject’’ response to the clients depending on the
results of the RADIUS look-up. Client systems need
not have direct access to any secure authentication
tables, since actual authentication operations are per-
formed by proxy on the RADIUS server. Rather than
distributing the authentication database to client
machines, RADIUS and related mechanisms pass indi-
vidual users’ authenticator information to a central
server for validation.

RADIUS has been implemented by a number of
vendors of remote-access hardware (terminal servers,
routers and other network devices) as a cost-effective
mechanism for providing user authentication from
within embedded applications.

Depending on the specifics of particular imple-
mentations, RADIUS can suffer from a variety of
security flaws as a basis for an organizational SAR. In
particular, although the network path between a
RADIUS client and a RADIUS server can be and fre-
quently is hardened, the connection between a
RADIUS client and its user is often unencrypted. As
such, widespread use of RADIUS has traditionally
been confined to applications in which the connection
between the authenticating agent and the RADIUS
client can be expected to be invulnerable to passive
monitoring attacks (e.g., dial-up terminal servers).

A mechanism similar to RADIUS has been in
use at Duke University for a number of years in sup-
port of authenticating dial-up access to the institution’s
campus-wide network. Users make dial-up connec-
tions to terminal servers on campus which, in turn,
prompt for their authentication information and pass it
to a Unix machine implementing a RADIUS-style
authentication mechanism based on a secure third-
party authentication service (Kerberos v4). Dial-up
access to the terminal servers is either granted or
refused based on the success or failure, respectively,
of the Unix machine’s authentication operation. While
this poses serious security issues in the Duke environ-
ment, traditionally it has been felt that the risk of
authenticator compromise involved in passing authen-
tication information in plain text over a presumably
secure telephone network and across the hardened
Ethernet network connecting the terminal servers with
the authentication proxy is more acceptable than the
risk of allowing unauthenticated dial-up access to the
campus network.

Because they are widely supported in certain
niche-applications (terminal servers, etc.), RADIUS
and related authentication proxying mechanisms are
likely to play a role in any large organization’s SAR.
We do not, however, recommend that they be viewed
as the basis for building a SAR, but rather recommend
that they be used as an adjunct to other, more secure
and more widely-applicable SAR solutions.

OTP: The Contrapositive of SAR

Yet another set of network-distributed authenti-
cation mechanisms which should be identified, per-
haps less as SAR-building platforms than as compet-
ing solutions to many of the security problems
addressed by properly-chosen SAR solutions, is the
group of so-called OTP or One Time Password sys-
tems. Ranging in their implementation from totally
software-based approaches (like S/Key) to totally
hardware-based solutions (so-called ‘‘smart cards’’),
OTP solutions address the problem of identity prolif-
eration in a somewhat radical manner.

Rather than striving to reduce a plethora of sys-
tem- and application-specific authenticators issued to
each end-user to a single, highly-secure authenticator,
OTP solutions strive to make authenticators secure by
changing them each time they are used. In the typical
OTP scheme, a given user will have as many pass-
words (although hopefully not as many login ids) as
he or she has authenticated work sessions. Each time a
user ’s password (or, more generally, a user ’s authenti-
cation information) is used, it is immediately invali-
dated, and new authenticators are issued for the user.

Provided that the mechanism by which new
authenticators are issued to end-users is sufficiently
unpredictable to third parties, such OTP schemes can
eliminate the security risks involved in sending plain-
text authentication information over an insecure net-
work. By the time a nefarious observer becomes aware
of the user’s identity and authentication information, it
is no longer of any value.

Insofar as most OTP systems rely on some cen-
tral authority to manage and coordinate the issuance
and revocation of single-use authenticators, they may
realistically be viewed as providing a sort of SAR, and
to the extent that OTP systems maintain consistency
of user identities (login ids, for example) through
time, they can form the basis of something very simi-
lar to a SAR.

Software-based OTP mechanisms, such as
S/Key, typically work by pre-assigning a sequence of
authenticators to each individual, a list of ‘‘upcoming’’
passwords, as it were. Each user must periodically
query the S/Key service for a new list of future
authenticators, and must refer to the list whenever per-
forming authentication operations on supported sys-
tems. Similarly, all supported systems must be accessi-
ble at an administrative level to the S/Key service, so
that authenticators may be invalidated and replaced as
they are used.

Obviously, such list-based OTP solutions can
only be as secure as the mechanisms by which these
lists of authenticators are transported. Requesting a
new authenticator list over an unsecured network
channel, printing an authenticator list on an insecure
printer, or storing an unencrypted list of future authen-
ticators online or in some other insecure fashion
undermines the security of the entire list. So long as

70 1998 LISA XII – December 6-11, 1998 – Boston, MA

Fleming Grubb and Carter Single Sign-On and the System Administrator

sufficiently secure channels are used to manipulate
authenticator lists, however, list-based OTP mecha-
nisms can provide an inexpensive enhancement to the
overall electronic security of an organization.

By contrast, hardware-based OTP solutions (like
Security Dynamics’ SecurID product) typically gener-
ate new authenticators as they are required, thus elimi-
nating the need for persistent lists of single-use
authenticators. In these schemes, each user is issued
an electronic device (typically a roughly credit-card-
sized microcomputer) equipped with enough intelli-
gence to calculate a complex and unit-specific cipher
which is in turn used as the owner’s authenticator.
Depending on the specific implementation, the cipher
may be a function of the current time (in which case
the user’s ‘‘smart card’’ must have a means for syn-
chronizing its clock with the central security system),
a function of some random challenge string presented
to the user at the start of an authentication operation
(in which case the user’s ‘‘smart card’’ must offer
some means for ascertaining the value of the challenge
string), or a function of both. Additionally, smart card
systems may require users to provide the interface
between cards and authenticating systems (by manu-
ally responding to OTP challenges presented by target
systems) or may make use of additional hardware to
directly connect authenticating systems to smart cards.

Provided that the cipher calculated by the user’s
smart card is sufficiently secure (that is, provided that
it is both cryptographically secure and sufficiently dif-
ficult to reproduce using other hardware) such systems
can offer the same sorts of advantages list-based OTP
solutions like S/Key offer. In addition, hardware-based
systems offer the advantage of requiring little or no
change in the behavior of end-users; users need not
learn to operate a new software system in order to
manage their authentication information. Rather, they
may simply substitute a password provided on demand
by their personal authentication device for a traditional
remembered password.

Hardware-based OTP solutions typically involve
much higher installation and deployment costs than
software-based solutions. Especially in large organiza-
tions, the cost of acquiring and issuing thousands of
smart cards and possibly card reading interfaces may
be prohibitive, and in addition, the long-term cost of
maintaining and replacing malfunctioning or stolen
authentication devices can be exorbitant. Similarly,
although software-based OTP solutions may be
deployed without significant capital outlay, even
within large organizations, the cost associated with re-
training users and supporting their use of a more com-
plicated authentication scheme may be prohibitive.

Unlike distributed database SAR solutions and
proxy solutions such as RADIUS, OTP solutions rely
on ‘‘something the user has,’’ rather than ‘‘something
the user knows’’ to achieve strong user authentication.
Depending on the extent to which users protect their

OTP lists or smart cards, such ‘‘bearer bond’’ authen-
tication strategies can be either more or less secure,
overall, than equivalent password-based systems.
Increasingly, OTP mechanisms are being viewed as an
adjunct to, rather than a replacement for more tradi-
tional password systems. While the cost of deploying
an OTP solution ubiquitously across a large organiza-
tion may be prohibitive, the cost of deploying such a
solution for a few, key users within the organization
(presumably those whose level of authorization makes
the strength of their authentication particularly impor-
tant) may be less so. In many instances, hardware-
based OTP solutions are being deployed in addition to
traditional password-based mechanisms in order to
achieve an even higher level of certainty in authentica-
tion than either mechanism can provide alone.

PKI: SAR Meets Star Wars

Yet another, arguably much more secure
approach to network-distributed authentication
involves the use of digital certificates under the aus-
pices of a public key infrastructure, or PKI. Although
it has yet to achieve the status of a true ‘‘standard,’’
the most widely-accepted approach to digital certifi-
cate/PKI authentication is the proposed X.509 stan-
dard.

In this scenario, authentication is achieved by
presenting a digital certificate to the challenging sys-
tem or application. This digital certificate is actually a
structured block of data identifying the certificate’s
owner and typically including the owner’s public key
which has been digitally signed (using one of a num-
ber of related public-key encryption technologies) by
the certificate’s issuer, the user’s certificate authority
or CA. Presented with this digital certificate, a cooper-
ating system can verify (by decrypting the certificate
with the CA’s public key) that the certificate is gen-
uine (i.e., that it was issued by the certifying author-
ity). The CA can frequently be queried to verify that a
particular certificate is valid (i.e., that it has not been
revoked). Certificate authorities, in this scenario, must
each have their own public key/private key pairs (to
effect signing of the certificates they issue), and must
act as key distribution agents, providing a central
repository for the retrieval of public key information.
Participating systems and applications then ‘‘trust’’
particular certificate authorities, accepting valid cer-
tificates issued by those CAs, usually on the basis of
the CA’s being known to use trusted methods to iden-
tify individuals before issuing them certificates.

Public key certificates offer a number of advan-
tages as an authentication mechanism. Being based on
public key encryption mechanisms, certificates are
highly cryptographically secure. Forging a public key
certificate without prior knowledge of both a user’s
private key and his CA’s private key is virtually
impossible. Further, certificates offer some of the
advantages of hardware-based OTP systems, in that
authentication is achieved based on a user’s

1998 LISA XII – December 6-11, 1998 – Boston, MA 71

Single Sign-On and the System Administrator Fleming Grubb and Carter

possession of something (his or her certificate) rather
than his knowledge of something (his or her pass-
word).

Additionally, digital certificates provide a natural
means for engaging in secure communications over a
possibly insecure network. Once a user’s public key
certificate has been exchanged and validated as proof
of authentication, a shared encryption mechanism is
available to both the authenticating user and the sys-
tem to which he or she is authenticating. The user may
encrypt data in his or her private key (as distributed by
the user’s CA) to ensure the authenticity of transmis-
sions (data encrypted in the user’s private key can
only be decrypted using that user’s public key). Partic-
ipating systems may encrypt data in the user’s public
key, ensuring that their transmissions can only be
decrypted using the user’s private key.

Public key certificate systems are not, however, a
perfect solution to the SAR problem. In order to
deploy a SAR based on public key certificates, an
organization must first develop and deploy a rather
complicated set of support services, a public key man-
agement infrastructure, which may include, in addition
to one or more local Certificate Authorities, a key
escrow system (for the secure storage and retrieval of
private key information) and mechanisms for updat-
ing, invalidating, and re-publishing public keys. Secu-
rity of the various portions of the public key infras-
tructure becomes critical, since compromise or imper-
sonation of a part of the public key infrastructure can
directly undermine the security of any authentication
mechanisms designed around it.

In certain environments, it may be feasible to
rely on an external CA, effectively outsourcing the
work involved in setting up and maintaining a public
key infrastructure. In many organizations, however,
the need for guaranteed access to the certificate
authority or special requirements for user identity veri-
fication and certificate maintenance (frequent certifi-
cate revocation, for example) may make an off-site
CA untenable. On the downside, reliance on an orga-
nization-specific CA may cause difficulties for users
who interact with systems which do not trust the orga-
nizational CA, resulting in individuals having to jug-
gle multiple personal certificates (one for use within
the organization, for example, and one for use outside
the organization) and undermining the intent of a
SAR.

Moreover, few applications and no common
operating systems are currently built to support PKI
certificates as the basis for user authentication. So-
called ‘‘personal certificates’’ are supported by a wide
range of web-based applications via the intrinsic sup-
port for certificates provided through common web
browsers (Netscape, Internet Explorer), but non-web-
based applications and systems typically offer no
mechanism for supporting certificates as an authenti-
cation tool. A SAR based entirely on the exchange of

public key certificates in any but the most homoge-
neous of organizational environments would require
significant re-development of common applications
and systems.

PKI certificates further pose problems in envi-
ronments where users are highly mobile. Because of
their complexity and size, certificates cannot be feasi-
bly memorized or re-entered by their owners, and so
must be stored electronically. In non-mobile user envi-
ronments, certificates can reasonably be stored on
users’ preferred client machines, where they can be
reliably accessed at all times. In more mobile environ-
ments, where a single user may work from any of a
number of locations, access to a user’s PKI certificate
can become more complicated. Hardware-based solu-
tions, in which certificate information is stored in
‘‘token cards’’ carried by users, can make certificates
easily transportable, but are expensive to implement
across large organizations. Software-based solutions
involving key and certificate escrow systems can
make certificates network-accessible, but require some
form of alternative authentication in order to ensure
secure access to escrowed key/certificate information.
These difficulties are specific, of course, to end-user
authentication systems; public key certificates used to
authenticate systems to one another need not be trans-
ported from one system to another and so do not suffer
from these complications.

In spite of these difficulties, it is clear that public
key certificates will play an increasingly important
role, particularly in the realm of secure electronic
commerce applications. Any SAR or SSO infrastruc-
ture developed today will need the ability to use public
key certificates where they are appropriate. However,
building a SAR based solely on public key certificates
and a central CA will only be feasible for the short
term within certain organizational environments. The
authors believe that the cost of deploying, managing
and maintaining a public key infrastructure currently
makes certificate-based authentication mechanisms
unattractive from the point of view of the typical sys-
tem administrator.

Kerberos: Established Technology, Secure Authentica-
tion

Yet another secure network-based authentication
mechanism, and one which the authors recommend as
the preferred basis for developing SARs within most
organizations, is Kerberos. Developed at MIT under
the same Athena project which spawned the Hesiod
system discussed earlier, Kerberos has been in use
within a large number of organizations for a number
of years. The Kerberos technology, represented by
MIT Kerberos versions 4 and 5 as well as by the secu-
rity service associated with the Open Group’s DCE
infrastructure, is both widely-understood and reason-
ably impervious to common methods of attack.

The impetus for the development of the Kerberos
authentication model was a simple question: how can

72 1998 LISA XII – December 6-11, 1998 – Boston, MA

Fleming Grubb and Carter Single Sign-On and the System Administrator

users be authenticated to systems across insecure net-
works without exposing their authentication informa-
tion to would-be attackers monitoring network traffic?
Relying in part on previous work by Needham and
Schroeder, developers at MIT designed the Kerberos
model as a means of authenticating clients without
resort to passing re-usable authentication information
(passwords, etc.) over an insecure network.

In the Kerberos approach, clients and servers are
loosely grouped together into ‘‘realms,’’ with each
realm containing at least one shared security server.
This security server, called a KDC or Key Distribution
Center, shares a secret encryption key with each
authenticatable user and with each participating net-
work service provider within the realm. These keys
are used as shared secrets to effect user authentication
and to issue reusable authentication credentials called
‘‘tickets.’’ Users and service providers within a given
realm trust the realm’s KDC, and in some cases, may
trust foreign KDCs through a chain of trust relation-
ships and shared keys between KDCs in multiple
realms.

Kerberos achieves authentication through the use
of shared secret keys. The model is based on the sim-
ple realization that if two parties wish to verify one
another ’s identities, they may do so securely by
exchanging information strongly encrypted in a shared
secret key. The party initiating the authentication pro-
cess can send a message encrypted in the shared secret
key, and if the responding party is able to properly
decrypt the message, both parties can be reassured of
one another’s identities. Provided that the key is actu-
ally a secret shared solely between the two parties, the
ability to decrypt one another’s messages is sufficient
to prove authentication. If part of the encrypted infor-
mation passed in the original exchange is further
encrypted in a secret key known only to the originat-
ing party, the originating party can subsequently verify
the origin of the initial message.

In reality, the Kerberos model is made more
complicated by the need for more than two parties to
authenticate to one another securely in real environ-
ments (necessitating the use of persistent ‘‘tickets’’ as
records of prior authentication), and by the need to
address certain security vulnerabilities intrinsic to its
use in insecure network environments (network replay
attacks, dictionary-based key-guessing attacks, etc.).

Conceptually, the KDC can be viewed as provid-
ing two different but related services: an initial
‘‘authentication service’’ or AS, used to perform initial
authentication of users and issue tickets for the ticket
granting service, and a ticket granting service or TGS,
used to issue tickets for other participating services. In
most existing implementations of the Kerberos model,
the AS and TGS reside on the same secure host(s), and
in most cases the two are implemented using the same
executable code.

In the classical Kerberos authentication model,
initial authentication involves the acquisition of a
‘‘ticket granting ticket’’ or TGT (basically, a ticket for
the ticket granting service) from the KDC’s AS. This
is accomplished in two steps. In the first step, the
client sends an authentication request to the AS, indi-
cating the user for whom a ticket granting ticket is
sought and providing information (time stamps, etc.)
useful for validating the request. The AS responds
with a TGT which is encrypted in the user’s secret
key. The client’s ability to decrypt this TGT is the
basis for the client’s proof of authentication, since
only the user and the KDC are presumed to know the
user ’s secret key. Encryption is usually achieved using
the DES encryption algorithm, but can in theory be
achieved using any symmetric-key encryption scheme.

Enclosed in the ticket granting ticket are a num-
ber of pieces of information, of which five are particu-
larly important: an actual user credential identifying
the authenticated user (encrypted, itself, in the server’s
own secret key, to prevent foreign construction of cre-
dentials), a timestamp issued by the KDC identifying
the time at which the ticket granting ticket was issued,
a lifetime value indicating how long the ticket is to
remain valid, a checksum useful for ensuring that the
ticket has not been modified from its original content,
and a randomly assigned ‘‘session key’’ for use as a
shared secret between the now-authenticated user and
the KDC. If the client is able to decrypt the ticket
granting ticket correctly (i.e., if the resulting ticket
contains a valid checksum) and if the timestamp on
the ticket matches (within a short window) the current
local time on the client, the ticket is accepted as valid.
If any but the correct key is used to decrypt the ticket,
or if the data within the ticket is changed from what
was originally issued by the KDC, the resulting
decrypted key will not match its checksum and the
ticket can be identified as invalid. Together, encryp-
tion in the user’s secret key and the presence of the
checksum ensure the integrity and confidentiality of
the TGT.

At no time during the initial ticketing transaction
does the user’s secret key information pass over the
network, and at no time do reusable authentication
credentials pass over the network unencrypted. As
such, the initial ticket exchange can in principle be
performed securely over an insecure network.

Once acquired, the user’s ticket granting ticket
can subsequently be used in additional ticket
exchanges with the KDC, usually to acquire so-called
‘‘service tickets’’ as proof of authentication for use
with services other than the TGS. Subsequent ticket
exchanges proceed similarly to the initial ticket
exchange, with requests being made to the TGS rather
than the AS, and with requests specifying a target ser-
vice in addition to a target user. Authentication for ser-
vice ticket requests may be performed in the same way
as authentication for initial ticket requests is per-
formed (using the client’s knowledge of the user’s

1998 LISA XII – December 6-11, 1998 – Boston, MA 73

Single Sign-On and the System Administrator Fleming Grubb and Carter

secret key to authenticate the user), but more com-
monly, a previously-acquired TGT is used as proof of
authentication. The TGS responds to a service ticket
request with a service ticket containing information
similar to that in the TGT. The response is encrypted
in the session key shared between the KDC and the
authenticated user, and contains within it information
encrypted in the secret key shared between the target
service and the KDC. This service ticket can then be
used as part of an authentication transaction with the
target service, which can ensure that the ticket being
presented to it is valid based on its being encrypted in
the target server’s secret key (a key known only to the
target server and the KDC).

Three different implementations of the Kerberos
model are currently in common use: the ‘‘original’’
Kerberos version 4, Kerberos version 5, and the Open
Group’s DCE security server. All are built atop the
general framework outlined above, although each dif-
fers from the others in the specifics of the communica-
tion protocol used and the details of the contents of
tickets. Kerberos version 4 is perhaps the most com-
monly-deployed implementation of the model, having
been generally available since the mid-1980s. As Ker-
beros V4 came to be deployed on larger scales, it
became apparent that the original implementation suf-
fered from some serious security flaws, including a
particular susceptibility to dictionary-based attacks.
Kerberos V5 was developed in the early 1990s to
address these concerns, and to provide some addi-
tional features (e.g., better cross-realm authentication,
forwardable tickets, and renewable tickets) required
by new applications of the model. The addition of sup-
port for prior encryption of ticket granting requests
and changes in the underlying ticket exchange proto-
col make Kerberos V5 less vulnerable to certain com-
mon dictionary-based cryptographic attacks. The DCE
security service was developed as part of the Open
Group’s Distributed Computing Environment, a larger
(and some have said, too large) project striving to pro-
vide an infrastructure for secure, cross-platform dis-
tributed computing. Loosely based on an intermediate
version of Kerberos V5 from MIT, the DCE security
service is conceptually similar to Kerberos V5, but
relies on the DCE ‘‘secure RPC’’ mechanism as the
underlying conduit for ticket exchanges.

Kerberos offers a number of positive features for
both system administrators and end-users as the basis
for an organizational SAR. The Kerberos model pro-
vides the advantages of strong authentication based on
strong encryption without the overhead and complica-
tions exhibited by current PKI implementations. In
principle, only one dedicated network server must be
installed, secured, and maintained to support a Ker-
beros infrastructure, although in practice multiple
‘‘clone’’ security servers are usually deployed to pro-
vide redundancy and availability. Like PKI/certificate
based authentication mechanisms, Kerberos provides a
natural mechanism for ensuring the privacy and

integrity of application-level data exchanges over an
insecure network (via the session keys distributed with
Kerberos tickets), and provides a mechanism for
bipartisan authentication (i.e., the model supports both
the authentication of client users to server systems and
the authentication of server systems to client users).

Kerberos boasts an enormous installed user base,
and is one of the most proven network-based authenti-
cation schemes available. From the standpoint of the
systems administrator, who may be held ultimately
responsible for both the security and availability of
systems participating in the SAR, this historical track
record can be a significant advantage. Kerberos is fur-
ther supported by well-established Internet standards,
and as such forms the basis for continuing develop-
ment efforts world-wide. New implementations of the
Kerberos model continue to be developed (viz., work
at KTH in Sweden and recent work toward both Tcl
and Java-based implementations of Kerberos V5).
Kerberos is already supported as an authentication
mechanism by a number of high-profile application
vendors (Oracle, SAP), a variety of common open
application servers (IMAP, POP, ACAP) and is sup-
ported natively on a number of operating system plat-
forms (AIX, Solaris). Upcoming versions of some
very popular operating systems (Windows NT, Novell
Netware) are also expected to include native support
for Kerberos as an optional authentication method.

Kerberos does suffer from some well-known
deficiencies, both as an authentication system and as
the basis for an organizational SAR. Kerberos is, at its
base, a password-based system, and as many have
pointed out, it is subject to a variety of password-
guessing attacks. Further, the model (particularly in
its implementation under Kerberos V4, but to some
extent still in Kerberos V5 and the DCE implementa-
tion) is subject to certain types of replay attack; a
determined attacker may, under certain circumstances,
be able to circumvent the replay protections built into
the Kerberos protocol and for a short time masquerade
as an authenticated user by replaying part of a previ-
ous ticket exchange on an insecure network. As
Bellovin and Merritt, among others, have pointed out,
Kerberos is also subject to environmental attacks.
Depending, as it does, on time synchronization
between participating clients and servers, Kerberos
security can be undermined in the presence of insecure
timekeeping mechanisms. Additionally, since Ker-
beros session keys may be used to encrypt multiple
messages between a single client and server during the
lifetime of a given Kerberos ticket, session keys may
be vulnerable to cryptographic attack by sufficiently
determined enemies.

Like PKI solutions, the security of a Kerberos-
based SAR is wholly dependent on the security (both
logical and physical) of the systems making up the
authentication infrastructure. The security of the KDC
within a given realm is as important in the overall
security of a Kerberos-based SAR as the security of

74 1998 LISA XII – December 6-11, 1998 – Boston, MA

Fleming Grubb and Carter Single Sign-On and the System Administrator

any portion (CA, key escrow systems) of a shared PK
infrastructure. The authors believe that, because of its
relative simplicity and wide availability, a Kerberos
SAR can be more easily (and thus, more probably)
secured against infrastructural attack than a more com-
plex, less widely-implemented certificate-based SAR.
As certificate-based systems come of age, however,
systems administrators may find that PKI-based SAR
solutions gain ground in this respect.

Like the PKI/certificate approach, the Kerberos
approach to building a SAR is not without develop-
ment costs. Applications must be designed or modi-
fied to support Kerberos (must be ‘‘Kerberized’’) in
order to participate in a Kerberos-based SAR, and
although a number of applications and operating sys-
tems already provide some measure of Kerberos sup-
port, many do not. Depending on an organization’s
installed base and usage patterns, adoption of a Ker-
beros-based SAR may require significantly more or
significantly less retrofitting of existing applications
and systems than a PKI-based SAR.

Experience at Duke, where Kerberos has been in
use for a number of years in a SAR supporting a vari-
ety of public computing labs on campus, has shown
that Kerberizing applications whose intrinsic authenti-
cation models are relatively modular, while not trivial,
is relatively straightforward. The published Kerberos
API, with its support for RFC 1510’s GSS-API stan-
dard, makes Kerberizing most applications a matter of
adding on the order of ten or twenty lines of C to
server and client code. Kerberos extensions developed
at Duke (including the Exu system co-developed by
one of the authors) have simplified the integration of
Kerberos authentication into a variety of systems-
related tasks. It should be noted, of course, that not
every application or system can be modified at every
site. In the case of proprietary software and systems,
the system administrator must frequently rely on coop-
eration from one or more vendors in order to imple-
ment support for a Kerberos- or PKI-based SAR. At
Duke, the authors have been fortunate in having
access to source code for some proprietary systems,
and in having the support of upper management in the
use of free and open software wherever possible.

Likewise, experience at Duke has shown the
Kerberos model to be extremely scalable, supporting
very large numbers of authenticatable entities (termed
‘‘principals’’) with little or no measurable degradation
in performance or stability. Currently, the
‘‘ACPUB.DUKE.EDU’’ Kerberos realm supports in
excess of 37,000 users and provides secure, authenti-
cated access to a range of applications from electronic
mail to dial-up networking across a variety of comput-
ing platforms, from Macintoshes to Unix-based file-
servers. This is not to say that there are not costs
which increase as the user-base for a SAR grows (cer-
tainly, end-user support costs can increase dramati-
cally) but rather that the administration of a Kerberos
infrastructure supporting tens of thousands of users is

not significantly more complex or time-consuming
than the administration of a similar infrastructure sup-
porting only hundreds of users.

Many of the security vulnerabilities in Kerberos
are addressed to varying extent in recent implementa-
tions of the authentication model; Kerberos V5 is sig-
nificantly stronger as an authentication mechanism
than Kerberos V4, and the DCE implementation of
Kerberos offers even greater protections against cer-
tain forms of attack by modifying the ticket exchange
protocol in some significant (if incompatible) ways.
Kerberos implementations continue to evolve, with
MIT and others investigating extensions to the Ker-
beros protocol to support more cryptographically
secure authentication mechanisms and to integrate
support for newer authentication approaches (includ-
ing digital certificates and PKI-based authentication).

The authors believe that, for most organizations,
a Kerberos-based SAR can provide more than ade-
quate security with greater confidence and less admin-
istrative overhead than other SAR mechanisms. While
PKI-based authentication mechanisms may offer
advantages in the realm of electronic commerce,
where users may not be known by the organizations
they interact with until the need for authentication
arises, they do not yet offer the proven reliability nor
the existing installed base of standard implementations
Kerberos boasts.

SSO Alternatives: The Dream of a Single Sign-On

Many of the SAR solutions discussed above
might reasonably be viewed as also providing the ben-
efits of a full SSO solution. In the Kerberos model, for
example, a single authentication to the SAR acquires
the client reusable credentials sufficient to authenticate
to any Kerberized application without re-entering
authenticator information. Likewise, in the PKI
model, possession of a personal PK certificate may
allow a user to freely authenticate to a variety of sup-
ported applications without re-entering passwords or
other authentication information.

Nevertheless, in all but the most restricted of
environments, it is unrealistic to expect that a SAR
can provide a complete SSO solution for an organiza-
tion. In the face of a heterogeneous computing envi-
ronment comprising many different systems and appli-
cations, it is unlikely that a SAR can support the needs
of the entire organization. Further, while a SAR may
provide a basic level of SSO functionality (one
authentication operation per user per work-session), it
cannot usually provide the look-and-feel features
demanded by many users. Systems administrators
may find that providing a mechanism whereby users
need only authenticate themselves once per work ses-
sion is not enough to satisfy their user populations;
users may demand not only strict SSO functionality
but also a simplified authentication interface common
to multiple environments.

1998 LISA XII – December 6-11, 1998 – Boston, MA 75

Single Sign-On and the System Administrator Fleming Grubb and Carter

Hence, system administrators charged with
designing and building SSO infrastructures must fre-
quently look beyond SAR options and investigate true
SSO approaches. Common SSO approaches fall into
three main categories: those which rely on an underly-
ing SAR to facilitate authentication into multiple ser-
vices at login-time, and those which rely on some cen-
tralized authenticator repository (a ‘‘key box’’) to pro-
vide multiple applications and systems with the ‘‘illu-
sion’’ of a shared, single sign on, and hybrid solutions
incorporating features of both the SAR-based and key
box-based solutions.

Entry-Point Authentication: Pay No Attention to
the Man Behind the Curtain
One common approach to providing SSO func-

tionality involves the modification of common entry-
point applications (login programs, etc.) to perform
multiple authentication operations each time a user
initiates a work session. In this approach, a number of
different systems and applications sharing user infor-
mation through some sort of SAR pass authentication
information between one another in order to effect the
appearance of a single sign-on solution.

Typical examples of this methodology include
the Windows NT ‘‘layered GINA replacement’’ mech-
anism and the Kerberized Unix login mechanism.

The Windows NT user authentication mechanism
(GINA) is designed in such a way that multiple differ-
ent authentication modules can be invoked in succes-
sion when a user logs into an NT machine. Provided
that a single common login and password are suffi-
cient to authenticate a user to, for example, both an
NT domain and a Novell NDS tree, layered GINA
modules can be used to provide a sort of single sign-
on appearance to the end-user.

Similarly, the MIT Kerberos distribution
includes standard replacements for the normal Unix
‘‘login’’ program which, rather than checking user’s
identities against a local or distributed Unix passwd
table, perform Kerberos authentication using the login
and password supplied by the user. In essence, the
Kerberized Unix login replacement is a sort of SSO
mechanism, presenting an SSO interface for authenti-
cating to both a Kerberos realm and an individual
Unix machine.

Certainly, these methods have a place in organi-
zational SSO planning. In order to implement a Ker-
beros-based SAR, for example, in a fashion palatable
to general users, Kerberized entry-point applications
(login programs, etc.) must be made available across
as many platforms as possible. These sorts of
approaches offer little beyond what can be achieved
through a SAR alone, however, and do nothing to
achieve a unified look-and-feel across applications or
systems.

More importantly, these solutions still rely on
underlying application- and system-level support for

some form of SAR, and in all but the least compli-
cated situations, require significant re-engineering of
entry-point code on multiple systems. Clearly, while
the entry-point approach to single sign-on is of inter-
est, it is not a comprehensive solution to the demand
for SSO functionality.

The Key Box: SSO in a Fire Safe
Another common approach to the SSO problem,

and one which seems to have been en vogue among
vendors in recent years, is the ‘‘key box’’ mechanism.
A central authenticator repository is established con-
taining each user’s various application- and system-
specific authenticators (login/password pairs, certifi-
cates, etc.). Rather than the user authenticating to indi-
vidual applications and systems directly, the user
authenticates once to the central SSO server, which in
turn sends the necessary authenticator information to
his or her client machine to allow an SSO client appli-
cation to authenticate to other systems and applica-
tions on the user’s behalf. Typically, the SSO client
application populates the user’s graphical desktop with
icons (or otherwise makes available a list of exe-
cutable links) for each of the systems the user has SSO
access to. Launching one of the ‘‘virtual’’ applications
set up by the SSO client causes the appropriate appli-
cation to be started and automatically authenticates the
user to the application using whatever authenticator
information was provided by the SSO server. In effect,
the SSO client provides the user with the appearance
of a single sign-on by performing authentication oper-
ations on the user’s behalf.

Unlike the entry-point authentication approach,
the key box approach doesn’t require the prior exis-
tence of a SAR. Because the SSO server can store
multiple different authenticators for a single user (one
for each different system and application the user is
authorized to access), there is no need for a SAR as
such. Multiple authentication operations are per-
formed during each work session, but they may be
performed entirely without the user’s knowledge.

While key box approaches to the SSO problem
can provide a high level of functionality for end users,
they can also pose some difficult challenges for sys-
tem administrators, both in the realm of providing ade-
quate security and in the realm of managing users’
authentication information.

Clearly, the security the key box or SSO server
system is of primary importance, since compromise of
that system would lead directly to compromise of all
systems and applications participating in the SSO
solution. Further, ensuring the security of communica-
tions between the SSO server and its clients is of
paramount importance. Depending on the specific
implementation, users’ authenticators may be repeat-
edly exposed to passive network attacks as they are
transferred from the SSO server system to various
client machines. Since the SSO client must typically
store reusable authenticators for its users locally in

76 1998 LISA XII – December 6-11, 1998 – Boston, MA

Fleming Grubb and Carter Single Sign-On and the System Administrator

order to provide the appearance of a single sign-on
environment, SSO clients must themselves be secure,
lest client-based attacks permit the compromise of all
of a particular user’s authenticators.

Additionally, SSO clients must be specifically
designed to interoperate with target applications and
systems. In order for an SSO client to perform authen-
tication on behalf of the user, it not only must have
access to the user’s authenticators via the SSO server,
but also must have special knowledge of the native
authentication interfaces used by each SSO-supported
application. As applications and systems change, SSO
clients may need to be modified or replaced in order to
support new authentication interfaces.

Likewise, key box-based SSO solutions intro-
duce special problems for user and authenticator man-
agement. While the key box-based SSO approach can
simplify authentication for the end user, it does not by
itself address the system administrator’s need to
reduce the number of individual authenticators which
must be validated, issued, and maintained for each
user. Further, the SSO software must provide some
mechanism for maintaining (adding, removing, and
updating) authenticators stored in the central SSO
repository, and should ideally provide some mecha-
nism for ensuring that the authenticators housed in the
central SSO repository are kept synchronized with
application- and system-specific authentication infor-
mation. In some implementations, end-users may not
be privy to their own authenticator information; login
ids and passwords, for example, may be chosen and
maintained by the SSO server. While this can simplify
the management of a large set of users or participating
systems, it can lead to serious problems if user’s
clients are not carefully managed. If a user’s client
loses the ability to interact properly with the SSO
server and becomes unable to retrieve authenticators
from the server, the user has no means of authenticat-
ing to other systems. In many cases, the benefits of
central user management afforded by such SSO sys-
tems can be completely eroded by the associated
increase in system management effort needed to
ensure proper configuration of client systems.

GSO: IBM’s Lock Box Solution

IBM’s Global Sign-On (GSO) product is a typi-
cal implementation of the key box approach to SSO.
In the GSO implementation, users’ authentication
information is warehoused on one or more central
GSO servers, which also provide DCE-based authenti-
cation services. Users install GSO clients on their
workstations which: manage the initial authentication
operations necessary to access the GSO server, present
a virtual desktop prepopulated with icons for all the
applications for which the GSO server holds the user’s
authenticators, and transparently perform authentica-
tion on behalf of the user for each supported applica-
tion when it is invoked. Once a user has started the
GSO client and authenticated to the GSO server, the

user need not perform any further authentication oper-
ations to access supported applications. Further, the
GSO server provides built-in mechanisms for auto-
matically responding to password aging as well as a
user interface for changing passwords on supported
systems. Recently, IBM has begun marketing the GSO
product in conjunction with Tivoli remote system
management products in an effort to provide a com-
prehensive user management/SSO solution.

The IBM GSO product is exemplary among its
competitors in its attention to security and its integra-
tion with a remote management facility (Tivoli). By
relying on DCE for its primary user authentication, the
GSO product can provide some of the advantages of a
strong SAR in addition to providing the advantages of
a targeted SSO solution. One of the strengths of DCE
(and its underlying Kerberos structure) as a method of
primary authentication is the natural way it provides
for session-level encryption of data flowing over a
network. IBM’s GSO takes advantage of this strength
to provide a fair level of security in the transmission
of sensitive data (logins, passwords, etc.) between the
GSO server and its clients.

By integrating the product with Tivoli, IBM cir-
cumvents two of the most difficult administrative
problems associated with the use of targeted SSO
solutions: the distribution and maintenance of SSO
client software across an organization and the creation
and management of system- and application-specific
authentication identities across distributed systems.
The inner workings of Tivoli’s TME-10 product are
beyond the scope of this paper, but in brief, Tivoli
brings to the GSO product a mechanism for central-
ized installation and upgrade of GSO client software
across a large organization, and provides a mechanism
for creating and registering with the GSO server new
user identities across a range of systems.

Similar solutions (differing mostly in the meth-
ods used to authenticate users to the central key box
server and the mechanisms by which application-spe-
cific authentication operations are proxied by the SSO
client) are offered by other vendors, including Plat-
inum Technologies (in a product called Platinum
AutoSecure) and CoreChange (a vendor specializing
in SSO solutions for the health-care industry).

Hybrid Solutions: Best of Both Worlds

SSO solutions share a primary goal: simplifying
authentication operations for the end-user. Issues of
actual security and manageability are frequently of
secondary importance in the design of packaged SSO
solutions. At times, the system administrator is con-
fronted with an apparent trade-off between addressing
the demands of end users through an SSO solution, on
the one hand, and managing and securing systems ade-
quately through a SAR, on the other.

The authors believe that a hybrid approach to the
SSO problem is often the system administrator’s best

1998 LISA XII – December 6-11, 1998 – Boston, MA 77

Single Sign-On and the System Administrator Fleming Grubb and Carter

option. Such a hybrid approach would rely on a
strongly-secure SAR solution to provide the appear-
ance of a single sign-on for the most critical systems
and applications within an organization and would
also rely on a possibly-integrated SSO solution to sup-
port those systems which cannot feasibly be integrated
into a SAR and to provide end-users with the look-
and-feel features they want. By building a key box
SSO solution on top of a secure SAR mechanism
(such as Kerberos), the system administrator can often
address organizational security and management
requirements as well as end user ease-of-operation
requirements with a single comprehensive solution.

SnareWorks: Hybrid Key Box and SAR

One such product, which the authors have rec-
ommended for use at Duke, is the SnareWorks product
available from IntelliSoft, Inc. The SnareWorks solu-
tion sits atop a minimal DCE infrastructure (to provide
security and authentication services), and provides
both end-to-end encryption of network traffic and
authentication/single sign-on services to supported
applications.

In the SnareWorks approach, network servers are
equipped with a SnareWorks server application which
takes control of incoming network connections on the
server. Likewise, network clients are equipped with a
‘‘thin’’ SnareWorks client application which takes
control of outgoing network connections on the client.
A centrally-managed SnareWorks ‘‘master server’’
manages information about the security, authentica-
tion, and single sign-on requirements of individual
servers and clients, and provides for rather fine-
grained definition of security rules. A particular IP
port on a particular server can be configured, for
example, to require authentication before accepting
incoming connections, and to perform different levels
of encryption at different times of day, when talking to
different client machines, and when manipulating con-
nections authenticated as different users.

When a ‘‘snared’’ client machine connects to a
‘‘snared’’ server, the SnareWorks software on the two
participating machines negotiates the levels of security
to be provided for the new connection: whether to per-
form network-level encryption, and if so, using what
keys and what encryption mechanisms, whether to
require authentication before establishing the connec-
tion, and what, if any, ‘‘single sign-on’’ services to
provide over the connection. If the machines agree
that authentication is required, the SnareWorks client
checks to determine whether authentication credentials
have already been obtained from the associated DCE
cell, and if they have not, automatically prompts its
user for authenticators with which to acquire creden-
tials. If credentials are already cached within the
SnareWorks client, the client engages in a normal
DCE/Kerberos authentication interchange with the
server to prove its identity. Depending on the configu-
ration of the SnareWorks client and server in question,

unauthenticated connections may be refused, or may
be treated differently from authenticated connections.

SnareWorks provides single sign-on features
through a secure key box mechanism based on the
necessarily-present DCE registry. Using extended reg-
istry attributes, the SnareWorks software stores
authenticator information for various users on various
systems and applications in the DCE cell’s central reg-
istry. On snared servers for which single sign-on sup-
port is available, small loadable modules (termed
‘‘Program Support Modules’’ or PSMs) are installed
which encapsulate the information necessary for the
SnareWorks server to perform application- or system-
level authentication on behalf of pre-authenticated
users. Single sign-on is effected through the PSM
when the appropriate SnareWorks server retrieves (via
a DCE Secure RPC channel) authenticator information
for an already-authenticated user and intercepts the
authentication transaction on the server. In essence,
the PSM running on the server plays the role of the
client, providing a single sign-on appearance without
requiring any interaction on the part of the client.
SnareWorks clients provide a straightforward user
interface for creating and modifying user-specific sin-
gle sign-on information in an associated DCE registry,
and SnareWorks PSMs provide support for server-
driven authenticator management (single sign-on
information updates resulting from authenticator or
password expiration, for example). SnareWorks comes
pre-packaged with PSMs for a number of common
network-based applications and protocols (telnet,
rlogin, ftp, LDAP, X11, Oracle-8, etc.) and offers a
relatively simple API for constructing PSMs to sup-
port single sign-on features for more exotic or site-
specific applications.

With the addition of a SnareWorks Web server
interface, the SnareWorks software can be used to pro-
vide secure authentication for and highly-configurable
control over web-based CGI applications running on
standard HTTP servers. Unlike other SnareWorks
products, the SnareWorks Web server can provide
these features to end-users running on clients which
do not themselves have SnareWorks client software
installed – the SnareWorks Web interface only
requires the existence of a web browser on client
machines. With the addition of an optional Snare-
Works CA, the software can be made to interoperate
with certificate-based authentication and authorization
strategies and can be made a part of an organizational
PKI.

The SnareWorks approach offers a number of
advantages both as a network security mechanism and
as a single sign-on solution. Based on a secure strong
authentication mechanism (DCE), SnareWorks can
provide all of the features of a secure SAR for applica-
tions which have native support for Kerberos or DCE
authentication. Further, SnareWorks provides a flexi-
ble, configurable mechanism for enforcing encryption
of application data flowing over a possibly-insecure

78 1998 LISA XII – December 6-11, 1998 – Boston, MA

Fleming Grubb and Carter Single Sign-On and the System Administrator

network. SnareWorks also provides a scalable and
retargetable mechanism for providing a single sign-on
presentation to end-users, all without requiring modifi-
cation of any application client or application server
code. Security management is centralized through a
simplified administrative user interface, allowing
security rules to be changed in one location and propa-
gated to snared servers throughout an organization.
Likewise, management of the authentication informa-
tion stored on an associated DCE cell is simplified
through the SnareWorks administration interface
which can, if so desired, be configured to provide for
automatic registration of users within a DCE cell.

The approach does have some shortcomings,
however. Currently, IntelliSoft offers client support for
Solaris, AIX, and HP/UX workstations and Microsoft
Windows 95 and Windows NT client machines.
Solaris, AIX, HP/UX, and Windows NT servers are
also supported. Other platforms (including Apple’s
MacIntosh) are not supported natively, although cer-
tain features can be presented to unsupported clients
through the SnareWorks web interface. Additionally,
although source code to all of IntelliSoft’s PSMs is
available, the solution is a proprietary vended applica-
tion; sites intent on having source code available
locally for all critical software may find it difficult to
justify this approach.

The Duke Authentication Project: A Short Case
Study

As mentioned above, Duke University is cur-
rently involved in a major project to provide institu-
tion-wide authentication, security, and single sign-on
services. The project was originally conceived by
senior management within the University’s Office of
Information Technology as a means of simplifying use
of certain newly-deployed enterprise-wide applica-
tions (e.g., SAP/R3, PeopleSoft, Lotus Notes). Ini-
tially, the project was directed at finding an SSO-only
solution (with or without implementing a SAR) which
would allow users to authenticate only once per work
session, regardless of the applications they might be
using.

A review committee was formed, with the
authors as co-chairs and comprising representatives
from major computing organizations on campus
involved in enterprise-wide applications deployment,
and tasked with investigating available technologies
and returning an implementation proposal. Originally,
this process was expected to take only two or three
months, and result in a plan which could be imple-
mented in roughly the same timeframe. After some
initial discussions within the committee, it became
clear that the process would be more involved than
had previously been expected.

As the committee process unfolded, it became
clear that different constituencies within the organiza-
tion had different priorities and different requirements

for an ‘‘acceptable’’ solution. Those of us involved in
system administration were primarily concerned with
ensuring the security of the authentication service and
those applications and systems it supports. Those
involved in application programming were concerned
with reducing the impact of any new infrastructure on
existing applications and systems. End-user support
staff were primarily concerned with ease of use issues,
while management was primarily concerned with find-
ing a cost-effective solution.

Starting from these different points of view, the
committee were able to arrive at a number of site-spe-
cific requirements for an acceptable solution. Among
these were:

• The absence of a ‘‘flag day’’ visible to end-
users. Whatever solutions might be deployed,
they should be deployed with a minimum of
disruption to existing end-user work-flow pat-
terns, and should be introduced into the existing
environment in a stepwise fashion, allowing
users to adjust gracefully to changing usage
patterns.

• Compatibility with existing infrastructures. At
the start of the investigation, Duke already had
a large investment in Kerberos technology, hav-
ing operated for a number of years a central
Unix computing facility using Kerberos version
4 to support in excess of 35,000 users. Further,
a number of applications were already in use
across the enterprise, and would need to be sup-
ported by any successful SSO solution.

• The absence of any recertification of users. The
University had, at the inception of this investi-
gation, already performed significant identity
verification for well-over 35,000 of its con-
stituents in order to issue them Kerberos
authenticators. The cost of this verification
(which had originally been performed over a
period of many years) was significant, and the
committee as a whole agreed that any solution
which would require the recertification of exist-
ing users (i.e., which would require issuing new
authenticators to individuals already in posses-
sion of Kerberos principals and passwords)
would be less than optimal.

After three months of discussion regarding the
functional requirements of each constituency for an
institutional authentication/single sign-on project, the
committee began the process of reviewing possible
solutions. The group reviewed self-maintained solu-
tions incorporating MIT’s Kerberos version 5 and var-
ious available PKI components, as well as vended
solutions from IBM, Platinum, CyberSafe, Tivoli, and
Transarc/IntelliSoft. Some solutions were eliminated
from consideration on the basis of their not meeting
the committee’s requirements for scalability or sup-
portability (CyberSafe, Platinum AutoSecure). Other
solutions were eliminated on the basis of their not pro-
viding the security enhancements desired in

1998 LISA XII – December 6-11, 1998 – Boston, MA 79

Single Sign-On and the System Administrator Fleming Grubb and Carter

conjunction with deploying an enterprise-wide single
sign-on solution (IBM GSO, Tivoli User Manage-
ment). Ultimately, the committee agreed to recom-
mend a solution based on IntelliSoft’s SnareWorks
software.

At the time of this writing, the institutional single
sign-on project at Duke is completing the final stages
of the organizational funding review. Once a funding
model is established for the project, work can begin in
earnest on the wide deployment of authentication,
security, and single sign-on features called for in the
committee’s recommendations at the institution.

Conclusions: Learning From Duke’s Experience So
Far

Clearly, implementing SSO for any but the
smallest and most homogeneous of enterprises is a
highly organization-specific task, and certainly no one
can provide a true ‘‘cook book’’ for arriving at an
agreeable and functional solution for use in all envi-
ronments. Nevertheless, the authors are convinced that
as organizational computing infrastructures become
increasingly complex and users become more dissatis-
fied with the ease of use problems associated with het-
erogeneous computing environments, system adminis-
trators will increasingly be called upon to provide
‘‘single sign-on’’ solutions for their organizations. If
the question hasn’t been asked yet, rest assured that it
will.

While no single set of rules can guide the admin-
istrator in designing a single sign-on solution for a
particular organization, a few guidelines may be of
assistance in the decision-making process:

• Any complete SSO solution must embrace not
only critical applications, but also the operating
systems they depend upon, the network ser-
vices they rely on (ftp, electronic mail, etc.),
and the underlying data services (HTTP ser-
vices, database management services, etc.)
required by applications. An SSO solution
which supports only a handful of critical appli-
cations but does not encompass the underlying
services those applications rely upon will be
incomplete at best, and may well fail to serve
the needs of end-users, not to mention the
requirements of system administrators.

• In designing an SSO solution, weigh not only
the cost of deploying SSO-related software and
hardware, but also the cost of supporting the
envisioned authentication and/or SSO infras-
tructure. Pay special attention to the ‘‘hidden’’
costs of re-engineering applications and operat-
ing systems to support any chosen SAR or SSO
solution, and to the possibly-enormous costs
associated with verifying user identities and
(re)issuing authenticators to end-users. Fre-
quently, these costs will far exceed the initial
capital costs of deploying an SSO solution for
an organization.

• Keep in mind any security policies already in
place within the organization, and those which
may be mandated by any given SSO solution.
Duke, in particular, has suffered from a dearth
of strong security policies, so enabling enforce-
ment of stronger security policies was a signifi-
cant factor in our investigations. Sites with
established policies should take care to review
the effects an SSO solution may have on the
enforcement of existing policies before making
any sort of SSO deployment decision.

• Decide initially which of the possible key fea-
tures are of the greatest importance to the orga-
nization. We recommend consultation with both
end-users and management to investigate the
relative importance of four key features to the
organization:

• Reduced authenticators/sign-ons. If the
primary goal within the organization is
to eliminate the proliferation of authenti-
cator information for end-users, a classi-
cal, vended SSO solution may be ade-
quate. If the primary goal is to eliminate
the proliferation of authenticators from
the point of view of the system adminis-
trator, a SAR may suffice.

• Site policy control. If the primary goal
within the organization is to achieve
tighter control over the enforcement of
site security policies, a SAR may be the
best solution, possibly with a vended
‘‘key box’’-style SSO solution.

• Security enhancement. If the primary
goal within the organization is to tighten
security for specific applications and
systems, a SAR approach using one of
the more secure mechanisms discussed
above may be ideal. In the case of Duke
University, the additional security
enhancements provided by SnareWorks’
network encryption facilities were a sig-
nificant factor in the choice of Intel-
liSoft’s products. If security enhance-
ment is of little or no concern, classical
SSO solutions (such as IBM’s GSO)
may be most appropriate.

• End-user convenience. If the primary
goal within the organization is simplify-
ing authentication interfaces presented to
end-users, a targeted SSO solution, most
likely without the deployment of a net-
work-based SAR, may be the most
appropriate solution. In these environ-
ments, organizations should consider the
possibility of employing a ‘‘niche’’ SSO
solution (CoreChange, for example,
offers an SSO solution specifically tar-
geted at the health-care market); such
tightly-focused solutions can usually

80 1998 LISA XII – December 6-11, 1998 – Boston, MA

Fleming Grubb and Carter Single Sign-On and the System Administrator

provide end-users with features not
available in more generic SSO solutions,
but are frequently not applicable to the
wide range of applications and systems
for which large, unfocused organizations
may need support.

• Plan from the outset for a much larger system
than can possibly be envisioned. When the SSO
project at Duke was first discussed, it was
viewed as a relatively simple project supporting
a few thousand users and a handful of mostly
administrative systems. In the process of flesh-
ing-out the details of various constituents’
needs, we on the Duke project committee found
that what was actually needed was an institu-
tion-wide infrastructure capable of supporting
the 40,000+ current organizational affiliates,
and capable of expanding to support a growing
population of ‘‘new’’ affiliates associated with
the University’s ever-growing Duke Health
Systems initiative. Building a system to be scal-
able can be difficult, but redressing a too-small
solution once it has been deployed can be
nearly impossible.

• Take advantage of any tools and resources
already in place within the organization. At
Duke, the prior existence of a large Kerberos
version 4 realm has provided the institution
with a ‘‘leg up’’ in developing an institutional
SAR. While the decision to retain compatibility
with the existing Kerberos version 4 realm did
limit our choices with respect to SAR- and
SSO-building products, it has enabled the insti-
tution to consider implementing an organiza-
tion-wide solution without the initial costs asso-
ciated with re-verifying 35,000 users’ individ-
ual identities.

• Set reasonable, attainable goals for the SSO
solution. Initial discussions at Duke centered on
finding an SSO solution which would solve
authentication and single sign-on problems for
every application and environment in use at the
institution: a full-scale single sign-on approach.
Later, we came to realize that the goal of elimi-
nating all user identity proliferation was too
ambitious, and we have instead opted for devel-
oping a ‘‘reduced sign-on’’ solution. This has
allowed us to provide for a higher level of func-
tionality for those applications and systems
most critical to the organization, at the expense
of not supporting some less-critical applications
and guaranteeing that some users of legacy
applications will own multiple authenticators.

• Avoid implementation plans that introduce
‘‘flag days’’ for end-users. This is a lesson the
authors learned in managing the growth and
reorganization of institutional electronic mail
infrastructures at Duke, and which applies at
least as well to the deployment of SSO

solutions within organizations. Flag days are
extremely expensive in terms of goodwill capi-
tal with end-users, and in the case of SSO solu-
tions, are likely to result in the sorts of unrecov-
erable failures which can require an entire orga-
nization to be recertified. A gradual, incremen-
tal approach to deploying an SSO solution can
prevent organization-wide catastrophes in the
event that unforeseen problems arise in the
deployment of an enterprise-wide authentica-
tion mechanism.

A Note on Committee Dynamics: Staying Sane in a
Political Minefield

If one factor can be expected to appear ubiqui-
tously in the quest for organizational SAR and SSO
solutions, it is politics. Having worked within the
Duke computing infrastructure for a combined total of
over 17 years, the authors expected political factors to
interfere with the progress of Duke’s institutional SSO
project, yet even we were somewhat surprised at the
extent to which the ‘‘SSO issue’’ was cause for politi-
cal intrigue. Here are a few tips derived from our
experience with the Duke SSO review committee:

• Take the time to involve a diverse cross-section
of the community throughout the decision-mak-
ing process.
This was perhaps the most difficult and the
most useful approach we used. We were fortu-
nate at Duke, in that the request for a ‘‘single
sign-on solution’’ came from relatively high on
the corporate ladder (the Office of the Associ-
ate CIO). This facilitated our enlisting other
computing professionals from within the cen-
tral computing support groups at the University,
as well as end-users, administrators, and man-
agers from various departments around campus
in our work. Although the diversity of the com-
mittee made our initial work slow (some mem-
bers of the committee started with virtually no
understanding of the issues involved), it paid
off in the end with a broad base of support for
the project, once it was fully described.

• Take the time to address first principles, and
find common goals across the participants.
In our case, this was a significant challenge. In
particular, the authors found that with the
exception of a few extremely technical staff vir-
tually no one on the SSO review committee
came into the process with a clear understand-
ing of what ‘‘SSO’’ really meant. Many hours
of meetings were necessary just to clarify the
distinction between authentication and autho-
rization for the committee (most members
failed to see the distinction at first), and many
more hours were necessary to work through the
trade-offs between ease-of-use factors (of criti-
cal importance to end-users and managers) and
security factors (of critical importance to

1998 LISA XII – December 6-11, 1998 – Boston, MA 81

Single Sign-On and the System Administrator Fleming Grubb and Carter

system administrators and programmers). In
the end, more than half of the time spent in
committee was spent discussing ‘‘first princi-
ples.’’ Once these issues were agreed upon,
however, vendor reviews and the choice of an
approach were comparatively simple.

• Expect the process to take some time.
At Duke, our original mandate was to complete
the review of available options and return to the
senior administration a proposal within three
months. At the three-month mark, our commit-
tee had barely achieved agreement on the
nature of the problem at hand, let alone selected
a particular solution. The unfortunate absence
of the authors’ departmental director as a result
of an extended illness allowed us to petition the
administration for additional time. However,
pressure mounted as scheduling of vendor pre-
sentations and meetings with the review com-
mittee and key managers outside the institu-
tional computing infrastructure forced the pro-
ject schedule to slip further and further.

• Expect the process to be expensive. Warn your
management early.
No matter what path an organization takes
through the SAR/SSO obstacle course, be
assured that the result will be more expensive
than originally expected. If the solution(s) cho-
sen are proprietary in nature, much of the
expense may be in software licensing and
acquisition. If the solution(s) chosen are
‘‘free,’’ the costs may be weighted toward staff
time for development and installation. Regard-
less, we urge system administrators working on
SSO solutions for their organizations to be open
and up-front with management about the real
costs involved. At Duke, we expect the initial
year of development and deployment to cost in
the neighborhood of $1 million, with continu-
ing costs between $100,000 and $200,000 per
year. Original estimates of the total cost for an
institutional SSO project were significantly
lower, although compared to the costs of some
of the major efforts ongoing at the institution
(some of which will run into the tens of mil-
lions of dollars), the expense is less staggering.
Note that Duke is a large and diverse enterprise,
with more than 40,000 individual users. Your
mileage may vary.

Software Availability

See Table 4 for URL references for software dis-
cussed in this paper.

Author Information

Michael Fleming Grubb has worked as a Unix
system administrator at Duke University for six years.
He is the principal architect of the campus-wide email
and web infrastructure. He is also a licensed attorney.

He can be reached via post at Box 90132, Duke Uni-
versity, Durham, NC 27708-0132, USA, or via email
at <mg@duke.edu>.

Rob Carter has worked as a Unix system admin-
istrator at Duke University for over eleven years. He
has been the lead system administrator for the Univer-
sity’s public Unix computing facilities throughout
their existence, although he did not invent Unix. He
can be reached via post at Box 90132, Duke Univer-
sity, Durham, NC 27708-0132, USA, or via email at
<rob@duke.edu>.

References

Bellovin, S., and M. Merritt. ‘‘Limitations of the Ker-
beros Authentication System.’’ ACM Computer
Communications Review, October 1990.

Dyer, S. ‘‘The Hesiod Name Server.’’ USENIX Con-
ference Proceedings, Winter 1988.

Fraser, B., ed. RFC 2196: Site Security Handbook,
1997.

Haller, N. and R. Atkinson. RFC 1704: On Internet
Authentication, 1994.

Haller, N., ‘‘The S/Key One-time Password System.’’
Proceedings of the Symposium on Network &
Distributed Systems Security, Internet Society,
San Diego, CA, February 1994.

Haller, N., C. Metz, P. Nesser, and M. Straw. RFC
2289: A One-Time Password System, 1998.

Hess, D., D. Safford, and U. Pooch. ‘‘A Unix Network
Protocol Security Study: Network Information
Service,’’ ACM Computer Communications
Review 22 (5), 1992.

Kaufman, C., R. Perlman, and M. Speciner. Network
Security: Private Communication in a Public
World. Prentice Hall, 1995.

Kohl, J., and C. Neuman. RFC 1510: The Kerberos
Network Authentication Service (V5), 1993.

Linn, J. RFC 1964: The Kerberos Version 5 GSS-API
Mechanism, 1996.

Linn, J. RFC 2078: General Security Service Applica-
tion Program Interface, Version 2, 1997.

Mockapetris, P. RFC 1034: Domain Names – Con-
cepts and Facilities, 1987.

Mockapetris, P. RFC 1035: Domain Names – Imple-
mentation and Specification, 1987.

Mullan, S. OSF RFC 92.0: DCE Interoperability with
Kerberos, 1996.

Pato, J. OSF RFC 6.0: A Generic Interface for
Extended Registry Attributes, 1992.

Ramm, K. and M. Grubb. ‘‘Exu – A System for
Secure Delegation of Authority on an Insecure
Network.’’ Proceedings of the Ninth Systems
Administration Conference (LISA IX), Monterey,
CA, September 1995.

Ramsey, R. All About Administering NIS+. SunSoft
Press, 1994.

Rigney, C., A. Rubens, W. Simpson, and S. Willens.

82 1998 LISA XII – December 6-11, 1998 – Boston, MA

Fleming Grubb and Carter Single Sign-On and the System Administrator

RFC 2138: Remote Authentication Dial In User
Service (RADIUS), 1997.

Steiner, J., C. Neuman, and J. Schiller. ‘‘Kerberos: An
Authentication Service for Open Network Sys-
tems.’’ USENIX Conference Proceedings, Winter
1988.

Stern, Hal. Managing NFS and NIS. O’Reilly &
Assocs., 1991.

Wray, J. OSF RFC 5.2: GSS-API Extensions for DCE,
1994.

1998 LISA XII – December 6-11, 1998 – Boston, MA 83

Single Sign-On and the System Administrator Fleming Grubb and Carter

Appendix 1: Tables

Application
or System

Short-Term Medium-Term Long-Term

AFS X X X
Unix net apps (ftp, telnet, etc.) X X X
X11 X X X
IMAP4 X X X
POP3 X X X
HTTP/CGI X X X
SAP R/3 X X
PeopleSoft X X
LDAP X X
Lotus Notes X X
MVS/RACF X
Oracle8 X
Netware (4+) X

Table 1: Systems and Applications Targeted for SAR/SSO at Duke.

Feature Critical Important Nice-to-have
Strong Authentication X
Distributable Management X
Unix compatibility X
NT compatibility X
Standards Compliance X
Scalability X
Performance X
Network Security X
Stability/Easy maint. X
Win95/Win98 compat. X
MacOS support X
SSO features X
Application Support X
Published API X
SSO user interface X
Automated user registration X
Remote installation X

Table 2: Decision Matrix: Features Required for SAR/SSO at Duke.

84 1998 LISA XII – December 6-11, 1998 – Boston, MA

Fleming Grubb and Carter Single Sign-On and the System Administrator

Strng Dstrb Unix NT Stds Scala Perf Net Stab Win Mac
Auth Mgmt Supp Supp Compl blity . Sec lity 95 OS

Vendor Product

MIT Hesiod - = + - = = + - = - -
Sun NIS - = + - = - + - - - -
Sun NIS+ - + = - - = = = - - -
--- S/Key = - = - - - = + = - -
MIT K4 + = + = + + + = + = =
MIT K5 + = + = + + + + + = =
CyberSafe --- + = + = = + ? + = = -
IBM GSO = + = + = + ? = + + -
Platinum AutoSecure - + = + - = ? - ? + -
IntelliSoft SnareWorks + + + + + + + + = + -

SSO Applic. Pub User Install/
features Support API Regis. Maint.

Vendor Product SSO-GUI

MIT Hesiod = = (+/Unix) + - - =
Sun NIS = = (+/Unix) = - - =
Sun NIS+ = - (+/Solaris) - - - -
--- S/Key - = = - - -
MIT K4 + = + - - =
MIT K5 + - + - - =
CyberSafe ---- + = - = - ?
IBM GSO + + - + = +
Platinum AutoSecure + = - + = ?
IntelliSoft SnareWorks + = + = + +

K E Y
+: strength of product
=: available, but not particular product strength
-: not available or too weak to rely upon
?: insufficient data gathered to determine

Table 3: Vendor Performance: Features of Vended Products.

Product Location
Hesiod ftp://athena-dist.mit.edu/pub/ATHENA/hesiod/
NIS (Distributed with most Unix variants)
NIS+ http://www.sun.com/software/white-papers/wp-nisplus/
RADIUS http://www.livingston.com/tech/docs/radius/
S/Key ftp://ftp.bellcore.com/pub/nmh/
SecurID http://www.securid.com/
MIT Kerberos V4 ftp://athena-dist.mit.edu/pub/kerberos/README.KRB4
MIT Kerberos V5 http://web.mit.edu/kerberos/www/
DCE http://www.opengroup.org/dce/
KTH Kerberos V4 http://www.pdc.kth.se/kth-krb/
Tcl-Kerberos http://www.neosoft.com/tcl/ftparchive/sorted/net/tcl-krb5/
Java-Kerberos http://www.camb.opengroup.org/RI/www/jkrb/
GSO http://www.software.ibm.com/enetwork/globalsignon
SnareWorks http://www.isoft.com/
CoreChange http://www.corechange.com/
Platinum AutoSecure http://www.platinum.com/products/sysman/security.htm
Tivoli http://www.tivoli.com/

Table 4: Software Availability.

1998 LISA XII – December 6-11, 1998 – Boston, MA 85

Single Sign-On and the System Administrator Fleming Grubb and Carter

Protocol PSM Authentication Encryption Authorization SSO
Telnet, FTP Yes Yes Yes Yes Yes
X11 Yes Yes Yes Yes N/A
SMTP Yes Yes Yes Yes N/A
IMAP4 Yes Yes Yes Yes Yes
HTTP Yes Yes Yes Yes Yes
POP3 Yes Yes Yes Yes Yes
R{login,sh} Yes Yes Yes Yes Yes
NNTP Yes Yes Yes Yes Yes
IIOPNS Yes Yes Yes Yes Yes
SNMP Yes Yes Yes Yes Yes
MQseries Yes Yes Yes Yes Yes
PeopleSoft Devel Yes Yes Devel Devel
SAP Devel Yes Yes Devel Devel
LDAP Yes Yes Yes Yes Yes
Lotus Notes Devel* Yes Yes Devel* Devel*
SMB/Netbios Yes Yes Yes Yes Yes
Oracle8 Yes Yes Yes Yes Yes
Arbitrary IP
protocols

No** Yes Yes No** No**

K E Y
Yes: SnareWorks provides this feature for the protocol

Devel: SnareWorks is currently developing this feature
No: SnareWorks does not provide this feature

N O T E S
* Upcoming versions of Notes are reported to support X.509

certificate-based authentication. Such would make a Notes
PSM redundant, since SnareWorks provides native support for
X.509.

** The SnareWorks API provides a mechanism for sites to
develop their own PSMs, providing SSO and Authorization
features for arbitrary IP protocols.

Table 5: SnareWorks Application Support Levels.

86 1998 LISA XII – December 6-11, 1998 – Boston, MA

