
The following paper was originally published in the
Proceedings of the Twelfth Systems Administration Conference (LISA ’98)

Boston, Massachusetts, December 6-11, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Automatically Selecting a Close Mirror Based on Network Topology

Giray Pultar
giray@coubros.com



Automatically Selecting a Close Mirror
Based on Network Topology

Giray Pultar – giray@coubros.com

ABSTRACT

The content of many popular ftp and web sites on the Internet are replicated at other sites,
called ‘‘mirrors’’; typically, to decrease the network load at the original site, to make
information available closer to its users for higher availability; and to decrease the bandwidth
requirements these sites place on long-haul network connections, such as international and
backbone links.

Even though the success of mirroring depends heavily on the selection of a good mirror,
there are very few methods to pick a good mirror: i.e., a mirror ‘‘close’’ to its user based on
network topology.

This paper describes a method and two tools developed to locate a ‘‘close’’ mirror among
replicated copies of a network service such as ftp, www, irc, streaming audio by utilizing
network topology information based on autonomous systems. Routing information from the
Internet Routing Registry is combined with information about the location of mirrors to generate
mirroring tables, similar to routing tables, which are used to identify a ‘‘close’’ mirror, where
‘‘close’’ is defined as traversing the minimum number of autonomous systems.

The tools are avaliable via anonymous ftp from ftp.coubros.com .

Background Material

Mirroring
‘‘Mirroring’’ is the replication of the content of a

site (such as a web site or an ftp site) at a different site
called a ‘‘mirror.’’

The content at the original site is replicated at the
mirror, typically once a day, by utilizing a mirroring
program, such as mirror [6].

In most cases, the locations of the mirrors are
advertised at the original site, and users of the site are
asked to choose a mirror ‘‘close’’ to themselves. These
mirrors are called ‘‘public mirrors,’’ because their
existence is advertised at the original site; and users of
the original site are allowed to use any of these mir-
rors. Sites are mirrored at public mirrors to decrease
the network and server load at the original site and to
make the content available to the public even if the
original site is down.

In some cases, the location of a mirror is not
advertised at the original site. Such a mirror is called a
‘‘private mirror,’’ because its existence is not adver-
tised at the original site; and the mirror is intended for
a subset of the users. Sites are mirrored at private mir-
rors to decrease the network load at the mirror location
(based on the assumption that the content will be
requested by the users at the mirror location more than
once) and to make the content available to the users of
the private mirror even if the original site is down.

In this paper, we are only concerned with public
mirrors.

Autonomous Systems
Section 2.2.4 of RFC 1812 [3] gives the defini-

tion of an autonomous system:

‘‘An Autonomous System (AS) is a connected
segment of a network topology that consists of a col-
lection of subnetworks (with hosts attached) intercon-
nected by a set of routes. The subnetworks and the
routers are expected to be under the control of a single
operations and maintenance (O&M) organization.
Within an AS routers may use one or more interior
routing protocols, and sometimes several sets of met-
rics. An AS is expected to present to other ASes an
appearance of a coherent interior routing plan, and a
consistent picture of the destinations reachable
through the AS. An AS is identified by an
Autonomous System number.’’

Figure 1 depicts a hypothetical internet made up
of three autonomous systems. Autonomous system 1
(AS1) has two routers; AS2 has three and AS3 has
two routers. There are external network connections
between AS1 and AS2; and between AS2 and AS3.
This hypothetical network will be used throughout this
paper.

Exterior Gateway Protocols
Section 7.3.1 of RFC 1812 [3] states: ‘‘Exterior

Gateway Protocols are utilized for inter-Autonomous
System routing to exchange reachability information
for a set of networks internal to a particular
autonomous system to a neighboring autonomous sys-
tem.’’

1998 LISA XII – December 6-11, 1998 – Boston, MA 159



Automatically Selecting a Close Mirror Based on Network Topology Pultar

In our hypothetical world, for example, AS1’s
router would tell AS2’s router that it can reach all the
networks inside AS1 (such as the network containing
client 1). Similarly AS2’s router would tell AS3’s
router that it can reach all the networks inside AS2,
(such as the network containing Server 1). Moreover,
this AS2 router, would also tell AS3 that it can reach
the networks connected AS1.

AS 1

AS 2 AS 3

R

R

Server 1

R
R

Server 2

R

Exterior Network Connection

Internal Network Connection

Host

Router

Autonomous System

LEGEND

R

R

Client 1

Client 2

R

Figure 1: A hypothetical internet with 3 autonomous systems.

With the exchange of this information, AS3
would learn that it can reach Client 1 via AS2. The
protocols used for exchanging this information are
called External Gateway Protocols.

It is beyond the scope of this document to
describe the details of exterior gateway protocols,
such as BGP, and the reader is referred to [2].

The Internet Routing Registry – IRR
There are three components to understanding the

motivation for the internet routing registry (IRR) [4] :
exchange points, policy routing and route servers.

Exchange Points

The Internet is a collection of interconnected net-
works managed by different network providers. When
a host is connected to the internet; it is connected to
one of the networks that make up the Internet. The fact
that a host on the Internet can reach any other host on
the internet is the result of agreements between the
network providers and the connections between the
different networks that make up the internet.

If each provider had to connect to every other
provider on the Internet directly, the number of net-
work connections required would grow with the
square of the number of providers; and therefore
would be impractical.

The solution to this problem was the creation of
exchange points (aka network access points). Each
network provider gets connected to an exchange point,
and can then communicate with all other providers
connected to the same exchange point. In this sce-
nario; the number of network connections required
grows linearly with the number of network providers.

There are currently several exchange points in
the US, such as MAE-EAST, MAE-WEST, PAIX, etc.
For more information about exchange points, the
reader is referred to [5].

Policy Routing

As described in the previous section, there are
several network providers that are connected to each
exchange point. However, this does not mean that
each provider is willing to exchange traffic with all
other providers at the same exchange.

When a provider does not want to send traffic to
another provider, they must modify the routing tables
on their routers that connect to the exchange point to
direct this traffic to a different provider.

Generating routing tables, not only based on net-
work connectivity, but based on the preferences or
policies of a provider is called ‘‘policy routing.’’

160 1998 LISA XII – December 6-11, 1998 – Boston, MA



Pultar Automatically Selecting a Close Mirror Based on Network Topology

Route Servers

There are two main functions performed by a
router:

1. routing packets: receiving packets and sending
these packets out based on IP addresses and the
router ’s routing tables

2. routing table management: communicating with
neighboring routers and updating routing tables
and calculating new routes based on changes in
network connectivity

aut-num: AS1104
as-in: from AS1213 100 accept AS1213
as-in: from AS1755 150 accept ANY
as-out: to AS1213 announce ANY
as-out: to AS1755 announce AS1104 AS1213
[...]

Listing 1: Route acceptance example.

‘‘Route servers’’ are computers (typically UNIX
based general purpose computers, as opposed special-
ized hardware such as routers) designed to offload the
routing table management function from the routers,
so that they can focus on routing packets. There are
typically two or more route servers at each exchange
point. These route servers communicate with all of the
routers at the exchange point, collect connectivity
information and route advertisements, and prepare
routing tables for all of the routers based on the poli-
cies of each network provider. The routers at the
exchange point, communicate with the route server
and receive their routing tables specifically prepared
for them.

To prepare routing tables for each router at the
exchange, the route servers need to know the policies
of each Internet Service Provider to honor their prefer-
ences. The Internet Routing Registry (IRR) is a collec-
tion of routing policies of each ISP to be used by route
servers in preparing the routing tables.

The information that makes up the IRR is cur-
rently stored in five different databases, provided by
five different organizations. For more information on
the IRR, see [4] .

The databases in the IRR are stored in the
RIPE-181 format [8] and contain objects that describe
network providers, their contacts, autonomous systems
and routes. The objects of interest to this paper are the
‘‘route’’ object, and the ‘‘autonomous system’’ object.

The ‘‘route’’ object defines a route in the CIDR
format, and its originating autonomous system.

route: 198.87.45.0/24
origin: AS3333
[...]

This tells us that the address space
198.87.45.0-198.87.45.255 originates in AS3333.

The ‘‘autonomous system’’ object defines an
autonomous system and a list of its neighboring
autonomous systems and what routes it is willing to
advertise, and what routes it is willing to accept from
those autonomous systems. For example, see Listing
1.

This object tells us that autonomous system
AS1104 connects to AS1213 and is willing to accept
route advertisements from AS1213 for all routes that
are registered in the IRR with an origin of AS1213. It
is also willing to accept any route from AS1755. In
advertising routes, AS1104 will advertise all the routes
it knows about to AS1213; and all the routes regis-
tered as originating from AS1213 and itself from
AS1104. It is likely that this autonomous system con-
nects to the Internet via AS1104, and AS1213 con-
nects to the Internet via this autonomous system.
(However, this is not conclusive, as there may be other
entries in the IIR that describe how AS1213 is con-
nected.)

Existing Methods

There are relatively few existing methods of
selecting a ‘‘close’’ mirror.

• User selection: This is the method that is most
commonly used. The user is given a list of all
the mirrors and is asked to choose one which
they think is ‘‘close’’ to them.

• Geographical: This method is a slightly
improved version of the ‘‘user-selection’’
method. The user is, again, given a list of all
the mirrors along with their geographical loca-
tions; and is asked to choose one which they
think is ‘‘geographically close’’ to them (e.g.,
www.gnu.org).

• Connect everywhere: This method is really
not a method for selecting a ‘‘close’’ mirror; but
making a site ‘‘closer ’’ to its users. The idea is
to get connected to many countries and many
exchange points, so that the server is ‘‘close’’ to
everyone (e.g., www.digisle.net).

• Domain name: This is one of the two existing
methods found that can automatically select a
close mirror. It tries to match as many labels as
possible from the fully qualified domain names
of the server and the client. For example, a
client at joe.domain.com would use
ftp.domain.com if there were such a mir-
ror, since the domain.com portion of the

1998 LISA XII – December 6-11, 1998 – Boston, MA 161



Automatically Selecting a Close Mirror Based on Network Topology Pultar

names match (e.g., www.perl.com/CPAN).
• Router based: The other method to automati-

cally select a close mirror is by using informa-
tion from routers at the mirror sites. For exam-
ple, Cisco’s Distributed Director product [7]
uses Cisco’s Director Response Protocol (DRP)
to find a close mirror. This method requires that
the all the routers at the mirror sites implement
DRP, and therefore use Cisco IOS.

Initial Ideas

Following are some of the ideas generated in for-
mulating solutions to the problem of ‘‘finding a close
mirror.’’

Client-side Selection
One of the first issues looked at was the advan-

tages and disadvantages of finding a ‘‘close’’ mirror at
the client side.

Source Address Mirror address

8.0.0.0/8 http://www.us.domain.com/public/tool

28.10.0.0/16 http://www.domain.de/publik/

130.36.0.0/24 http://www.us.domain.com/public/tool

130.36.128.0/28 http://www.domain.de/publik/

Table 1: Mirroring table.

The first issue with a client side solution is that
the software must be installed at the client to perform
the mirror selection. This problem has recently been
somewhat resolved by client side scripting and virtual
machine technologies, such as Java and Javascript.
Loading software on to the limited number of mirrors
is easier than loading software onto the clients.

We assume that the server, already contains a list
of its public mirrors. (This is probably a valid
assumption in most cases on the Internet today.) It
would be unreasonable to expect the client to have a
priori knowledge of mirrors for all sites. Even if the
client could look up a list of mirror sites, this informa-
tion would most likely be coming from one of the mir-
rored sites, anyhow.

Implementing a client side solution would make
sense if there was any information that clients already
possessed which was necessary to make the ‘‘closest’’
decision; but was also very difficult to transmit to the
server side. The only piece of information that comes
to mind that the server does not already possess is the
IP address of the client; however, the transmission of
this information is very simple.

Based on the software loading problem and the
location of data already available to make a decision,
in our opinion, the method of finding a ‘‘close’’ mirror
must work on the server side.

Traceroute
One of the tools that comes to mind when talking

about route paths on the internet is traceroute.
What kind of mechanism can we implement using
traceroute?

One possibility is to have each mirror run a
traceroute to the client, and among themselves decide
which one has the shorter path. There are two prob-
lems with this approach:

1. All the mirrors need to be contacted, and work
together to make a decision. As the number of
mirrors increases, this will take increasingly
more traffic/time.

2. This method will give the paths from a server
to the client. However, the paths on the internet
are not always symmetric. That is, the path
taken from a client to a server is not the same as
the path taken from the server to the client.
Assuming that most of the data transfer is going
to be from the server to the client, it would be
inappropriate to look at the path in the opposite
direction of the bulk of the data transfer.

The other possibility is to run traceroute from the
client to all the mirrors. Again, as the number of mir-
rors increases, the time/traffic to make a decision will
increase with the number of mirrors.

Based on the scalability issue and asymmetric
nature of the internet, would be an inappropriate
mechanism; and that the mechanism we find must be
scalable: the time/traffic requirement must not grow
with the number of mirrors.

The Solution

The method being implemented in the tools pre-
sented in this paper is to use the routing information
available from the sources that provide autonomous
system path information (such as the Internet Routing
Register) to determine, a priori, a ‘‘close’’ mirror, that
is the mirror reachable by traversing the minimum
number of autonomous systems, for all IP addresses
by building a mirroring table.

This mirroring table can then be used to make
decisions as to which mirror is ‘‘close’’ to a client with
a given IP address.

Some of the assumptions and implementation
issues relating to this solution are discussed in the
‘‘Discussion’’ section.

162 1998 LISA XII – December 6-11, 1998 – Boston, MA



Pultar Automatically Selecting a Close Mirror Based on Network Topology

Mirroring Table
The mirroring table is a table that specifies

which mirror clients should use based on their IP
address. This table is similar to routing tables: routing
tables specify which interface should be used for send-
ing packets and the next hop, based on the destination
IP address of packets. A mirroring table specifies
which mirror should be used, based on the IP address
of the client.

As an example, consider a primary site at
http://www.us.domain.com/pub-
lic/tool (shown as Server 1 in AS 2 Figure 1) and
a mirror at http://www.domain.de/publik/
(shown as Server 2 in AS3 in Figure 1).

Furthermore, let’s assume based on the network
topology information, we generate a mirroring table,
of which a portion looks like Table 1.

The source address is specified using the CIDR
syntax [9]. According to this table, client 1 at 8.2.3.4
(in AS 1) would be directed to use the primary site
(server 1), based on the first line. On the other hand,
Client 2 at 130.36.130.22 (in AS 3) would be directed
to use the mirror (Server 2) according to the last line
of the table.

Generating the Mirroring Table
The IRR contains information about network

routes, and route advertisements that ISP’s are willing
to send and accept from other ISP’s.

One can visualize the information in the routing
registry as a graph, by considering the autonomous
systems as nodes, and the sending and and the willing-
ness accept route advertisements as arcs between these
nodes.

Once represented as a graph, the problem of
finding a ‘‘close’’ mirror gis reduced to applying Dijk-
stra’s one-to-all shortest path algorithm for each mir-
ror to generate AS paths from each AS to the AS con-
taining the closest mirror.

Once we know which mirror each AS should
use, we can enumerate all the routes originating from
each AS to generate the mirroring table.

Optionally, the mirroring table can be processed
through a route aggregation algorithm, to decrease the
number of entries in the mirroring table.

Directing the Clients
The ease of directing a client to a ‘‘close’’ mirror

for a given protocol depends on whether the protocol
supports redirection or not. For example, the http pro-
tocol supports the ‘‘Location:’’ header which can redi-
rect its client to any other URL.

A http redirector, would take the IP address of
the client, look it up in the mirroring tables, find a
‘‘close’’ mirror, and return the ‘‘Location:’’ header
with that mirror.

For protocols that do not support redirection, one
possibility is to implement a modified DNS server.
The server would be use the IP address of the resolver
requesting a name resolution as the client address to
find a ‘‘close’’ mirror. For an example of a modified
name server, see [10]

Implementation

The mkmirrortable tool
The mkmirrortable tool takes two or more argu-
ments and generates a mirroring table on stdout (in the
format shown above). The arguments are:

• the name of a mirror file, in a /etc/hosts format
with addresses in the first column, and a label
(such as its hostname, or its URL) in the second
column and

• name of IRR database(s) file, in the RIPE-181
format [8].

The execution time of mkmirrortable
depends on the length of the IRR database files. On
the current IRR database, on a Pentium 200 processor,
it takes several minutes to generate a mirroring table.

The closest.cgi Tool
The closest.cgi is a simple Common Gate-

way Interface (CGI) perl script, that redirects a web
browser to a mirror. This is accomplished via the
‘‘Location: ’’ header returned by the cgi program.

The client IP address is delivered to clos-
est.cgi via an environment variable. The tool then
opens the mirroring table generated by the mkmir-
rortable program and searches for all entries that
match the IP address of the client. The route with the
longest prefix(the most specific route) is selected and
its mirror is returned to the web server via the ‘‘Loca-
tion:’’ header.

Discussion

There are several assumptions that have been
made in order to use autonomous systems to find a
‘‘close’’ mirror and in our implementation.

Definition of ‘‘close’’
Earlier, we defined a ‘‘close’’ mirror, as the mir-

ror that is reachable by traversing the minimum num-
ber of autonomous systems. However, this definition
is rather arbitrary (and rather self serving for the pur-
poses of this paper).

There is some validity to this definition: The
autonomous system paths can be thought of as a sim-
plification of all routes on the Internet. It would be
very difficult to map all the routes in the entire Inter-
net. Even then, using this map and doing calculations
based on such a map would be extremely difficult. The
autonomous system map is a representative derivative.

Moreover, in general, crossing autonomous sys-
tems crosses organizational boundaries, and there are
monetary costs in crossing organizational boundaries.

1998 LISA XII – December 6-11, 1998 – Boston, MA 163



Automatically Selecting a Close Mirror Based on Network Topology Pultar

Even though the users are not directly aware of it,
there are costs associated with crossing network
providers: there are the operational costs of exchange
points, as well as charges imposed by larger network
providers to use their networks. (Of course there are
some exceptions, where network providers agree to
exchange traffic with each other for free.)

To improve this definition of ‘‘close,’’ one would
have to look at the reasons that a site or its users wish
to use mirrors.

In most cases, the user does not care which mir-
ror is used to deliver the service, but would like to be
connected to a ‘‘up’’ mirror with high bandwidth
and/or low latency depending on the service.

The owners of the site, on the other hand, may
wish to redirect users to mirrors, to conserve band-
width at their own site, or to manage the distribution
of users among mirrors.

From an Internet architecture perspective, mir-
rors can serve two purposes: to decrease the overall
bandwidth used on the internet, and to avoid some
paths becoming overloaded.

A better definition of ‘‘close’’ would need to take
into account the purposes of all of these parties.

AS Paths Represent Network Routes
We have assumed that the network route from a

client to a mirror will pass through the autonomous
system path that is constructed by looking at the
autonomous systems that claim to originate the routes
for the client and the mirror.

This is most likely true for most routes in the
Internet. Almost all network providers represent their
network as autonomous systems, and present a coher-
ent view of their network to all other networks at the
exchange points. Moreover, since the routing tables at
the exchange points are built from the Internet Rout-
ing Registry, the coherent view presented by each net-
work provider is stored in the IRR.

An exception to this would be a private network
connection between two network providers that does
not pass through an exchange point, and is not repre-
sented in the IRR.

Different AS sizes
We have made an implicit assumption that all

ASes are of the same size, by ignoring the size of
ASes. We calculate the number of ASes traversed
without regard to how large they may be.

In reality, the size of autonomous systems vary
greatly. A better approach would be to try to estimate
the size of each AS, and try to minimize the total sum
of the sizes of the ASes traversed.

AS Cost of Routes Ignored
One of the pieces of data available in a AS defi-

nition in the IRR is a cost associated with routes
learned from neighboring autonomous system.

In this implementation, this cost is ignored. It
would be difficult to take this into account however,
since the cost is only relative to other neighbors for
the same AS, but has no significance when going
across ASes.

Asymmetric Internet and Direction of Data Flow
Earlier in this paper, we talk about the asymmet-

ric nature of the Internet. We have assumed that the
direction of data flow is from a mirror to the client;
and have ignored that there is some data flow from the
client to the mirror. It is possible to think of services
where there is equal or more data flowing from the
client to the server (e.g., sending e-mail).

A better method for choosing a ‘‘close’’ mirror
would look at the data flow requirements in both
directions to try to find an optimal path.

Future Directions

This section discusses several possibilities for
extensions to this work.

Empirical Evaluation
An extension to this paper and a well contained

project would be to implement the mirror selection
method presented in this paper at several sites, and
collect data on the selections made. This data can then
be analyzed to see how useful this method is and how
valid the assumptions being made are.

Client-side Solutions
Another approach would be to look at solutions

where the client is involved in the selection of a
‘‘close’’ mirror, either solely at the client, or in cooper-
ation with a server. This could be implemented in a
browser downloadable language such as Java or
Javascript.

Dynamic Route Information
This implementation uses static information in

the Internet Routing Registry. Using dynamic routing
information by peering with routers using BGP-4
would make it possible to take into account link states
between providers in choosing a mirror.

Modified DNS Server
For services that do not support automatic redi-

rection, using the domain name service as a redirector
may be possible. A modified DNS server could
respond differently depending on the client. The IP
address returned by the nameserver would be the
address of a ‘‘close’’ mirror to the client that requested
the address. This would work based on the assumption
that the resolver requesting the address is in the same
autonomous system as the client requesting the ser-
vice.

Migration to RPSL
There is a plan in the Internet Registry to migrate

to a different route specification language called
RPSL. The mkmirrortable program would need
to be extended to use RPSL instead of RIPE-181.

164 1998 LISA XII – December 6-11, 1998 – Boston, MA



Pultar Automatically Selecting a Close Mirror Based on Network Topology

Using Latency and Bandwidth Availability Metrics
A better ‘‘mirror ’’ selection, from the client’s

perspective would be to find a mirror with a low
latency and/or the highest possible bandwidth. Even
better, would be to be able to reserve the bandwidth
from a specific mirror.

Conclusion

This paper describes a method and presents two
tools developed to locate a ‘‘close’’ mirror among
replicated copies of a network service by utilizing net-
work topology information based on autonomous sys-
tems.

The author hopes that this breakthrough will be
embraced by most ftp and web service providers, and
that he does not have to ever ‘‘choose his own’’ close
mirror again :-) .

References

[1] Huitema, Christian Routing in the Internet,
ISBN 0-13-132192-7, Prentice Hall, 1995 Engle-
wood Cliffs, New Jersey 07632.

[2] RFC1771 – A Border Gateway Protocol 4
(BGP-4).

[3] RFC1812 – Requirements for IP Version 4
Routers.

[4] http://www.merit.edu/radb/docs/irr.html .
[5] http://www.isi.edu/div7/ra/ .
[6] http://sunsite.org.uk/packages/mirror/ .
[7] http://www.cisco.com/warp/public/751/distdir/

dd_wp.htm .
[8] Tony Bates, Elise Gerich, Laurent Joncheray,

Jean-Michel Jouanigot, Daniel Karrenberg,
Marten Terpstra, Jessica Yu, Representation of IP
Routing Policies in a Routing Registry, http://
www.merit.edu/radb/docs/ripe-181.html .

[9] RFC1519 – Classless Inter-Domain Routing
(CIDR): an Address Assignment and Aggrega-
tion Strategy.

[10] Schemers, Roland J. III, ‘‘lbnamed: A Load Bal-
ancing Name Server in Perl,’’ LISA ’95. http://
www.usenix.org/publications/library/proceedings/
lisa95/ .

[11] RFC2280 – Routing Policy Specification lan-
guage, ftp://ftp.isi.edu/in-notes/rfc2280.txt .

1998 LISA XII – December 6-11, 1998 – Boston, MA 165



166 1998 LISA XII – December 6-11, 1998 – Boston, MA


