
The following paper was originally published in the
Proceedings of the Twelfth Systems Administration Conference (LISA ’98)

Boston, Massachusetts, December 6-11, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

System Managment With NetScript

Apratim Purakayastha and Ajay Mohindra
IBM T. J. Watson Research Center

System Management With NetScript
Apratim Purakayastha and Ajay Mohindra – IBM T. J. Watson Research Center

ABSTRACT

Cost and complexity of managing client machines is a major concern for enterprises. This
concern is compounded by emerging client machines that are mobile and diverse. To address
this concern, management systems must be easy to configure and deploy, must handle
asynchrony and disconnection for mobile clients, and must be customizable for diverse clients.
In this paper, we first present NetScript, an environment for scripting with network components.
We then propose a management system built with NetScript, where mobile scripts invoke
components to perform management operations. We demonstrate that our approach results in a
flexible, scalable management system that can support mobile and diverse client machines.

Introduction

Managing client machines in an enterprise is a
challenging problem. Typical management operations
include installing/updating applications, changing sys-
tem files, monitoring performance, tracking client
activities for diagnostics, and taking backups. The
problem is compounded by certain characteristics of
emerging clients. First, even within an enterprise,
clients are heterogeneous – a mix of UNIX worksta-
tions, desktop PCs, laptops, palmtops, printers, and
copiers. Management systems designed for traditional
workstations are not readily applicable to laptops and
palmtops. Second, emerging clients are often discon-
nected. Management systems therefore must support
asynchronous and disconnected operations. For exam-
ple, a management server should not fail, block, or
have to actively retry a management task for a client
that is disconnected (asynchronous server operation).
On the other hand, a managed client should be able to
prefetch and cache the right resources so that it is able
to continue management operations when discon-
nected (disconnected client operation). Third, emerg-
ing clients are being used in more diverse application
domains. Management systems therefore must support
adequate customizability. In addition, management
systems should themselves be easy to configure and
deploy.

Current management systems and standards,
such as Tivoli’s TME-10 [10], Computer Associates’
Unicenter [11], SNMP [13], CMIP [14], and DMI
[15], are primarily designed for traditional worksta-
tions and desktops that are mostly connected and have
enough local resources to host reasonably heavy-
weight client-side management agents. They are hard
to deploy and configure, they do not support asyn-
chronous and disconnected operations, and they are
not well-suited for a heterogeneous environment.

NetScript1 is an environment for scripting with
network components. In NetScript, a developer selects

1A prototype implementation of NetScript is freely avail-
able at http://www.alphaworks.ibm.com/formula .

required components from a distributed catalog and
then writes a script invoking methods on these compo-
nents as if the components are local. When a script is
launched, the NetScript runtime dynamically deter-
mines component sites in the network and transpar-
ently migrates the script as needed. A remote compo-
nent can also be transparently downloaded to a site
where the script is currently executing.

The NetScript environment can be used in sys-
tem management as follows:

1. Organize management code into appropriate
components.

2. Use scripts to define management tasks that
migrate to managed clients and dynamically
locate and use the components at runtime.

The above approach offers a number of benefits.
First, it extends the notion of scripting transparently to
the network. Second, it centralizes management of
components and scripts. Since management compo-
nents can be downloaded at runtime, little manage-
ment code needs to be pre-installed on managed
clients, thereby drastically reducing configuration and
deployment costs. Third, its script mobility naturally
supports asynchrony and improves scalability by
reducing load on the management server. Finally, its
Java implementation improves portability.

The rest of the paper is organized as follows: the
NetScript environment, illustrative examples of scripts
and components, NetScript-based solutions to key sys-
tem management problems, the technical challenges in
using the NetScript environment for system manage-
ment, related work in this area, and finally the conclu-
sion. The appendices list a few scripts that are
referred in the paper.

The NetScript Environment

A NetScript programmer writes a script by first
selecting required interfaces from a distributed catalog
and then invoking interface methods as if the compo-
nents implementing the interfaces are local. An end
user launches such a script into the network, where the
NetScript runtime dynamically determines the

1998 LISA XII – December 6-11, 1998 – Boston, MA 37

System Management With NetScript Purakayastha and Mohindra

component sites and transparently moves the state of
the script to the component sites as necessary. It is also
possible that the NetScript runtime downloads a com-
ponent to the script execution site, or migrates both
the script and the component to a third site.

The rest of this section summarizes different
aspects of the NetScript environment including its
component model, scripting language, and the runtime
environment. This discussion is intended to provide
only a reasonable background for the rest of the paper.
Please refer to [2] for a more comprehensive discus-
sion of NetScript2.

The Component Model
The NetScript component model is based on

well-known object-oriented programming concepts of
interfaces, components, attributes, and globally unique
identifiers. In NetScript, an interface is a group of
semantically related methods or functions. A compo-
nent is an implementation of the interface. A compo-
nent can implement one or more interfaces. Each
interface and component is identified by a globally
unique identifier (GUID)3, called InterfaceID and
ComponentID respectively. Interfaces and components
may have attributes associated with them. Attributes
may provide informative description (such as seman-
tics and suggested use) or other parameters (such as
manufacturer, usage cost) that may allow the
NetScript runtime to select one component over
another. Attributes are also identified by GUIDs called
AttributeIDs.

Components in NetScript could be Java Beans or
Java-wrapped native (e.g., ActiveX) components.
Interfaces and components are advertised in a dis-
tributed catalog. Currently the catalog is implemented
using the LDAP [3] distributed directory services.
Interfaces and components are hierarchically orga-
nized in the directory. Currently only browsing func-
tion is supported whereby a programmer can browse
the catalog and select required interfaces. Support for
a more intelligent search function is planned.

The Scripting Language
The NetScript scripting language is an extension

of the BASIC programming language. In addition to
standard control constructs, the language has a few
NetScript specific additions to create component
instances and to make method invocations. For secu-
rity reasons the language has no vocabulary for system
operations such as direct memory access, file access,
and network access. The language is deliberately kept
simple for it to suffice as a glue language that glues
components together.

For creating components, the language provides
the createComponent keyword. The syntax is:

2NetScript was called NetPebbles at that time.
3A GUID is generated using a combination of hardware ad-

dress, current time, and a random long integer.

<varname>=createComponent(<interfaceName>,
[<filter>]) [at <locationName>]

where varName is a handle to the resulting instance,
interfaceName is the InterfaceID that the component
should support, and filter is a boolean expression of
desired attribute name-value pairs. Optionally, using
the at keyword, one can also specify the locationName
indicating where the component should be instanti-
ated. Under the covers, the runtime contacts the com-
ponent catalog to locate a component that implements
the required interface and then either migrates the
script to the component location or downloads the
component to the script’s location, instantiates the
component, and stores the handle for the instance in
the script’s varName variable. The syntax for perform-
ing method invocations is as follows:
[<resultVar>=]

<varName>.methodName(<arg1,...,argN>)

where resultVar is the variable to store the results of
the invocation, varName is the handle for the compo-
nent instance, methodName is the name of the inter-
face method, and <arg1,...,argN> is the list of argu-
ments.

We use a BASIC-like scripting language for rea-
sons of free experimentation and convenience, includ-
ing the fact that a free Java-based interpreter for it was
available that we could modify and add our extensions
easily. Use of a more standard scripting language like
Tcl or Javascript is planned.

The Runtime
The NetScript runtime has been implemented in

Java. The runtime has a script interpreter, an execution
engine, and a set of shared services such as directory,
instance management, and communication. The run-
time also has built-in support for security and access
control, garbage collection, monitoring, and failure
detection and recovery. The NetScript environment
also has command-line and web-based tools for the
user to launch, monitor, and control executing scripts.
Figure 1 gives a broad overview of the important parts
of the NetScript runtime.

A script is first launched on a machine using one
of the NetScript tools. The NetScript runtime initial-
izes some data structures and starts executing the
script. When executing a createComponent call the
runtime may need to migrate the script to another run-
time executing at a different host. Parts of the script
including program counter, stack and data heap are
transferred, while component instances that the script
may have created locally are kept as part of the resid-
ual script state. Every runtime has a per-script instance
manager that keeps track of component instances that
the script may have created. On method invocations,
the runtime queries the instance manager to decide if
the script needs to migrate to the location of a compo-
nent instance. On completion, the script typically
returns to the home machine from where it was
launched. The runtime at the home machine then

38 1998 LISA XII – December 6-11, 1998 – Boston, MA

Purakayastha and Mohindra System Management With NetScript

initiates garbage collection to clean up instances and
data structures that may have been created by the
script on other hosts.

Runtime # 1 Runtime # K

Shared Services

Communication

Authenticator

Catalog Client
Interpreter

Monitor & Logger

JVM + JDK

NetScript ID
Program
Stack & Data

Components
Residue State

& Instance
Manager

NetScript ID
Program
Stack & Data

Residue State
Components
& Instance
Manager

Moves
with
Script
Stays
with
runtime

a script

...............

Figure 1: The NetScript runtime: scripts and shared services.

home = "helix.watson.ibm.com"
a = createComponent("IDomainAdmin")
locations = a.getMembers("Department 931B")
n = length(locations)
dim ver[n]

for (i=0; i < n; i=i + 1)
b = createComponent("ISystemSniffer") at locations[i]
ver[i] = b.getVersion("Lotus Notes")

endfor
c = createComponent("IDisplay") at home
c.showList(ver)
exit

Figure 2: A script for finding out Lotus Notes versions installed on department machines.

An Example

In this section we discuss a motivating example
of how NetScript may be used to perform certain sys-
tem management tasks. First, we discuss an example
script by walking through its execution assuming cer-
tain components are available for the script to use.
Next, we discuss how one may write one of the con-
stituent components and incorporate the component in
the NetScript environment to make everything work
together.

An Example Script
Figure 2 shows an example script that discovers

the version of an application (such as Lotus Notes)
installed on every machine in a department and then
displays the results on some specified machine. Fig-
ure 3 provides a visual analog for the execution of the

script that shows which parts of the script execute on
which machines, how the script migrates, how the run-
times interact with the component catalog and down-
load components.

The script starts on an admin machine called
‘‘helix.’’ The script first attempts to create a compo-
nent that implements the interface ‘‘IDomainAdmin.’’
The runtime uses the component catalog to locate the
actual host for a component that implements the inter-
face. When such a host is located, the script execution
is suspended and the script is migrated to that host.
The NetScript runtime on the destination host, which
happens to be the component server in this case,
instantiates the component and resumes script execu-
tion. The script invokes the ‘‘getMembers’’ method on
the instance to get all member machines for ‘‘Depart-
ment 931B.’’ Then for every machine in the depart-
ment, the script uses the ‘‘createComponent’’ function
with the ‘‘at’’ clause to migrate to the machine as well
as download the component that implements the

1998 LISA XII – December 6-11, 1998 – Boston, MA 39

System Management With NetScript Purakayastha and Mohindra

interface ‘‘ISystemSniffer.’’ Like before, the runtime
uses the directory service to locate a component host
but instead of migrating to the component host, the
component is downloaded from the component server
to where the script migrates as a result of the ‘‘at’’
clause. The runtime at each machine instantiates the
downloaded component and resumes the script execu-
tion. The script invokes the ‘‘getVersion’’ method on
the instance to obtain the version of ‘‘Lotus Notes’’
and stores in a script array. Finally, the array is dis-
played using the ‘‘IDisplay’’ component at a specified
machine. To improve performance, the NetScript envi-
ronment also allows a user to ‘‘fan-out’’ a script
simultaneously to a number of machines.

home="helix.watson.ibm.com"
a=createComponent("IDomainAdmin")

locations=a.getMembers("Department 931B")
n=length(locations)

dim ver[n]
for(i=0; i<n;)

 b=createComponent("ISystemSniffer")
 at locations[0]

ver[0]=b.getVersion("Lotus
 Notes")

b=createComponent(
"ISystemSniffer")
 at locations[1]

ver[n-1]=b.getVersion("Lotus Notes")
c=createComponent("IDisplay") at home

c.showlist(ver)
exit

helix

component
server

component
catalog

locations[0]

locations
[n-1]

start

end

script
migration

component
download
catalog
lookup

Figure 3: Visual depiction of the execution of the example script.

An Example Component
The components in this example can be written

in pure Java, or can be Java-wrapped native code. The
‘‘IDomainAdmin’’ interface is one that manipulates
user information. Conceivably the component imple-
menting the interface can be written in pure Java that
perhaps uses JDBC to perform actual database opera-
tions. Alternatively, it can also be implemented as a
component that reads and updates simple files that
contain user information. As long as the component
supports the interface methods and semantics, its dif-
ferent implementations does not necessitate changes to

the existing scripts. The component implementing the
‘‘IDisplay’’ interface can also perhaps be a pure Java
component that uses ‘java.awt’ methods for user inter-
action.

The component of interest however, is the one
that implements the ‘‘ISystemSniffer ’’ interface. In its
generality, this interface will support not only methods
that get version information for applications, but per-
haps methods for sensing load conditions, memory
availability, disk-space availability, battery power, etc.
Since these operations are platform dependent, the
component is likely to contain native code. In
Appendix A we have outlined a simple implementa-
tion of the component that supports only the ‘‘getVer-
sion’’ method for a few applications. Appendix A.1
lists java code that is only a scaffolding for the under-
lying native code in the C language. The Java Native
Interface (JNI) is used to communicate across Java
and C. Appendix A.2 lists the C code that implements
the ‘‘getVersion’’’ method for a Windows 95 or Win-
dows NT platform. The C code simply traverses the
windows ‘‘registry’’ and looks for specific key-value
pairs to determine the version information. The native
implementation will clearly differ if the same method
is implemented for an AIX system that has different
ways of storing application infromation.

40 1998 LISA XII – December 6-11, 1998 – Boston, MA

Purakayastha and Mohindra System Management With NetScript

The classes and native libraries (if any) such as
‘‘dll’’s for Windows systems and ‘‘so’’s Unix systems
are packaged as Jar files for distribution. The compo-
nent is entered in the component catalog at its appro-
priate position. The component entry in the catalog
specifies its location and the name of the Jar file in
which the component is packaged. A NetScript run-
time finds component location information from the
catalog, unpacks the Jar file, and instantiates the com-
ponent.

The above example embodies a simple program-
ming paradigm where powerful components on the
network are threaded together to perform an actual
management operation. The NetScript environment
itself does not attempt to dictate what system func-
tions should be captured in reusable components and
what should be captured in scripts. In system manage-
ment, perhaps ‘‘functions’’ such as looking up a reg-
istry/database, copying/moving files, and checking
process/memory status should be captured in compo-
nents, while ‘‘decisions’’ or ‘‘control’’ such as identi-
fying when memory is low, deciding that an update
needs to be applied should be captured in scripts. Note
that the intent of NetScript is not to write ‘‘core’’ man-
agement code but to help organize core management
functions into components such that actual manage-
ment tasks can be easily specified in simple scripts.

NetScript Solutions for System Management Chal-
lenges

Modern management systems need to be flexi-
ble. Changes in management infrastructure should not
mandate a large-scale re-deployment on managed
clients. In addition, the system should allow high lev-
els of customizability for clients without the need to
modify client-side code and hence forcing re-deploy-
ment. Modern management systems should also be
able to contend with client disconnection and hetero-
geneity in managed clients or devices. In this section
we will discuss how the NetScript approach can
address these challenges.

Flexibility

Many management systems, including standards
and products, rely on a management agent installed on
a managed client. The management agent on the client
is controlled by a management server. The main prob-
lem with this approach is that when a management
agent is deployed, it becomes a fixed contract between
the server and the managed client. Therefore any
change in the behavior of the management system
implies the client agent be changed and re-deployed.
A second problem is customizability. Although some
preprogrammed customizability can be added to the
client agent, such an approach will be untenable as
clients and users get more diverse.

NetScript solves this problem naturally and ele-
gantly. All that needs to run on a managed client is the

NetScript runtime (only 40KB static footprint at this
time). The runtime is generic and simple and is not
specific to system management. It can also be used for
executing the client’s personal scripts, e.g., one that
tracks stock prices for the user. The runtime is also
capable of running as a servlet under a web server
such that the runtime itself can be downloaded when
appropriate. A NetScript-based management system
closely approximates a zero-install client.

In NetScript, management components can be
centrally stored and managed in some server. They can
be changed freely without the need for deployment.
The scripts can also be maintained centrally. The abil-
ity of the scripts to migrate to clients and download
required components precludes the need for modifica-
tions at the client.

Appendices B.1 and B.2 illustrate how flexible
and customizable a NetScript-based management sys-
tem is. Appendix B.1 shows a script similar to the one
in section 2. This script updates an application on all
machines in a department4. There could be times when
some clients will not want this update. For example,
the reason could be that the client is connected over a
slow phone line, or the client is making an important
presentation. To incorporate such customizability into
the system, the system administrator only needs to
write a ‘‘Update Policy’’ component (which can be
made arbitrarily powerful) and then change a few lines
in the script (shown in italics in Appendix B.2). Note
that no changes or deployment at the client is neces-
sary to incorporate this customization.

From these examples one can infer that the basic
philosophy of componentizing management code and
threading those components at runtime via a NetScript
script results in a management system that is
immensely flexible and customizable. In addition, the
NetScript approach results in better scalability because
‘‘control’’ migrates with the script. The central man-
agement server is not overloaded trying to coordinate
activities of various client agents.

Asynchrony and Disconnected Operations

Users in modern enterprises are increasingly
using laptops and other mobile devices that are fre-
quently disconnected. Modern management systems
must therefore contend with disconnection. First,
servers should be able to schedule or launch manage-
ment tasks anytime independent of whether clients are
connected or disconnected. Without an explicit
attempt-and-retry, the management system should be
able to implicitly propagate appropriate tasks when
clients reconnect (asynchrony). Second, the clients
may choose to disconnect when a management

4For simplicity, the scripts show machine updates in a seri-
al fashion. In practice that will not work well. NetScript en-
vironment includes support to launch scripts in parallel to
various machines.

1998 LISA XII – December 6-11, 1998 – Boston, MA 41

System Management With NetScript Purakayastha and Mohindra

operation is in progress. The runtime on the client
should be prepared to handle such disconnections and
should prefetch appropriate components to allow the
management operation to continue off-line (discon-
nected operation).

The NetScript runtime has implicit support for
handling network disconnections. When a running
script needs to migrate to another location, the runtime
periodically attempts to transfer the script in config-
urable intervals until it succeeds or exhausts a config-
urable timeout.

Supporting disconnected operations in NetScript
requires prefetching of appropriate classes in prepara-
tion for disconnection. As a first attempt we are con-
sidering supplying annotations in the script to help the
runtime prefetch the right components. This approach
is more practical than the runtime trying to be intelli-
gent about the semantics of a script. We are also con-
sidering support for persistent scripts that are saved
when a client shuts down and are revived when the
client restarts. Support for disconnected operations
and persistence is being designed and has not been
implemented yet.

Heterogeneity
With the increasing popularity of networked

devices it is reasonable to assume that in the near
future managed systems will not only include tradi-
tional workstations and desktop PCs but also include
devices such as laptops, palmtops, printers, and
copiers. The managed system therefore needs to sup-
port heterogeneous and diverse set of clients. They
will have different modus operandi, different operat-
ing systems (some of them will not even have one),
and different functional roles. In some, application
management will be important (laptops), in others
function and capability management will be important
(printers), and in yet others pure data management will
be important (palmtops). If a management system
even wants to begin to address this wide range, it has
to be lightweight, portable, and adaptable.

NetScript is reasonably lightweight (40KB foot-
print). Since it is downloadable, it can also free up
valuable space for more important applications in
space constrained palmtops. It is portable to any Java-
capable platform (may also be packaged with a
lightweight Java Runtime Environment). It is also
adaptable to availability of resources such as the net-
work.

Consider printers as an example of a new type of
managed client in a comprehensive management sys-
tem.

Printers have errors such as toner low, paper out,
paper jam, memory overflow, bad configuration, etc.
Today we discover those errors only when we go to
pick up a printout, even though the printer firmware
has already detected and reported the error on its con-
sole. In the near future it is reasonable to expect for

printers to have IP addresses and be Java-enabled.
With a NetScript-based management system, a server
can send down a monitoring script to the printer,
which basically snoops on the printer, and upon error,
migrates to notify appropriate parties. Appendix C.1
shows a NetScript script that may be used for this pur-
pose. The script uses the ‘‘IPrinterManager ’’ compo-
nent to obtain the printer’s location, then migrates to
the printer and downloads the ‘‘IPrinterAssist’’ com-
ponent that is able to access the printer firmware. The
script then waits in a loop checking for error condi-
tions. When an error is detected, it first tries to fix the
error if possible, or else it notifies the administrator.
One can also imagine scripts that can visit a number of
printers and enqueue a specific job in a printer that has
perhaps the shortest queue length or the smallest total
size for all jobs in the queue.

Issues in using the NetScript Environment for Sys-
tem Management

The practical use of NetScript in a real manage-
ment system depends on a number of factors such as
acceptability of its programming model including the
scripting language and the component model, security,
reliability, and monitoring and debugging support.
This section discusses these issues in the NetScript
environment.

The Scripting Language Dilemma
The NetScript scripting language is an extension

of BASIC. It is purposely kept quite simple such that
scripts are easy to write and modify. It is however,
unfamiliar and not as prevalently used such as Tcl [4],
Perl [5], or Javascript [6], therefore its acceptance in
the system management may be in question. Scripting
languages are usually extensible and therefore it
should not be difficult to incorporate NetScript spe-
cific extensions (such as createComponent) into other
languages. Why then, are we not using Tcl extensions?
The reason is that scripting languages such as Tcl are
quite powerful and can directly access files and sock-
ets. Such capabilities might be undesirable (for rea-
sons of security and simplicity) in a mobile script such
as NetScript. We may consider using a proper subset
of Tcl (such as safe-Tcl [7], with NetScript extensions)
in the future. Since NetScript is currently under active
experimentation, we used a language for which we
found a public domain Java-based interpreter that we
could easily modify to suit our needs.

The ‘‘Non-Standard’’ Component Model

The NetScript component model borrows from
the Java Beans model as well as the ActiveX [8]
model but is also distinguishable from both. The prop-
erties and interfaces supported by a bean cannot be
ascertained unless the bean is instantiated and intro-
spected. We believe that a system manager needs to
know about the functional characteristics of a compo-
nent before instantiating it. Therefore, like the

42 1998 LISA XII – December 6-11, 1998 – Boston, MA

Purakayastha and Mohindra System Management With NetScript

ActiveX registry we use a component catalog (imple-
mented on LDAP distributed directories). However,
in ActiveX, the programming model is component
centric because a component is first located in the reg-
istry then it is ascertained what interfaces it imple-
ments. In NetScript the programming model is inter-
face-centric. When writing scripts, the system man-
ager simply chooses some functionality (syntactically
and semantically characterized by an interface) from a
catalog and the runtime locates that functionality in
the form of a component.

Security
With mobile code such as in NetScript there is

always a security concern. A malicious ‘‘manage-
ment’’ script can harm a client. The users of the scripts
must be authenticated and authorized to execute on
certain machines or use certain components. NetScript
provides mechanisms for attaching a ‘‘principal’’ with
a script. Upon receipt of a script, the NetScript run-
time authenticates the principal and verifies that the
principal has execution rights on the local host. When
a script accesses a component, the principal attached
to the script is provided to the component catalog.
Component entries in the catalog list principals that
are allowed to use the component. Only if the pro-
vided principal in included in the list, a component
location is returned to the requesting runtime. We have
implemented a DCE-based [9] authentication and
access control mechanism with NetScript that is suit-
able for intranet deployment.

Security issues however, reach further than sim-
ple authentication and access control. A NetScript run-
time should prevent two different NetScripts from
interfering with each other (isolation). The runtime
uses per-script instance managers and class loaders to
implement isolation. The NetScript environment also
does not allow for editing a running script because of
possible security breaches.

Reliability
Reliability is also a concern with mobile code.

When a management script dies somewhere how can
the system manager find out where it died and what
actually happened? For scripts that are long-running
(e.g., one that monitors network load on a router),
what happens if the system is re-booted? How does
one ensure that all the component instances of a failed
script are garbage collected? Is it possible to recover a
script after the host on which the script was executing
crashes?

To survive across machine reboots, we have
implemented mechanisms whereby a NetScript run-
time responds to the ‘‘shutdown signal’’ (available in
most operating systems) by saving its internal data
structures and scripts in persistent storage and recover-
ing from persistent storage at system startup. We have
also implemented a version of the NetScript runtime
that uses a reliable and non-blocking application-to-
application transfer protocol called MQSeries [22].

The use of a reliable and non-blocking transport
mechanism has allowed us to design simple protocols
for reliably tracking a NetScript. We have also imple-
mented limited checkpointing capabilities that allows
some scripts to be recovered after a system crash.

Monitoring and Debugging
To be successful as an extensible, programmable

environment, NetScript must include reasonable sup-
port for monitoring the excution of scripts and debug-
ging scripts. Tightly controlling the execution of
mobile code is a difficult problem. The NetScript
environment, however, provides support for locating a
script, retracting a script from any location, or killing a
script. Scripts are identified by GUIDs generated and
assigned to a script at the start of its execution. Any
errors that are encountered by a script, including
exceptions generated by components, are reported to
the user when the user requests for the status of a
script that has failed. Features like break-points, sin-
gle-step execution are being considered but are not
currently implemented.

Related Work

NetScript and Other Management Systems
Architecturally, most management systems such

as Tivoli’s TME-10 [10], Computer Associates’ Uni-
center [11], Marimba [12], IBM TJ.Watson Research’s
SysCtl [23], and Igor [24], rely on a installed client
agent that works under commands from a central
server in a request-response fashion. Network man-
agement standards such as SNMP [13] and CMIP [14]
also imply the same architecture, and so do desktop
management standards such as DMI [15]. For reasons
cited in Section 2 this approach is fundamentally not
flexible and scalable. Enhanced functionality often
results in making the client side agent even more com-
plex, thereby making it harder to maintain, re-deploy,
and configure. None of the above systems also natu-
rally support asynchronous operations although one
can imagine retrofitting such function to them. None
of the above systems (including implementations of
the standards mentioned) are portable across operating
systems, let alone different device classes such as
desktops, laptops, palmtops, and network devices.

Management by Delegation (MbD) [16] partially
addresses the scalability and flexibility limitations of
SNMP-style systems. MbD proposes an architecture
whereby delegation agents could be sent down from
servers to clients that could then invoke delegation
procedures stored on clients. MbD however, is not
quite as flexible as NetScript because the delegation
procedures themselves are not downloadable. The pro-
gramming model is also not based on scripting, which
is popular in the system administration community.

NetScript and Other Infrastructure Technologies
One may argue that given suitable management

components one can build a similar management sys-
tem using technologies like Java/RMI [17], CORBA

1998 LISA XII – December 6-11, 1998 – Boston, MA 43

System Management With NetScript Purakayastha and Mohindra

[18], or DCOM [8], or mobile agent technologies like
IBM Aglets [19], or Agent Tcl [20], or Telescript [21],
why use NetScript?

With Java/RMI technologies, per-component
‘‘ImplServers’’ have to be running on component
hosts. This can cause difficulty in deployment. More-
over, for long running methods (such as monitoring a
printer) RMI-like technologies will need to maintain a
long running connection. Remote polling using short
lived connections is not scalable.

Functionally a mobile agent technology such as
IBM Aglets can do whatever NetScript can do. How-
ever, the script and component based programming
model in NetScript is appreciably simpler. Same func-
tionality is substantially easier to code and deploy
using NetScript (see [2]).

Conclusions

In this paper we have summarized a technology
for scripting with network components and argued for
its gainful use in system management. Our prototypes
have shown that using the NetScript technology in
managing systems can overcome problems of flexibil-
ity/customizability, client mobility, asynchrony, and
disconnection, and heterogeneity. At the same time we
believe that NetScript provides an attractive and sim-
ple programming model for the system administration
community.

For a fully functioning management system,
components that do the actual work still have to be
written. Some components can be purely Java and
hence usable in all Java-enabled managed platforms.
Some components will have to use native code for a
long time to come (e.g., registry access component for
Windows). These pieces of code have to be written in
any management infrastructure that wants to perform
the same functions. NetScript’s contribution is
proposing an elegant way to program with these com-
ponents as available, granted pieces of function. As a
result, the management infrastructure built around
those components becomes more flexible, scalable,
customizable, portable, and above all, ‘‘modern.’’

Author Information

Apratim Purakyastha received his Ph.D. in Com-
puter Science from Duke University, where he was
awarded a graduate fellowship in 1992. He worked in
the parallel file systems area for his dissertation.
Purakyastha joined IBM upon graduating in 1996. At
IBM, he has worked on building Java-based technolo-
gies such as Thin-Client Application Framework and
NetScript. He belongs to several professional organi-
zations, including Usenix and ACM. Reach him at
apu@us.ibm.com .

Ajay Mohindra received his Ph.D. in Computer
Science from Georgia Institute of Technology in
Atlanta. While earning his degree, he participated in
the design and implementation of a distributed object-

based operating system. Mohindra is a member of
IEEE (Institute of Electrical and Electronics Engi-
neers), ACM, and Usenix. Reach him at ajaym@us.
ibm.com .

References

[1] The Java Beans home page. http://java.sun.com/
beans .

[2] Ajay Mohindra, Apratim Purakayastha, Deborra
Zukowski, Murthy Devarakonda. ‘‘Program-
ming NetWork Components Using NetPebbles:
An Early Report.’’ In Proceedings of the Fourth
Annual Usenix Conference on Object Oriented
Technologies and Systems (COOTS) April, 1998.

[3] Timothy Howes and Mark Smith. ‘‘A Scaleable
Deployable Directory Service for the Internet.’’
In Proceedings of INET 95, 1995.

[4] John K. Ousterhout. Tcl and the Tk Toolkit. Addi-
son-Wesley Publishing Company, 1994.

[5] Larry Wall and Randall Schwartz. Programming
Perl. O’Reilley and Associates, Inc. 1994.

[6] The JavaScript Guide. http://developer.netscape.
com/docs/manuals/communica-
tor/jsguide4/index. htm .

[7] Safe-Tcl. http://sunscript.sun.com/plugin/safetcl.
html .

[8] David Chappell. Understanding ActiveX and
OLE. Microsoft Press, 1996.

[9] Charles Knouse. Practical DCE Programming.
Prentice Hall, 1995.

[10] Rolf Lendenmann, Jennifer Nelson, Janet Selby,
Carlos Patino Lara. An Introduction to Tivoli’s
TME 10. Prentice Hall, 1998.

[11] Computer Associates Unicenter. http://www.cai.
com/products/uctr.htm .

[12] Marimba, How Software Goes Down to Business.
http://www.marimba.com .

[13] William Stallings. SNMP, SNMP v2, and CMIP.
Addison-Wesley, 1993.

[14] William Stallings. Network Management. IEEE
Computer Society Press, 1993.

[15] Desktop Management Interface. http://www.
dmtf.org/tech/specs.html .

[16] German Goldszmidt and Yechiam Yemini. ‘‘Dis-
tributed Management by Delegation.’’ In Pro-
ceedings of the 15th International Conference on
Distributed Computing Systems, 1995.

[17] Ann Wollrath, Roger Riggs, Jim Waldo. ‘‘A Dis-
tributed Object Model for the Java System.’’
Proceedings of the 2nd Conference on Object
Oriented Technologies and Systems (COOTS),
1996.

[18] CORBA2.0/IIOP Specification. http://www.omg.
org/corba/c2indx.htm .

[19] Danny Lange and Daniel T. Chang. IBM Aglets
Workbench, Programming Mobile Agents in
Java. http://aglets.trl.ibm.co.jp/whitepaper.htm .

44 1998 LISA XII – December 6-11, 1998 – Boston, MA

Purakayastha and Mohindra System Management With NetScript

[20] Robert S. Gray. ‘‘Agent Tcl: A Transportable
Agent System.’’ In Proceedings of the Workshop
on Intelligent Information Agents, in the Fourth
International Conference on Information and
Knowledge Management, December 1995.

[21] Telescript Technology: The Foundation for the
Electronic Marketplace. http://www.genmagic.
com/Telescript/Whitepapers/wp1/whitepaper1.htm,
1996.

[22] MQSeries. http://www.software.ibm.com/qseries .
[23] Salvatore DeSimone and Christine Lombardi.

‘‘Sysctl: A Distributed System Control Pack-
age.’’ In the Proceedings of the 7th Usenix LISA
Conference, pages 131-143, November, 1993.

[24] Clinton Pierce. The Igor System Administration
Tool.’’ In the Proceedings of the 10th Usenix
LISA Conference, pages 9-18, September, 1996.

Appendix A: ‘‘SystemSniffer ’’ and Example Component

Appendix A.1: SystemSniffer.java
package COM.ibm.netpebbles.components.systemsniffer;

public class SystemSniffer{

public native String getVersion(String appname);

static {
System.loadLibrary("COM.ibm.netpebbles.components.systemsniffer.vernative");

}
}

Appendix A.2: vernative.c
#include "COM_ibm_netpebbles_components_systemsniffer_SystemSniffer.h"
#include <windows.h>
#include <string.h>
#include <mbstring.h>
#include <stdlib.h>
#include <stdio.h>

JNIEXPORT jstring JNICALL Java_COM_ibm_netpebbles_components_
systemsniffer_SystemSniffer_getVersion(JNIEnv*

env, jobject obj, jstring appstr){

HKEY key;
LONG retcode;
char keyname[50], class[50];
DWORD keynamesize = 50, classsize = 50;
FILETIME lastwrittento;
int i;
char str[50];
char ver[50];
DWORD valuetype;
DWORD versize = 50;
const char *appname;

appname = (*env)->GetStringUTFChars(env,appstr,0);

if(!strcmp(appname,"Lotus Notes")) {
if(RegOpenKeyEx(HKEY_LOCAL_MACHINE,

"SOFTWARE\\Lotus\\Notes",0,KEY_READ,&key) == ERROR_SUCCESS){
for(i=0, retcode=ERROR_SUCCESS; retcode==ERROR_SUCCESS; i++){

if((retcode = RegEnumKeyEx(key,i,keyname,&keynamesize,NULL,
class,&classsize,&lastwrittento)) == ERROR_SUCCESS){

str[0] = ’\0’;
strcat(str,"SOFTWARE\\Lotus\\Notes\\");
strcat(str,keyname);
if(RegOpenKeyEx(HKEY_LOCAL_MACHINE,str,0,KEY_READ,&key) ==

ERROR_SUCCESS){
if(RegQueryValueEx(key,"Version",NULL,&valuetype,ver,&versize)

== ERROR_SUCCESS){

1998 LISA XII – December 6-11, 1998 – Boston, MA 45

System Management With NetScript Purakayastha and Mohindra

printf("Found version %s\n",ver);
RegCloseKey(key);
return((*env)->NewStringUTF(env,ver));

}
}

}
}
return((*env)->NewStringUTF(env,"Installed but version unavailable"));

}
else {

return((*env)->NewStringUTF(env,"Not Installed"));
}

}

if(!strcmp(appname,"Netscape Navigator")) {
if(RegOpenKeyEx(HKEY_LOCAL_MACHINE,

"SOFTWARE\\Netscape\\Netscape Navigator",0,KEY_READ,&key) ==
ERROR_SUCCESS) {

if(RegQueryValueEx(key,"CurrentVersion",NULL,&valuetype,ver,&versize)
== ERROR_SUCCESS){

printf("Found version %s\n",ver);
RegCloseKey(key);
return((*env)->NewStringUTF(env,ver));

}
return((*env)->NewStringUTF(env,

"Installed but version < 4, registry not properly configured"));
}
else {

return((*env)->NewStringUTF(env,"Not Installed"));
}

}

if(!strcmp(appname,"Hummingbird Exceed")){
if(RegOpenKeyEx(HKEY_LOCAL_MACHINE,

"SOFTWARE\\Hummingbird\\eXceed\\CurrentVersion",
0,KEY_READ,&key) == ERROR_SUCCESS) {

if(RegQueryValueEx(key,"Version",NULL,&valuetype,ver,&versize)
== ERROR_SUCCESS){

printf("Found version %s\n",ver);
RegCloseKey(key);
return((*env)->NewStringUTF(env,ver));

}
return((*env)->NewStringUTF(env,"Installed but version not found"));

}
else {

return((*env)->NewStringUTF(env,"Not Installed"));
}

}
else {

return((*env)->NewStringUTF(env,"Not Supported by Component"));
}

}

Appendix B: Update Scripts

Appendix B.1: Script to update an application
intf = "IDomainAdmin"
a = createComponent(intf)
locations = a.getMembers("Department 931B")
intf = "IUpdate"
n = length(locations)

46 1998 LISA XII – December 6-11, 1998 – Boston, MA

Purakayastha and Mohindra System Management With NetScript

dim status[n]
for (i=0; i < n; i=i + 1)

b = createComponent(intf) at locations[i]
status[i] = b.doUpdate("IBM Antivirus")

endfor

intf = "IDisplay"
home = "mymachine.watson.ibm.com"
c = createComponent(intf) at home
c.showList(status)
exit

Appendix B.2: Script to update an application with customizability
intf = "IDomainAdmin"
a = createComponent(intf)
locations = a.getMembers("Department 931B")
intf = "IUpdate"
n = length(locations)
dim status[n]
for (i=0; i < n; i=i + 1)

intf2 = "IUpdatePolicy"
d = createComponent(intf2)
allow = d.isUpdateAllowed(locations[i])
if (allow == false)

status[i] = "Update Refused"
continue

endif
b = createComponent(intf) at locations[i]
status[i] = b.doUpdate("IBM Antivirus")

endfor

intf = "IDisplay"
home = "mymachine.watson.ibm.com"
c = createComponent(intf) at home
c.showList(status)
exit

Appendix C: Script to monitor a printer

printername = "colorful"
intf = "IPrinterManager"
pm = createComponent(intf)
location = pm.getLocation(printername)
intf = "IPrinterAssist"
pa = createComponent(intf) at location
while(true)

iserror = pa.isError()
if (iserror)

err = pa.getError()
shouldcorrect = pa.shouldCorrect(err)
if(shouldcorrect)

pa.correct(err)
pa.setError(false)

else
notifyloc = pm.getNotifyLocation()
intf2 = "INotifierGUI"
gui = createComponent(intf2) at notifyloc
gui.showMessage(err,printername,location)

endif
endif

endwhile

1998 LISA XII – December 6-11, 1998 – Boston, MA 47

System Management With NetScript Purakayastha and Mohindra

48 1998 LISA XII – December 6-11, 1998 – Boston, MA

