
The following paper was originally published in the
Proceedings of the Twelfth Systems Administration Conference (LISA ’98)

Boston, Massachusetts, December 6-11, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Synctree for Single Point Installation, Upgrades, and OS Patches

John Lockard, University of Michigan
Jason Larke, ANS Communications, Inc.

Synctree for Single Point Installation,
Upgrades, and OS Patches

John Lockard – University of Michigan
Jason Larke – ANS Communications, Inc.

ABSTRACT

The combination of large networks, frequent operating system security patches, and
software updates can create a daunting task for a systems administration team. This paper
presents a system created to address these challenges with system security and ‘‘uptime’’ as the
primary concerns. By using a file-form ‘‘database,’’ the Synctree system holds a full network’s
configuration in an understandable, secure, location. This paper also compares this system with
previously published works.

Introduction

Synctree is flexible enough to be useful for a
small organization with only a few machines, to a
large university with thousands. The idea behind
Synctree is that once you’ve got the machine talking
to the network, you can ‘‘sync’’ it to a Synctree tem-
plate to bring that system to the same level as the rest
of the machines on your network. You can usually rely
on your vendor to help you get to the point where your
system is up and running and communicating on your
network. Sun supplies Jumpstart, HP ignite, etc. But
as pointed out in [Anderson], these procedures will
always be inadequate for one or more reasons.

You could ‘‘clone’’ a system, by making an
image of a system that meets your guidelines, but that
image would really only be good for the initial setup
of that computer, and would need to be re-generated
each time a new patch was installed. For some operat-
ing systems, this may be as often as every day. In
many organizations, one department will need a
slightly different configuration from the next. You
would also need a master machine for every system
architecture you are using.

You could use rdist to send out an update, but
you would need to make sure that every machine is
listening when you run the update. Also, this update
may only be good for one shot. Many patches require
portions of previous patches to be installed first. If one
of your machines wasn’t ‘‘listening’’ when you
updated with the previous patch, you can no longer
count on your current patch to leave you with an oper-
ational system.

You installed a security patch on all of your sys-
tems last week, but you’ve just been ‘‘cracked’’
through the vulnerability that the patch was supposed
to fix. How do you go about verifying that the patch
on the system is valid? Or, are you sure that ‘ifconfig’
is really the ‘ifconfig’ that you put there? Has ‘ls’
been modified to pass the file size, date stamp and crc
tests? The rdist datestamp/crc check is not infallible as

datestamps can be forged, and a crc on a bogus file
can adjusted by most script-kiddy ‘‘hackers’’ with the
latest version of their favorite root-kit.

These are all challenges that we’ve faced in our
duties as Systems’ Administrators. They don’t have to
be as troublesome as they appear. With Synctree in
place, I am able to install a patch in a central location,
and be assured that the next morning all the target
machines on my network will have that patch. I can
also be sure that the files I expect are on my system.

The University of Michigan’s Computer Aided
Engineering Network group through the direction of
Paul Howell created a utility called Synctree that takes
care of all these things.

Previous Work

gutinteg, machdb and packagelink [Fisk] is a
very similar set of utilities viewed from a completely
different angle. Unfortunately, its aim is the small to
medium sized operation. The focus of this idea excels
at installation of packages and basic machine configu-
ration, but is not geared toward maintaining the
integrity of the system. Since the system uses a
‘‘copy’’ method of install rather than a ‘‘compare-
before-copy’’ method, this can get quite expensive as
more machines are thrown onto the system. Because
of this, a large installation would not be able to verify
the integrity of its systems on a daily basis.

GeNUAdmin [Harlander] is a very intricate sys-
tem that can be used to manage even the most minute
of a system’s configuration. This minute focus makes
this system quite daunting. The use of so many config-
uration ‘‘databases’’ leaves yet another learning curve
to the use of a system that’s intent is to make system
administration easier. GeNUAdmin does not aim at
updating of any of the system’s files outside of general
configuration.

Sasify [Shaddock] uses a method requiring a
reboot to initiate the update to the system. For an oper-
ation that is 24/7/365, this is not a feasible method, as

1998 LISA XII – December 6-11, 1998 – Boston, MA 261

Synctree for Single Point Installation, . . . Lockard and Larke

many of the updates that need to be done are as simple
as changing one file, with no reboot required.

OMNICONF [Hideyo] allows for the storing and
restoring of configuration and operating system files.
OMNICONF admittedly is useful for Updates and
configuration recovery. But, the storage of whole con-
figurations for individual machines and the lack of any
real ‘‘template’’ sharing limits the size of the operation
this can support.

synccp MTIMSYNC /srv/template-server/LSA/root/usr/lib/sendmail /usr/lib/sendmail

Listing 1: Copying a new version of sendmail.

#!/bin/sh
#synccp - bourne shell script to copy a file
Synctree Vers. 2
#grue - May 1994: initial version
#dirt - Dec 1996: replaced with cp/mv combo
cp -p $2 $3.TOBEMOVED
mv $3.TOBEMOVED $3

Listing 2: Using synccp.

lcfg [Anderson] is a very robust system for
updating subsystems on a class of machine. This sys-
tem focuses more on the idea of rebuilding a system
from scratch when the configuration has started to
‘‘rot.’’ Such services as Jumpstart, Kickstart and Ignite
are developed specifically for the purpose of getting a
machine installed, and are very adaptable to the hard-
ware configuration of the machine. As with many
other update utilities, this is also a package that runs
best as a boot-time update.

Many sites use rdist(1) and related scripts to
automate file distribution. Synctree and rdist share
many features. However, the rdist model of a single
fileset, which is distributed to many machines from a
single server, becomes problematic in large, complex
environments where universal trust for a single server
may be difficult to obtain.

Remy Evard [Evard] discusses several examples
of configuration management in action. He points out
several problems in ad-hoc systems that we feel Sync-
tree addresses rather well. In particular, Synctree is
suitable for managing servers as well as clients (all
LS&A AFS, mail, and DNS servers are Synctree
clients), and uses the ‘‘configure to’’ model for mak-
ing changes to a workstation.

Many, many other systems for performing simi-
lar tasks exist. The need for this ‘‘wheel’’ is so obvi-
ous, and the degree of market penetration reached by
any one solution so small, that it has been reinvented
in any number of places. We’ve been using Synctree
for more than five years, and so have never looked at
many of these tools. We hope that Synctree might
prove useful for some of you, and also that by present-
ing a somewhat different spin on a common problem,
we can spur other re-inventors to produce even better

work that might someday become an acknowledged
standard.

What Is Synctree

Synctree is both a command and a software suite
for large-scale systems administration.

As a command, it’s an intelligent file copier.

As a suite, it’s a whole set of programs for
describing, generating, and managing system images.

Synctree, like many other packages (including
rdist(1), uses a compare-before-copy strategy. If a file
currently on the disk is just like the file in the image,
there’s no need to copy. Synctree’s notion of ‘‘just
like’’ is fairly rigorous, including date, size, and md5
digest. It also checks file ownership, group, and
mode, and will correct them if they are wrong but the
file’s contents are correct.

Since the original UNIX cp command doesn’t
work the same on all OS’s, and may not work in all
situations, Synctree will actually print out a list of
commands needed to synchronize a file with a system
image. The commands are actually shell scripts that
come with Synctree, and can easily be adapted to the
need or peculiarities of any given OS. They’re named
after their shell equivalents, with a ‘sync’ prepended –
i.e., Synctree copies with ‘synccp’. The first argument
to any command is the reason why the command is
being run. So, to copy down a new version of send-
mail, because of a changed modification time, Sync-
tree might say something like Listing 1. synccp in
turn is shown in Listing 2. Along with some other
refinements, the Synctree engine and these scripts
were the basis of the original package.

Eventually this system breaks down. Examining
a file may be simpler than copying it, but several hun-
dred clients all checking the modification time at once
on several hundred files generates severe scaling prob-
lems.

SI Files

Synctree version 2 introduced the SI database, a
way of storing all the relevant information about a
package. Listing 3 shows an example stanza from an
SI file.

262 1998 LISA XII – December 6-11, 1998 – Boston, MA

Lockard and Larke Synctree for Single Point Installation, . . .

In order, this tells us:

% tail /srv/template-server/AFSMODS/SI/root.SI
{
is /usr/sbin/in.rexecd
like /srv/template-server/AFSMODS/root/usr/sbin/in.rexecd
st_mode 100555
st_uid 0
st_gid 0
st_size 366012
md5 b6a27adc0df35f401b54a6f9af3e342a
trigger 4f2
}

Listing 3: Example stanza from an SI file.

statinfo -I /etc/hosts.equiv -L /srv/template-server/PSC/root/etc/hosts.equiv

Listing 4: Similarity query.

• What file we’re comparing (is).
• What file to compare it to (like).
• What the permissions (st_mode) of the file

should be.
• Who the owner (st_uid) should be.
• What group (st_gid) the file should belong to.
• What the file’s proper size (st_size) is.
• What the file’s md5 digest should be.
• When and how to correct any differences (trig-

ger).

The trigger value controls the sync attributes
used when comparing IS and LIKE, plus the trigger
specifies how a filesystem object should be instanti-
ated. The trigger consists of three hexadecimal digits.
Reading from left-to-right, the trigger semantics are as
follows:

First digit – file type
1 Place holder, do not sync or remove.
2 Instantiate IS as a symbolic link using LIKE as the

link text.
4 Instantiate IS as a regular file.
8 Instantiate IS as a directory.
9 Instantiate IS as a directory. Avoid recursing into the

directory when removing extra files (e.g., /afs) but
maintain the mode of the directory.

Second digit – mode,uid,gid,size
0 Ignore these fields for syncing purposes.
1 Sync the mode based on st_mode.
2 Sync the owner based on the value specified by

st_uid.
4 Sync the group based on the value specified by

st_gid.
8 Sync the file if the size is different from st_size.

Third digit – mtime,md5,remove-only
0 Ignore these fields for syncing purposes.
1 Sync the file if the time last modified is different

from st_mtime.
2 Sync the file if the MD5 one-way hash is different

from md5.
4 Update the time last modified and access time but do

not sync the file.
8 Remove IS only. No synchronization is performed.

The file type specified in the first digit is used as a
bit mask to specify the type of file that IS can be if it
is to be removed. For example, a value of ‘c08’
would remove the IS if it were a regular file or a
directory, but IS would not be removed if it were a
symbolic link. A value of ‘208’ would remove IS
only if it were a symbolic link.

Trigger values are additive, allowing flexibility
in how a file is instantiated and what attributes will
trigger its replacement.

The program that creates these SI files is called
statinfo. Statinfo takes a given file or directory to start
with (-L, or ‘like’), and a file or directory to sync (-I,
or ‘is’), and prints out SI files for making that compar-
ison. For example, if I run a query like one shown in
Listing 4, I’m asking ‘‘is /etc/hosts.equiv like /srv/
template-server/PSC/root/etc/hosts.equiv,’’ and I get
the results shown in Listing 5.

The file specified by the -I switch doesn’t have
to actually exist, but the file specified by -L does,
since it’s the basis for the comparison.

Once the SI files are created, all the Synctree
clients need to do is read them. It’s much easier on the
server to deliver five megs worth of SI files three hun-
dred times than support comparison of five thousand
files three hundred times.

To have an SI file, you have to have something
to make it from. The standard organization method is
to have a directory where all the templates live, and
under each template you have a directory called
‘‘root.’’ This directory is analogous to a machine’s /
directory. Any files you want to put in the template go
under ‘‘root,’’ just like they normally live under /.

Let’s take a concrete example. The AFSMODS
class includes four files: /usr/bin/login, /usr/X11R6/
bin/xdm, /usr/sbin/in.ftpd, and /usr/sbin/in.rexecd. As
a template, it looks like Listing 6.

1998 LISA XII – December 6-11, 1998 – Boston, MA 263

Synctree for Single Point Installation, . . . Lockard and Larke

/*
* statinfo produced this output
* executed by root on Tue Apr 14 14:18:10 1998
* selected run-time options are:
* directory trigger = 870
* regular file trigger = 4f3
* symbolic link trigger = 200
* shadow tree trigger = 2f3
*/

{
is /etc/hosts.equiv
like /srv/template-server/PSC/root/etc/hosts.equiv
st_mode 100664
st_uid 0
st_gid 0
st_size 479
st_mtime 875041276
md5 8a0a0f460702260ba60b6098b5776887
trigger 4f3

}
Listing 5: Result of similarity query.

% ls -laR root
root:
total 36
drwxrwxrwx 4 root wheel 14336 Jun 24 06:25 ../
drwxr-xr-x 5 root bin 2048 Sep 5 1996 usr/
root/usr:
total 20
drwxr-xr-x 5 root bin 2048 Sep 5 1996 ./
drwxr-xr-x 3 jlarke wheel 2048 Jul 12 1996 ../
drwxr-xr-x 3 root wheel 2048 Jul 12 1996 X11R6/
drwxr-xr-x 2 root bin 2048 Jul 15 1997 bin/
drwxr-xr-x 2 root wheel 2048 Mar 18 1997 sbin/
root/usr/X11R6:
total 12
drwxr-xr-x 3 root wheel 2048 Jul 12 1996 ./
drwxr-xr-x 5 root bin 2048 Sep 5 1996 ../
drwxr-xr-x 2 root wheel 2048 Jun 3 1997 bin/
root/usr/X11R6/bin:
total 716
drwxr-xr-x 2 root wheel 2048 Jun 3 1997 ./
drwxr-xr-x 3 root wheel 2048 Jul 12 1996 ../
-rwxr-xr-x 1 root wheel 361556 Jul 25 1996 xdm*
root/usr/bin:
total 2228
drwxr-xr-x 2 root bin 2048 Jul 15 1997 ./
drwxr-xr-x 5 root bin 2048 Sep 5 1996 ../
-r-xr-xr-x 1 root bin 1136292 Jun 7 1997 login*
root/usr/sbin:
total 1560
drwxr-xr-x 2 root wheel 2048 Mar 18 1997 ./
drwxr-xr-x 5 root bin 2048 Sep 5 1996 ../
-r-xr-xr-x 1 bin bin 427648 Sep 5 1996 in.ftpd*
-r-xr-xr-x 1 root wheel 366012 Mar 18 1997 in.rexecd*

Listing 6: Template of AFSMODS class.

264 1998 LISA XII – December 6-11, 1998 – Boston, MA

Lockard and Larke Synctree for Single Point Installation, . . .

Generally speaking (although this may vary in
other implementations), directories on the local disk
but not in a template are ignored by Synctree.

{
is /usr/lib/sendmail
like /srv/template-server/LSA/root/usr/lib/sendmail
st_mode 104751
st_uid 0
st_gid 3
st_size 401640
md5 473c1c1400281a032473c1f121d0049f
trigger 4f2
posa /usr/private/admin/synctree/posas/sendmail
}

Listing 7: An SI file entry for sendmail.

/usr/private/admin/synctree/posas/sendmail MD5SYNC /usr/lib/sendmail

Listing 8: posa command line.

#!/bin/sh
Restart sendmail if the binary was synced.
. /usr/private/admin/synctree/posas/posa.env
echo "/etc/init.d/sendmail stop"
/etc/init.d/sendmail stop
echo "/etc/init.d/sendmail start"
/etc/init.d/sendmail start

Listing 9: posa script.

{
is /usr/lib/sendmail
like /srv/template-server/LSA/root/usr/lib/sendmail
st_mode 104751
st_uid 0
st_gid 3
st_size 401640
md5 473c1c1400281a032473c1f121d0049f
trigger 4f2
}

Listing 10: SI file.

Presas and Posas

Sometimes copying a file isn’t enough. For
example, if we’re distributing a new daemon, we want
to stop an old version and start the new. Presas (pre-
sync activities) and posas (post-sync activities) take
care of this.

Presas and posas are keyed to a particular file
and run before or after any changes to that file are
made. At LS&A, we don’t have much call for presas,
because Synctree is able to update a running program
without crashing it. We just use a posa to stop the old
version and start the new after the update.

For example, Listing 7 shows an SI file entry for
sendmail.

The posa line tells it to run that script after mak-
ing changes to sendmail. When Synctree runs a posa

or presa, it gives it two command-line arguments: the
reason why the file had to be changed, and the name
of the file. So the command line might look like List-
ing 8. meaning that sendmail was updated because its
md5 hash changed. The script is very simple; see List-
ing 9.

CTRL Files

Sometimes Statinfo doesn’t (or can’t) get all the
information about a program. For example, there’s no
way it could tell what posa was associated with a file
just by examining the file. CTRL files allow adminis-
trators to manually override all or part of an SI file.
They look just like SI files, but they’re usually typed
by hand, and they usually have parentheses instead of
curly braces. When Synctree sees a curly brace, that
stanza replaces any previous stanza for that IS file.
Parentheses tell it to keep the old data, and only
replace the specified fields.

In the previous section, we saw an SI file for
sendmail that was generated by merging an SI file and

1998 LISA XII – December 6-11, 1998 – Boston, MA 265

Synctree for Single Point Installation, . . . Lockard and Larke

a CTRL file. The SI file entry would look like Listing
10, and the CTRL file entry is shown in Listing 11.

(
is /usr/lib/sendmail
st_mode 104751
posa /usr/private/admin/synctree/posas/sendmail
)

Listing 11: CTRL file entry.

CLASS=SOL251:LSA:PRINT:NPI-CDDI:ODS4:AFSMODS:WUFTP242UM:PSC:PSCSOL

Listing 12: /etc/hostconfig line.

{
is /usr/bin/login
like /srv/template-server/.SOL251-sun4m_55/root/usr/bin/login
st_mode 104555
st_uid 0
st_gid 2
st_size 28800
md5 635130471cda6d64d5f2a6667dc8ecfd
trigger 4f2
}

Listing 13: SI file for the SOL251 class.

{
is /usr/bin/login
like /srv/template-server/AFSMODS/root/usr/bin/login
st_mode 104555
st_uid 0
st_gid 2
st_size 1136292
md5 3ac4528006a8ee5d0685e1e25d789673
trigger 4f2
}

Listing 14: SI file for AFSMODS.

Organization (Classes)

Once you have the ability to create and use a sys-
tem image, you run into the fact that no single image
works for everyone. Each department, or sometimes
each machine, has unique needs. So the authors cre-
ated the notion of classes.

A class is a named set of files. Each department
in LS&A that uses Synctree has a class. Berkeley-style
printing is installed with a class, as is wuftpd. We also
use them to track changes to the system-one class,
SOL251, is Sun’s OS image with vendor patches and
AFS installed. The LSA class represents all the
changes we’ve made to suit the College’s needs. If I
notice that ‘rdist’ doesn’t match the system I used to
work on, I can easily find out that the LSA class
replaces it with a different version.

Each class has its own SI file. Synctree reads the
SI file and builds a database of files to compare and
reconcile, keyed by the IS entry in the SI file.

Each machine belongs to a specific set of classes,
determined by the CLASS= line in /etc/hostconfig.
Every machine has its own class, which is appended to
the list of classes specified in the machine’s /etc/host-
config file. The order of the classes determines which
files take precedence over others. Classes later in the
list win out over those listed earlier.

For example, let’s say my /etc/hostconfig file
includes Listing 12. Both the SOL251 class and the
AFSMODS class include versions of the /bin/login
program. Synctree first reads the SI file for the
SOL251 class, which looks like Listing 13. and then,
later on, reads the SI file for AFSMODS, which would
include lines shown in Listing 14.

When Synctree sees the second entry for the
same IS file, it automatically replaces the first one
with the new version. When it has read all the SI and
CTRL files for all the classes listed (plus the host’s
own class), it has a complete image of the system built
up, and it’s ready to start comparing and updating.

It may sound complicated, but the upshot of it is
that this one program takes care of all the synchroniza-

266 1998 LISA XII – December 6-11, 1998 – Boston, MA

Lockard and Larke Synctree for Single Point Installation, . . .

tion chores – all the administrator of a machine has to
do is run the command.

Installation Procedures

LS&A tries to use vendor installation procedures
to install Synctree, and then let Synctree install the
rest of our changes. We’ve only implemented this phi-
losophy for Solaris thus far, but see no reason that it
couldn’t be done for other platforms.

Syncing a Machine

Just running the Synctree binary doesn’t get us
very far. It provides the comparison engine, but we use
wrapper scripts to tell it which SI files to use, authenti-
cate to Kerberos, and handle logging what it does.

0 3 * * * /usr/private/admin/synctree/bin/run_synctasks 2>&1

Listing 15: crontab entry for Synctree.

Generally machines run Synctree from cron,
starting around 3 am every morning. The crontab entry
for this is shown in Listing 15. run_synctasks is a
script which has a handy randomizer routine which
will have systems sleep anywhere from 0 seconds to
6.5 minutes before starting their sync. This has been
random enough for the college to avoid too large of a
load all at once on the servers and the network.

If you want to run Synctree by hand, just run
‘syncnode’. You can also use the ‘-norun’ switch if
you want to see what Synctree would do, without actu-
ally making any changes.

Making Changes to a Template

Before we change Synctree templates, we gener-
ally test the change on a particular machine first. This
prevents the nightmare scenario where a change which
breaks machines happens on hundreds of machines at
3 am.

Once we know that a modification works, we
need to determine which class to put it in, and update
that class.

Generally, we put changes in the most general
template that makes sense. If we have a file that goes
on every machine in a department, we don’t put it in
each machine’s class; we put it in a class that every
machine syncs to.

Updates of a class’s version of a file are done
with the ‘cisync’ command. The basic use is just

cisync <filename>

Cisync will ask which class to add the file to, or
we can specify it on the command line with the ‘-c’
flag.

cisync -c MATH <filename>

Once we’ve cisync’d all the files, we need to
make sure the SI files get updated to match. At LS&A,
the college runs a cron job that will take care of this at

2 am each night. If you want to sync machines before
then, you need to run the mktemplate command.

mktemplateSI <CLASSNAME>

Creating a New Class

The command to create a new class is ‘mkclass’.
At LS&A, running AFS, you need to be in the AFS
system:administrators PTS group for the
lsa.umich.edu cell. Class names can be no longer than
eight characters long and, by convention, are in all
caps. The length limit is a product of AFS’ limits on
volume names, since each class gets its own volume.

mkclass CYRUS152

Commonly Used Classes

For Solaris, classes of general interest at the Col-
lege of LS&A include:

• [TEST,TEST4c,TEST4m,TEST4u]: Test
classes for new patches, updated software, etc.
If it succeeds here, it gets rolled out to produc-
tion.

• [SOL251]: Stock Solaris with AFS installed, no
customizations. Some files deleted in order to
link them into AFS.

• [LSA]: LS&A changes to the stock Solaris
install.

• [AFSMODS]: AFS-aware login, xdm, xlock,
etc.

• [AFSSERVER]: Useful AFS server mods, afs
fstype, tcpwrappers, etc.

• [FTP242B13]: Wu-ftpd version 2.4.2b13 with
AFS mods, and .principals support.

• [MAILSERV]: Programs needed to support
SMTP, IMAP2bis, POP3, and KPOP services.

• [MAILSERV2]: Like MAILSERV, but keeps
inboxes in hashed directories – i.e., /var/
mail/r/o/root/INBOX.

• [PERL]: Install Perl 5.004 in /usr/private/.
• [PRINT]: BSD-style printing commands.
• [SAMBA]: Samba 1.9.17p2 with AFS and NT

hashed password support.

Other Synctree Utilities

Precedence
Precedence helps system administrators deter-

mine what Synctree class(es) a given file comes from.
The simplest form:

precedence /etc/inet/inetd.conf
would display a list of each /etc/inet/inetd.conf file in
Synctree for that machine, from most important to
least important like that shown in Listing 16 that
shows that inetd.conf exists in MATH, LS&A and

1998 LISA XII – December 6-11, 1998 – Boston, MA 267

Synctree for Single Point Installation, . . . Lockard and Larke

SOL251 and that the MATH copy is the one that takes
precedence from Synctree.

% precedence /etc/inet/inetd.conf
/srv/template-server/MATH/root/etc/inet/inetd.conf
/srv/template-server/LSA/root/etc/inet/inetd.conf
/srv/template-server/SOL251/root/etc/inet/inetd.conf

Listing 16: Listing of inetd.conf files.

mksynclist
mksynclist list Synctree clients and/or classes. Its

original purpose was to provide a list of all the possi-
ble targets for mktemplateSI, but it can also be used to
list all the machines that sync to a certain class.

whosyncs
whosyncs displays a list of all machines and

classes that contain ‘filename’

cisync
cisync copies a file from the local machine to

Synctree classes. Since it uses Synctree to make the
copy, administrators can be sure that the mode, type,
and ownership of the file will be the same in the tem-
plate, as on the local disk.

cosync
cosync gets a particular file out of Synctree.

Used when you only want one or two files, and a full
Synctree run would be too expensive.

addclass
addclass installs a new Synctree class on a

machine.

Normally, the way to do this would be to add the
class to the /etc/hostconfig file and run a syncnode.
However, if you only want to add the functionality
provided by the new class, there’s no need to check all
the files on the entire machine against the template.

rmclass
rmclass removes Synctree classes when you no

longer want them on your machine.

Taking a class out of a machine’s hostconfig file
makes sure that the class will not sync again, but
rmclass goes the extra step of removing files installed
by the class.

In the interests of being careful, the output of
rmclass is a list of shell commands, which you can
either pipe into sh for execution or save to a file for
examination.

The Big Picture: A Usage Scenario

At the University of Michigan’s College of Liter-
ature, Sciences, and the Arts, Synctree and the core
classes are maintained by a small group of sysadmins
employed by the College. Most machine installs are
done by sysadmins employed by various departments
within the College. With Synctree in place, the depart-
mental sysadmin’s activities tend to revolve around it.

For example, when a new desktop machine
arrives from Sun, the sysadmin uses Jumpstart to load
the OS and Synctree. When the machine reboots, it
has guessed (from its fully qualified domain name)
which classes to install. The sysadmin double-checks
this list, inputs her AFS password and the machine
syncs. When it reboots, it will be a fully configured
and operational workstation, already tailored to her
department’s needs. This operation – which can be
quite tedious without automation – has taken only five
to fifteen minutes of her time.

If the machine was a server, she might have
added classes to install imapd and qpopper. She might
have to generate a sendmail.cf file, configure DNS, or
perform several other tweaks. The advantage of Sync-
tree is that she will *not* have to worry about getting
out of date versions of her mail software, an insecure
version of BIND, or any of the other common buga-
boos for sysadmins. She will not have to build any
software from source, or get permission from a higher
authority. In fact, she could deploy an entire depart-
ment’s worth of machines, and the expert sysadmins
working for the College would never have to worry.

Comparison to Other System Configuration Sys-
tems

A detailed comparison to all systems would be
impossible. However, with so much prior art in the
field, a little elaboration on Synctree’s unique advan-
tages seem appropriate.

Many of the systems in common use (notably
rdist(1)) require a server to initiate a sync. In environ-
ments where not every sysadmin trusts every other,
such systems require additional automation scripts to
be written in order to manage privileges. Synctree uses
file system permissions to control access to the tem-
plates, and only the root user on the client machine
can order a sync. Only root on the client can control
which classes the client syncs to. The only parties the
client needs to trust are those with administrator
access to the file system the templates live on – in
AFS, those in the system:administrator group.

Systems that rely on a central server also face
performance bottlenecks. Even high-end machines
can only carry on an rdist to a certain number of
machines. Using rdists’ binary comparison mode for
security drops this down even further.
The only central service required by Synctree is a file
server. Synctree downloads roughly five megabytes of
SI files from the server, and all further work (except
for copying files from AFS) happens entirely on the
client. This means that much smaller demands are

268 1998 LISA XII – December 6-11, 1998 – Boston, MA

Lockard and Larke Synctree for Single Point Installation, . . .

placed on the file server than would be placed on the
rdist server. Furthermore, the use of precomputed SI
files for the template, instead of forcing the server to
examine each file in the template as it checks them,
provides an enormous savings.

Many systems depend on complete images being
distributed. Synctree, like GNU cfgengine, allows
images to be overlaid by one another, to any desired
resolution. As a result, a client can build up a picture
in memory of the finished system before any changes
are made. Using overlays without the ability to resolve
conflicts in memory, ‘‘thrashes’’ the machine and ver-
sions of the same file are replaced by one another. For
example, we once used an AFSMODS Synctree class
to install an AFS Kerberos-aware login program. The
default Solaris login was superceded by this version
while the SI files were being merged in memory. Rdist
would require two different dists, with a window of
time between them when the wrong version was
installed on the client.

Synctree is modular and open. The only configu-
ration file is /etc/hostconfig, where a machine’s
classes are listed. Otherwise, almost all changes can
be made by simply copying files. Every step of Sync-
tree’s abstraction, from the initial ‘‘I type syncnode
and it works’’ level down to watching file-by-file
comparison, can be observed and understood by any-
one who can read a man page and shell scripts. Other
systems that hide more of their functionality, or
depend on more complex grammar, can be more diffi-
cult to learn and troubleshoot.

Finally, we argue that basing the system on a file
server has fundamental architectural superiorities. If
the goal of a configuration system is to distribute the
correct version of several hundred files to hundreds or
thousands of clients, it makes sense to rely on soft-
ware that has been designed for providing files on that
scale. Other common concerns for configuration sys-
tems, such as security and scalability, have already
been addressed and solved for file systems. Finally,
many large sites already have file servers scaled to
match their clients. Using this existing resource can
save quite a bit of worry later on.

Reflection, Surprise, Terror, for the Future

We at the College of LS&A have been working
on an update to this system that will allow Synctree to
take software packages that are normally on the net-
work, and install them on the system’s local hard
drive. The motivation for this, is that you usually get a
new system today, where the hard drive will hold the
OS around four times over. In many cases, you end up
with at least a Gigabyte of space left over which may
be wasted.

This idea will pull traffic off of the network and
put it onto the hard drive of the local machine. By
doing this, we will end up with a faster system all
around. The machines with the large hard drives will

load applications locally, not off the network, and the
other machines, with smaller hard-drives, will no
longer have to contend with the others over that net-
work bandwidth to get at the application.

One obviously desirable feature for Synctree
would be a way to sync partial files. For example, a
class for installing imapd would work best if it could
also add the appropriate lines to /etc/services and
/etc/inetd.conf. We’ve discussed doing this with either
M4 macros or an implementation of the GNU
cfgengine, but have yet to do any actual planning or
work toward this goal.

Existing Synctree systems assume that AFS is
available for file distribution. While the authors rather
like AFS, we understand that not everyone has it or
wants it. Synctree could easily be adapted to synccp,
krcp, or any other secure client-initiated copying sys-
tem. The major bottleneck is that such a system
requires acls, so that clients may copy down files that
are only readable by root, but cannot make changes
as root, or (probably) grab the server’s /etc/shadow
file. If anyone is interested in working on this, Jason
Larke may be able to provide some support.

Acknowledgments

Thanks to Rik Farrow for his support, and for
prodding John into thinking that this presentation
would be of interest to anyone. Also, thanks to all the
UofM Unix Admins that gave the encouragement to
sit down and type up this paper.

Availability

Synctree is available for non-commercial use,
and is the property of the Regents of the University of
Michigan, Ann Arbor, MI. Synctree (v.2) can be sam-
pled from: ftp.math.lsa.umich.edu/pub/Synctree/.

Author Information

John Lockard is the Systems Administrator for
the Department of Mathematics in the College of
LS&A at the University of Michigan. He is thinking
of switching to the Emacs paintball team. After some
thinking, is really glad that Jason talked him out of
titling the paper MS-SMS (Multi System-Synctree
Management System). John can be reached by mail at:

Department of Mathematics
2072 East Hall – B746
525 East University Avenue
Ann Arbor, Michigan 48109-1109

He can be reached by email at jlockard@umich.edu .

Jason Larke is a Systems Administrator at ANS
Communications in Ann Arbor, Michigan. He was the
lead Unix Administrator for the College of LS&A pre-
viously being a member of The University of Michi-
gan’s fabled F-Five. He will never forgive himself for
missing the Emacs vs Vi paintball game. Jason can be
reached by mail at:

1998 LISA XII – December 6-11, 1998 – Boston, MA 269

Synctree for Single Point Installation, . . . Lockard and Larke

ANS CO+RE
880 Technology Drive
Ann Arbor, Michigan 48108

He can be reached by email at jlarke@ans.net .

References

[Anderson] Anderson, Paul, ‘‘Toward a High-Level
Machine Configuration System,’’ LISA VIII Pro-
ceedings, 1994.

[Evard] Evard, Remy, ‘‘An Analysis of UNIX
Machine Configuration,’’ LISA XI Proceedings,
1997.

[Fisk] Fisk, Michael, ‘‘Automating the Administration
of Heterogeneous LANs,’’ Tenth USENIX System
Administration Conference, 1996.

[Harlander] Harlander, Dr. Magnus, ‘‘Central System
Administration in a Heterogeneous Unix Envi-
ronment: GeNUAdmin,’’ LISA VIII Proceedings,
1994.

[Hideyo] Hideyo, Imazu, ‘‘OMNICONF – Making OS
Upgrades and Disk Crash Recovery Easier,’’
LISA VIII Proceedings, 1994.

[Shaddock] Shaddock, Michael E. and Mitchell,
Michael C. and Harrison, Helen E., ‘‘How to
Upgrade 1500 Workstations on Saturday, and
Still Have Time to Mow the Yard on Sunday,’’
LISA IX Proceedings, 1995.

270 1998 LISA XII – December 6-11, 1998 – Boston, MA

