
The following paper was originally published in the
Proceedings of the Twelfth Systems Administration Conference (LISA ’98)

Boston, Massachusetts, December 6-11, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Request v3:
A Modular, Extensible Task Tracking Tool

Joe Rhett, Navigist

Request v3: A Modular,
Extensible Task Tracking Tool

Joe Rhett – Navigist

ABSTRACT

Tracking tasks remains one of the most difficult issues facing any working team of
administrators. Even with the implementation of commercial tools available today, e-mail and
hallway conversations remain the standard for task management in many organizations;
however, these make it difficult and time consuming to remain current on issues, and do nothing
to summarize the long-term history of tasks and completion thereof.

Many commercial tools are available to handle task management, and most work quite
well for stereotype models of their intended environments – development teams, help desk, etc.
Unfortunately, these systems often have limitations which prevent their use (or a simple
deployment) in a pre-existing, working environment. Other systems are difficult or time-
consuming to use, and remain ignored in favor of task accomplishment. Few freely available
systems provide the statistics to analyze productivity, generate statistics, and otherwise please
management.

Request v3 was designed to provide the necessary essentials for modern task management:
a selection of user interfaces, support for multiple database backends, flexible security controls,
and extensive reporting capabilities. It runs cleanly in heterogeneous environments, including
those that have a large installed base of Windows users. It includes command line, e-mail, and
web interfaces, in addition to an Extension Interface which provides a simple way to access the
Request system from other programs, scripts, or any custom interface one may create. The
authentication, notification, data storage, and logging functions are processed within separate
modules, allowing a variety of backend databases to be supported.

Introduction

This paper focuses on the modifications and
extension of the venerable task tracking tool Request,
and how it may be effectively utilized to increase the
response capability of any organization that does not
have an effective, well-used task management tool.

The paper starts with an overview of the motiva-
tion behind the project and some history of Request
itself. The following sections present the changes
made and the functionality added to the system. The
final section presents potential and operational uses
for Request v3.

Motivation

Although our team of administrators were quite
effective at using e-mail for task management, we
believed that not enough information was available to
our users about task status, and changing responsibil-
ity for the task was never handled well. Although our
staff was competent, we could not step in to handle
emergencies in another’s field of responsibility. No
information was available to analyze our performance,
or set expectations for our users.

The initial goal was to find a simple system we
could quickly implement to track tasks. Given the
extensive automation in our environment and the
highly mobile nature of our user base, it was clear that

any solution for task management must support the
existing environment, work with the existing systems,
and make it easier for administrators to perform their
jobs, not add to their existing burden. The solution had
to provide additional functionality without requiring
changes to our software or current administration
style. The goal became one to find a system which
would provide this baseline functionality for task man-
agement in an operations environment.

After analyzing the existing commercial solu-
tions, it was clear that none of the solutions directly
supported our existing environment of mixed version
Intel, Sparc, and HP unices with a growing amount of
Windows NT systems. None of them would support
all of the methods of input – command line, web-
based, e-mail, and non-interactive – necessary. Most
of the solutions required extensive investments in time
and money (Remedy,Clarify) to be fully operational,
yet would not integrate seamlessly into our environ-
ment. There simply was not a practical solution we
could quickly implement.

At this point, we began to examine the freely
available products. As with the commercial products,
these packages worked seamlessly for one or two
environments, but did not handle everything we were
required to support. Many of the latest ones did not
include command line or non-interactive input (Jitter-
bug, PTS, troublemh), and some of the web interfaces

1998 LISA XII – December 6-11, 1998 – Boston, MA 327

Request v3: A modular, extensible Task Tracking Tool Rhett

were obvious hacks (GNATS). None of them included
clean support for MIME e-mail. None of them pro-
vided even a basic, functional set of statistics that our
management desired.

The available products fell into two categories:
simple, useful systems for tracking progress, and com-
plex systems that provided statistics. None of the sys-
tems had both in good measure, and all of them
required further change to make a viable system capa-
ble of supporting our diverse systems and Windows-
based user community. We needed something we
could quickly add the missing functionality to, and
start using immediately. In the end, this was perhaps
the strongest criteria.

We chose Request 2.1c as our starting point due
to the fact that I was able to install and use it within an
hour, and add the essential missing functionality
within an afternoon.

History

Request was originally written by Shawn
Instenes and James Sharp of Lawrence Livermore
National Laboratories. It started as a single, large
script written to manage the tasks of a specific set of
administrators assisting Unix workstation users. This
KISS1-style system works well in an environment of
trusted users, each having accounts on the system
where the database was stored.

Request 2.1 provided the following features:
• Command line and interactive interfaces
• The ability to open, close, assign, and update

tasks
• The ability to set assigned and default due dates

for tasks
• A defined list of who the available assignees

where
• The ability to list open and closed tasks within

the last week or month

Request 2.1c (UMI): Stuart Levy (University of
Minnesota) added support for e-mail and a proto-stan-
dard query interface, which allowed reports to be gen-
erated using keywords and values. Unfortunately,
these routines contained their own implementations of
each function and had little data verification.

Request 2.5 (LLNL): Mike Miller had updated
the original source tree, and began to generalize the
routines and remove some redundancy. He also added
printer support and defaults to the prompts.

Request 2.6-alpha (LLNL): Mike Miller added
NFS-friendly locking code, and time spent and prior-
ity fields to the record format. The time spent and
assigned fields became arrays, providing a history
mechanism.

1KISS: Keep It Simple, Stupid – a philosophy of program-
ming which accents functionality rather than the addition of
extra features.

When I first started working with the code, my
immediate goal was to provide functional e-mail and
web interfaces. Stuart Levy’s e-mail interface was
functional, but performed all of its own data process-
ing, which sometimes made it incompatible with the
command line interface. In particular, dates were input
in different ways, making the limited reporting func-
tionality almost useless.

Due to the lack of standardized methods in the
code, I was not able to easily add a web interface. To
fulfill the immediate need, I created a quick web inter-
face by checking the data input and using the com-
mand line features of Request. The data was provided
back in fixed-width, preformatted output. This was not
the best approach, but fulfilled the immediate need.

Even after all of these changes, Request
remained lacking in the following ways:

• No security (all files mode 777)
• A web interface was not provided
• MIME e-mail was not supported
• Code was inconsistent, sometimes non-func-

tional
• Comprehensive statistics were not available
• The ability to notify or alert about status was

not available

Design Goals

Review of the system revealed many problems
within the code, mostly related to improper assign-
ments, and logging changes before testing whether to
perform said changes. The code base was inconsistent
and redundant, where each function reimplemented
every operation, often in incompatible or inconsistent
ways. Adding new features to the system required
modifications to every function. The ‘‘simple task’’ of
integration became a complete re-write of the system.

Four major issues define changes to the code
base: ease of use, remote access, security, and interop-
erability. The system is designed to:

1. Secure the dataset against unauthorized opera-
tions or direct attacks.

2. Support local and remote users on Unix, Win-
dows, and Mac platforms.

3. Provide an intuitive system which does not
require instruction to use.

4. Process non-interactive input and output from
existing automated systems (for example,
accept input from HP OpenView, and make use
of our alpha-paging software).

To prevent similar problems in the future, the
new design centralizes all data access, verification,
and logging. In addition to resolving the inconsistency
and redundancy issues, these changes make it simple
to add a modular Extension Interface, allowing new
methods of access to the task information with a minor
amount of code.

328 1998 LISA XII – December 6-11, 1998 – Boston, MA

Rhett Request v3: A modular, extensible Task Tracking Tool

Major Feature Changes

1. Year 2000 Compliant – code automatically
fixes millenia problems when loading/saving
tasks

Core
Modules
(replaceable)

Request API

Auth Database Log Notify

Interface
Elements
(extensible)

HTML E-Mail Command
Line

Other

Figure 1: Request structure.

2. MIME e-mail capability – can parse and add
plaintext sections of MIME messages.

3. E-mail, web, and interactive interface use the
same common routines.

4. Standardized logging mechanism.
5. Common notification methods.
6. Configuration option for European date format.
7. Pointers to data structures are used, rather than

copying arrays between each routine.
8. Clean code interface allows simple extensions

without breaking upgrade capability.
9. New fields store information regarding time

spent and task priority, and retain a history of
assignments for each user.

10. Debugging can be enabled at any time within
the program (limited by authorization).

Common Routines

As mentioned before, the biggest problem in the
old Request code was the lack of centralized data con-
trol. An environment which forces every function to
reimplement data validation and storage will develop
inconsistencies in the different implementations.
Request 2.1c is perhaps the worst example of this,
where dates were stored in a different format (Feb25
vs 2/25) by the e-mail interface, making the date-ori-
ented reporting absolutely useless.

Request v3 uses a common set of routines for all
data access, providing consistent data validation and
verification, thus relieving the burden from the inter-
face. A reference to the data is returned from the
method, allowing the interfaces to input and output in
any fashion desired. It becomes trivial to design inter-
faces for non-interactive scripts.

The centralized system makes it easy to add
external functionality. For example, the Notify module
can interact with other management applications, such
as management software, alpha-pagers, and pop-up
windows. The documented API used by the modules

allows these additions without modification to the
source code, thus allowing live testing and integration.

Interfaces

Command Line
The command line interface is backwards com-

patible with the previous versions of Request, but adds
additional functionality not present in the previous
versions:

1. Configurable default action (default was to cre-
ate a new request, is now often interactive)

2. Chaining of commands (‘‘request -u 1234 -c -Q
1234’’)

3. Word forms for all the actions (‘‘update 1234’’)
4. Extended search criteria (‘‘find state

open,assigned jrhett,contains Print’’)2

5. The ability to enable debug output within the
program

6. The ability to create new requests while in
interactive mode

7. Command history mechanism ala c-shell
8. Optional direct access to routines for testing

purposes (limited by authorization)2

E-Mail
The e-mail interface, originally written by Stuart

Levy, performed all data operations itself and was
therefore sometimes incompatible with the main rou-
tines. The e-mail routines were rewritten to utilize
common data access routines, and handle messages in
MIME format.

Experience and user input lead to the implemen-
tation of these features:

• External files for custom response messages
• Immediate feedback to the user3

• Automatic processing of looped or failed mes-
sages

2These features were thought of and partially implement-
ed by Stuart Levy. We simply extended the ideas a bit fur-
ther, or rewrote it completely to provide the intended func-
tionality.

3Actually implemented, then removed by Stuart Levy
when he decided it was too annoying; obviously optional.

1998 LISA XII – December 6-11, 1998 – Boston, MA 329

Request v3: A modular, extensible Task Tracking Tool Rhett

One site of which I am aware has added encryp-
tion and digital signature authentication to the e-mail
interface.

Web Interface
Supporting a wide variety of users requires the

ability to provide a variety of interfaces, accessible in
a method understood by each user community. Users
do not always take the time to learn an interface, espe-
cially when they already feel inconvenienced by some
issue; therefore, we found it important to provide an
interface with which most users feel comfortable.
Over the last few years it has become apparent that the
web browser is the most common, usable interface.

Request

DBM

MySQL

Oracle

Figure 2: Request module.

The web interface uses the CGI environment to
receive data from HTML forms and return output in
HTML style. The default output is an HTML table not
dissimilar from the command line output, but can be
easily modified to output in any format desired. It
seems likely that every site will use a different style,
so customization is left to the site administrators.

This is actually an example implementation of
the Extension Interface.

Extension Interface
The Extension Interface provides the ability to

support new interfaces and custom access methods
without modifications to the original code base. Orig-
inally designed to interact with HP OpenView NNM
and PPT’s E-Page software, the interface easily adapts
to most needs. Perl/TK and other interfaces would be
simple implementations for enhanced user input
mechanisms.

The interface is well documented. Skeleton and
example invocations are provided to assist new devel-
opment.

Authentication, Storage, Notification and Logging
All of the following components are PERL

classes (Request::Authentication, Request::Storage,
etc) implementing a documented interface. Any or all
of these could be replaced by custom modules utiliz-
ing different resources, such as an existing Oracle
database or an LDAP server. An example module of
each type is supplied to assist in testing.

Authentication Module

Request v2.1 performed no authentication,
allowing any user to execute any command. While this
obviously is not sufficient for complex environments,
anything which enforces stricter security may compli-
cate administration unnecessarily. Therefore, version
3’s authentication module provides flexible security
controls, allowing everything from relaxed, open
administration to strict, multilevel authentication
which validates each operation against the user’s
rights.

The authentication information can be accessed
from any source. The default module uses the local
system’s user information, but modules which support
DBM databases, Radius, LDAP, or any other system
could be easily created.

Database Module

By moving all data storage and retrieval opera-
tions into a module, data can now be stored in one of
any number of different backend databases. This pro-
vides the ability to manage data using a site’s current
environment. Standardized tools can be used to man-
age, distribute, and generate reports from the data,
instead of Request-specific code.

The standard DBM database provides the default
database support, to retain backwards compatibility
with older versions.

Logging Module

Unlike Request v2, extensive support for basic,
extended and debug logging is available. Similar to
the other modules, the logging routines can be
replaced at will.

The default logging module provides direct file
logging with a priority control. An additional module
supplies standard syslog() logging methods.

Notification Module

Unlike Request v2, extensive support for basic,
extended and debug logging is available. Similar to
the other modules, the logging routines can be
replaced at will.

330 1998 LISA XII – December 6-11, 1998 – Boston, MA

Rhett Request v3: A modular, extensible Task Tracking Tool

The default logging module provides direct file
logging with a priority control. An additional module
supplies standard syslog() logging methods.

Reporting and Statistics

One of the significant differences between the
freely available systems and the commercial systems
is that the commercial systems have extensive capabil-
ity to produce reports and statistics of any flavor. The
freely available systems usually provide somewhat
limited functionality, often being concerned with ease
of use and functionality. Managers often need reports
and statistics to justify budgets and review resource
allocations. The implementation of commercial sys-
tems is often based upon that criteria. Far too often
administrators are saddled with unfriendly, cumber-
some task management tools, simply because their
managers need more reporting capability.

Managers desire methods to review activity, the
project history, and statistics on task completion and
overall performance. And sometimes the pointy-haired
ones just like pretty pictures. In the trenches, adminis-
trators need to justify their time and resource alloca-
tions to their management, and identify problem areas
which strain the group as a whole.

A minimal example which changes the assigned admin
use Request;

Get the command line input
$person = $ARGV[0];
($day,$month,$year) = (localtime(time))[3,4,5];
$tomorrow = ($month + 1) . "/" . ($day + 1) . "/" . ($year + 1900);

Open the request and reassign it to the person
my $request = $Request->retrieve($id);
$request->assign($person);
$request->changedue($tomorrow);

Listing 1: Adding a new interface.

Request v2.x provided only limited support for
reports, mostly oriented towards those which were
based upon the open and closure of tasks. Request
2.1c provided a basic query language for generating
reports based on a variety of criteria. Testing found
that not all of the functionality was implemented, and
many of the reports were not useful due to a lack of
data validation in the input routines.

The Request v3 reporting engine extends the
query language defined by Stuart Levy, providing
access query functionality with a standard format.
Stronger, common validation provides more accurate
reporting. Reports can be generated against any field,
including custom fields defined in the local configura-
tion. Thus, changes can be made to the data structure
without modification to the reporting engine.

An optional extension of the reporting engine
will create GIF graphs from any single or dual-column
numeric report.

Security

The previous versions of Request provided little
security. All of the shared data areas were world-
writable, and changing or removing information from
the database was trivial. Request v3 removes all need
for globally accessible directories, implementing
access using a Unix group membership.

This is considered somewhat basic. The best
security comes from using the modular structure to
store data in a backend database (Oracle, MySQL,
etc), which implements a much stronger security
mechanism.

Internally, Request v3 includes a per-operation
authorization mechanism. By default it remains as
open as the previous versions, but may be configured
as tight as the local practice requires. This is discussed
in the Authentication Module section.

Implementation

Installing the Package
If you have fought your way through installation

of many older task management tools, you will be
pleased with the installation process in Request v3.
Unlike the previous versions of Request, installation is
simply make install. The installation will ask a few
questions, and installs a working system. After instal-
lation, the configuration file may be edited to provide
additional customization, but this is often unnecessary
for a basic installation.

The installation program attempts to find an
existing Request installation, and prompts for action if
found. If you choose to upgrade, the existing database
will be available from the new version. If you choose
to duplicate the existing configuration, both systems
may be used during a test period. In either case, the
installation program will automatically configure
Request v3 to match your old configuration, allowing
immediate use of the new system.

1998 LISA XII – December 6-11, 1998 – Boston, MA 331

Request v3: A modular, extensible Task Tracking Tool Rhett

Customizing the Features

All of the standard configuration parameters are
contained within a single text file. Unlike previous
versions of Request, this file is not a PERL script, so
values do not need to be quoted or escaped!

DefaultAction -i
DefaultDue 2days
MailCommand /usr/lib/sendmail -t

It would be very simple to implement an integrated
configuration editor, but it has not been necessary.

Adding New Interfaces

A new or improved interface may be installed
and tested without affecting normal operation. The
interface needs to do nothing more than use the PERL
class, create an object (if necessary) and call the meth-
ods; see Listing 1.

To assist in development, we have supplied a
dummy interface which utilizes every available
method of the Extension interface, but contains only
comments for input/output code.

Adding New Modules

Any of the Authentication, Storage, Notification,
or Logging modules may be replaced at any time.
These modules are stored in the /lib path of the instal-
lation directory. A replacement module may be tested
by changing an environment variable, allowing testing
without interrupting normal operation; see Listing 2.

A minimal example
package Request::Log;

logfile opened in init() and closed in final()
sub log {

my ($pkg,$routine,$user,$level,$message) = @_;
print LOGFILE "${level}/${pkg}:${routine}/${user}: ${message}\n"

}

This assumes you only use debug in command line mode
sub debug {

my ($pkg,$routine,$user,$level,$message) = @_;
print STDERR "${level}/${pkg}:${routine}/${user}: ${message}\n"

}

Listing 2: Adding a new module.

To assist in development, we have supplied a
complete example for each module which implements
each function of the API, but does not actually do any-
thing. These examples provide skeletons from which
to begin development.

Availability

Request v3.0 is publicly available using anony-
mous HTTP (web browser) at http://www.navigist.
com/Reference/Projects/Request.

A mailing list has been created for questions,
comments, patches, and recommendations for
Request. You can subscribe by sending electronic mail
to majordomo@lists.isite.net with the text ‘‘subscribe
request-users’’ in the body.

Author Information

Joe Rhett started his career as an independent
contractor, implementing Unix systems and LANs in
the Washington, D.C. area. After working with the
NAVSEA MAN in Crystal City, VA; he moved to Cal-
ifornia, and began work with Navigist, a small team of
consultants in Silicon Valley. He specializes in net-
work engineering, security, and performance; often
focusing on application implementation. He tries to
limit his programming to small applications and utili-
ties which improve administration capability, problem
isolation, and overall response time. He can be
reached via e-mail at <jrhett@navigist.com>, or
through any of the contact methods listed at http://
www.navigist.com/Staff/JRhett.

References

James M. Sharp, ‘‘Request: A Tool for Training New
Sys Admins and Managing Old Ones,’’ Proceed-
ings of the Sixth USENIX Systems Administration
Conference (LISA VI), 1992.

Stuart Levy. ‘‘README for Request v2.1c,’’ Request
2.1c distribution, July 1996.

Mike Miller. ‘‘README for Request v2.5,’’ Request
2.5 distribution, April 1995.

N. Freed & N. Borenstein. ‘‘Multipurpose Internet
Mail Extensions (MIME) Part One: Format of
Internet Message Bodies,’’ RFC 2045, Network
Information Center, 1996.

N. Freed & N. Borenstein. ‘‘MIME (Multipurpose
Internet Mail Extensions) Part One: Mechanisms
for Specifying and Describing the Format of
Internet Message Bodies,’’ RFC 1521, Network
Information Center, 1993.

332 1998 LISA XII – December 6-11, 1998 – Boston, MA

Rhett Request v3: A modular, extensible Task Tracking Tool

N. Freed & N. Borenstein. ‘‘MIME (Multipurpose
Internet Mail Extensions): Mechanisms for Spec-
ifying and Describing the Format of Internet
Message Bodies,’’ RFC 1341, Network Informa-
tion Center, 1992.

D. Crocker. ‘‘Standard for the format of ARPA Inter-
net text messages,’’ RFC 822, Network Informa-
tion Center, 1982.

Sriram Srinivasan. Advanced PERL Programming,
O’Reilly and Associates, 1997.

Larry Wall, Tom Christiansen, Randal Schwartz.
PERL Programming, O’Reilly and Associates,
1996.

1998 LISA XII – December 6-11, 1998 – Boston, MA 333

334 1998 LISA XII – December 6-11, 1998 – Boston, MA

